Some Common Fixed Point Theorems in N-Fuzzy Metric Spaces with Applications

Prabha Chouhan ${ }^{\text {a }}$, Neeraj Malviya ${ }^{\text {a }}$, Sarla Chouhan ${ }^{\text {b }}$
${ }^{\text {a }}$ Assistant Professor of Mathematics Govt. College Baktara Dist. Sehore (M.P) India
${ }^{\text {a }}$ Assistant Professor of Mathematics Govt. College Timarni, Harda, (M.P) India
${ }^{\mathrm{b}}$ Assistant Professor of Mathematics, SGSITS Indore (M.P) India

Abstract

In this paper, we prove some common fixed point theorems in newly defined space N -fuzzy metric space [8]. Our results generalize and extend the results of Mahmoud Bousselsal and Mohamed Laid Kadri [M. Bousselsal and M.L. Kadri, [1] A common fixed point theorem in fuzzy metric spaces; Thai J. Math. Vol. X(20XX) No. X:XX-XX [1]].

Keywords: N-fuzzy metric space, Fixed point theorems.

1. Introduction

In 1975, Kramosil and Michalek [7] introduced fuzzy metric spaces. By a slight modification of the Kramosil-Michalek definition, George and Veeramani [6] introduced fuzzy metric spaces and topological spaces induced by fuzzy metric. In the literature there are several generalization of metric spaces [2],[3],[4],[5],[9],[10],[11] as well as fuzzy metric space [6],[7],[8]. Very recently Neeraj Malviya introduced the N-Fuzzy metric space induced by S-metric space [11], which is the generalization of $Q(G)$ fuzzy metric space [13].

In present paper we extend and generalized the results of M. Bousselsal and M.L. Kadri [1]. We prove the existence and uniqueness of a common fixed point in N-fuzzy metric space for by using a ϕ and ψ functions with examples.

2. Preliminaries and the definition of \boldsymbol{N}-fuzzy metric space

We assume that the function $\phi:[0,1] \rightarrow[0,1]$ satisfying the following properties:
$\left(\mathrm{P}_{1}\right) \phi$ is strictly decreasing and left continuous.
$\left(\mathrm{P}_{2}\right) \phi(m)=0$ if and only if $m=1$
obviously, we obtain that $\lim _{m \rightarrow 1-} \phi(m)=\phi(1)=0$.

2.1 Definition

A triplet $(X, N, *)$ is an N-fuzzy metric space, if X is an arbitrary set, $*$ is a continuous t-norm and N is a fuzzy set on $X^{3} \times(0, \infty)$ satisfying the following conditions for all $\mathrm{u}, v, w \in X$ and $r, s, t>0$
(1) $N(u, v, w, t)>0$
(2) $N(u, v, w, t)=1$ if and only if $\mathbf{u}=v=w$
(3) $N(u, v, w, r+s+t) \geq N(u, u, a, r) * N(v, v, a, s) * N(w, w, a, t)$
(4) $N(u, v, w, \cdot):(0, \infty) \rightarrow(0,1)$ is a continuous function.

3. Main Results

Theorem 3.1. Let $(X, N, *)$ be a complete N-fuzzy metric space and assume that $\phi:[0,1] \rightarrow[0,1]$ satisfying the foregoing properties $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$. Furthermore, let α be a function from $(0, \infty) \rightarrow(0,1)$. Let S and T be maps that satisfy the following condition.
(i) $\quad T(X) \subseteq S(X)$
(ii) $\quad S$ is continuous.

$$
\begin{equation*}
\phi(N(T(x), T(x), T(y), \mathrm{t})) \leq \alpha(t) \phi(N(S(x), S(x), S(y), \mathrm{t})) \tag{3.1}
\end{equation*}
$$

Where $x, y \in X$ and $t>0$, then S and T have a unique fixed point provided S and T commute.
Proof. Let x_{0} be a point in X. By hypothesis (i), we can fixed x_{1} such that $S x_{1}=T x_{0}$, by induction we can define a sequence $\left\{x_{n}\right\}$ in X such that $S x_{n}=T x_{n-1}$. By induction again and by (3.1) we have

$$
\begin{gather*}
\phi\left(N\left(S x_{n,} S x_{n,} S x_{n+1}, \mathrm{t}\right)\right)=\phi\left(N\left(T x_{n-1}, T x_{n-1}, T x_{n}, t\right)\right) \\
\leq \alpha(t) \phi\left(N\left(S x_{n-1}, S x_{n-1}, S x_{n,} t\right)\right) \\
\quad<\phi\left(N\left(S x_{n-1}, S x_{n-1}, S x_{n, t}\right)\right) \tag{3.2}
\end{gather*}
$$

Since ϕ is strictly decreasing, then

$$
\begin{equation*}
N\left(S x_{n}, S x_{n}, S x_{n+1}, \mathrm{t}\right)>N\left(S x_{n-1}, S x_{n-1}, S x_{n,}, t\right) \tag{3.3}
\end{equation*}
$$

Setting $y_{n}(t)=N\left(S x_{n}, S x_{n}, S x_{n+1}, \mathrm{t}\right)$. For (3.3), the sequence $\left\{y_{n}(t)\right\}$ is strictly increasing and bounded then $y_{n}(t)$ converges to $y(t)$ for all $t>0$.

Assume that $y(t) \in] 0,1\left[\right.$. Since $y_{n}(t)>y_{n-1}(t)$ for all $t>0$, then

$$
\phi\left(y_{n}(t)\right) \leq \alpha(t) \phi\left(y_{n-1}(t)\right)
$$

for every $t>0$. Letting $n \rightarrow \infty$, since ϕ is left continuous, we have

$$
\phi(y(t)) \leq \alpha(t) \phi(y(t))<\phi(y(t))
$$

for every $t>0$, which is a contradiction. Hence $y(t)=1$, that is the sequence $\left\{y_{n}(t)\right\}$ converges to 1 for every $t>0$. Next, we show that the sequence $\left\{S\left\{x_{n}\right\}\right\}$ is a Cauchy sequence. Assume that it is not, then there exist $0<\varepsilon<1$ and two sequences $\{p(n)\}$ and $\{q(n)\}$ such that

$$
\begin{align*}
p(n)>q(n) & \geq n \\
N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}, t\right) & \leq 1-\varepsilon \\
N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)-1}, t\right) & >1-\varepsilon \\
N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)}, t\right) & >1-\varepsilon \tag{3.4}
\end{align*}
$$

for each $n \in N \cup\{0\}$, we get $\delta_{\mathrm{n}}(\mathrm{t})=N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}\right.$, t$)$ then we have

$$
\begin{align*}
1-\varepsilon & \geq \delta_{n}(\mathrm{t})=N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}, t\right) \\
& \geq N\left(S x_{p(n)}, S x_{p(n)}, S x_{p(n)-1}, \frac{t}{3}\right) * N\left(S x_{p(n)}, S x_{p(n)}, S x_{p(n)-1}, \frac{t}{3}\right) \\
& * N\left(S x_{q(n)}, S x_{q(n)}, S x_{p(n)-1}, \frac{t}{3}\right) \\
& \geq y_{p(n)-1}\left(\frac{t}{3}\right) * y_{p(n)-1}\left(\frac{t}{3}\right) * 1-\varepsilon \quad \text { by } 3.4 \tag{3.5}
\end{align*}
$$

Since $y_{p(n)-1}\left(\frac{t}{3}\right) \rightarrow 1$ as $n \rightarrow \infty$ for every $t>0$. Supposing that $n \rightarrow \infty$, we note that the sequence $\left\{\delta_{n}(t)\right\}$ converges to $1-\varepsilon$ for every $t>0$. Moreover by (3.1) we have

$$
\begin{array}{r}
N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}, t\right) \leq \\
<\alpha(t) \phi\left(N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)-1}, t\right)\right) \tag{3.6}\\
<\phi\left(N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)-1}, t\right)\right)
\end{array}
$$

According to the monotonicity of ϕ, we know that

$$
N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}, t\right)>N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)-1}, t\right)
$$

for each n. Thus, on the basis of formula (3.6) we can obtain.

$$
\begin{equation*}
1-\varepsilon \geq N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}, t\right)>N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)-1}, t\right)>1-\varepsilon \tag{3.7}
\end{equation*}
$$

Clearly, this leads to a contradiction. Hence $\left\{S x_{n}\right\}$ is a Cauchy sequence. By the completeness of $X,\left\{S x_{n}\right\}$ converges to y, so $T x_{n-1}=S x_{n}$ tends to y. It can be seen that from (3.1) and the left continuous of ϕ that the continuity of S implies the continuity of T. So $T\left(S\left(x_{n}\right)\right) \rightarrow T(y)$.

However $T S\left(x_{n}\right)=S T\left(x_{n}\right)$ by the commutativity of S and T. So $S\left(T\left(x_{n}\right)\right)$ converges to $S(y)$.
Because the limit is unique $S(y)=T(y)$ so $S(S(y))=S(T(y))$ by commutativity and

$$
\begin{aligned}
\phi(N(T(y), T(y), T(T(y)), t)) & \leq \alpha(t) \phi(N(S y, S y, S(T(y)), t)) \\
& \leq \alpha(t) \phi(\mathrm{N}(T y, T y, T(T(y)), t)) \\
& <\phi(N(T y, T y, T(T(y)), t))
\end{aligned}
$$

then if $T y \neq T(T(y))$, we have a contradiction hence, $T(y)=T(T(y))$. Then $T(y)=T(T(y))=S(T(y))$. So $T(y)$ is a common fixed point of S and T. Now we prove the uniqueness of the common fixed point of S and T. If y and z are two common fixed points to S and T, and $y \neq z$, then

$$
\begin{aligned}
\phi(N(y, y, z, t)) & =(N(T y, T y, T z, t)) \\
& \leq \alpha(t) \phi(N(S y, S y, S z, t)) \\
& <\phi(N(S y, S y, S z, t)) \\
& =\phi(N(y, y, z, t))
\end{aligned}
$$

then $N(y, y, z, t)>N(y, y, z, t)$, which is a contradiction so $y=z$.
Remark 3.2. If we choose $S=I$ in theorem (3.1), we obtain the following corollary which is the main result of [12] and it will generalize in the setting of N-fuzzy metric space.

Corollary 3.3. Let $(X, N, *)$ be an complete N-fuzzy metric space and T a self map of X and assume that $\phi:[0,1] \rightarrow[0,1]$ satisfy the foregoing properties $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$. Furthermore, let α be a function from $(0, \infty) \rightarrow(0,1)$. Let T be a continuous map that satisfies the following conditions :

$$
\phi(N(T(x), T(x), T(y), t)) \leq \alpha(\mathrm{t}) \phi N(x, x, y, t)
$$

where $x, y \in X$ and $t>0$, then T has a unique fixed point.
We now give an example that illustrate our main result
Example 3.4: Let $X=\left\{\frac{1}{n}, n \in N\right\} \cup\{0\}$ with the N-fuzzy metric space N is defined by

$$
N(x, y, z, \mathrm{t})=\left\{\begin{array}{cl}
0 & \text { if } t=0 \\
\frac{t}{t+|x-y|+|y-z|} & \text { if } t>0, x, y, z \in X .
\end{array}\right.
$$

Clearly $N(x, y, z, *)$ is complete N-fuzzy metric space on X. Where is defined by $\mathrm{a} * \mathrm{~b} * \mathrm{c}=$ abc. Define $T(x)=\frac{x}{6}$ and $S(x)=\frac{x}{2}$ on X. It is evident that $T(X) \subset S(X)$. Also, define the function $\alpha:(0, \infty) \rightarrow(0,1)$ by $\alpha(\mathrm{t})=\frac{2+\frac{1}{t}}{6+\frac{1}{t}}$ for $t>0$, the function $\phi:[0,1] \rightarrow[0,1]$ defined by $\phi(t)=\frac{1-t}{1+t}$ satisfies the properties $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$.

$$
\begin{array}{r}
N(T x, T x, T y, t)=\frac{3 t}{3 t+|x-y|} t>0, x, y \in X \\
\phi(N(T x, T x, T y, t))=\frac{|x-y|}{6 t+|x-y|} t>0, x, y \in X \\
\phi(N(S x, S x, S y, \mathrm{t}))=\frac{|x-y|}{2 t+|x-y|} t>0, x, y \in X
\end{array}
$$

Since $|x-y| \leq 1$ for $x, y \in X$, then it is easy to see that

$$
N((T x, T x, T(y), t)) \leq \alpha(\mathrm{t}) \phi(\mathrm{N}(S(x), S(x), S y, t))
$$

All the hypothesis of theorem (3.1) are satisfied and thus S and T have a unique common fixed point $x=0$.
Application: Let $Y=\{\chi:[0,1[\rightarrow[0,1[, \chi$ is a Lebesgue integrable mapping which is summable, nonnegative and satisfies $\int_{1-\varepsilon}^{1} \chi(t) d t>0$ for each $\left.0<\varepsilon<1\right\}$

Theorem 3.5. Let $(X, N, *)$ be a complete N-fuzzy metric space and T a self map of X and assume that $\phi:[0,1] \rightarrow[0,1]$ satisfies the foregoing properties $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$. If for any $t>0, S$ and T satisfy the following condition:

$$
\begin{equation*}
\int_{1-\phi(N(T x, T x, T(y), t))}^{1} \chi(\mathrm{~s}) \mathrm{ds} \leq \alpha(\mathrm{t}) \int_{1-\phi(N(S x, S x, S y, t))}^{1} \chi(\mathrm{~s}) \mathrm{ds} \text { for } \chi \in Y \tag{3.5}
\end{equation*}
$$

where $x, y \in X$, then S and T have a unique common fixed point.
Proof. for $\chi \in Y$, we consider the function :

$$
\wedge:[0,1] \rightarrow[0,1] \text { by } \wedge(\epsilon)=\int_{1-\varepsilon}^{1} \chi(\mathrm{~s}) \mathrm{ds}
$$

\wedge is continuous, $\wedge(0)=0, \wedge$ is strictly increasing (3.1) becomes.

$$
\wedge(\phi(N(T(x), T(x), T(y), t))) \leq \alpha(\mathrm{t}) \wedge(\phi(N(S x, S x, S y, t)))
$$

Setting $\phi_{1}=\wedge \mathrm{o} \phi$ and ϕ_{1} is strictly decreasing, left continuous and satisfies the properties $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ for any t >0, then by theorem (3.1), S and T have a unique common fixed point.

4 The Second Main Result

In this section, we assume that the functions $\phi, \psi:[0,1] \rightarrow[0,1]$ satisfying the following properties:
$\left(\mathrm{q}_{1}\right) \phi$ is strictly decreasing and left continuous,
$\left(\mathrm{q}_{2}\right) \phi(m)=0$ if and only if $m=1$
(q_{3}) ψ is lower semi-continuous and $\psi(m)=0$ if and only if $m=1$.
Obviously, we obtain that $\lim _{m \rightarrow 1-} \phi(m)=\phi(1)=0$
Theorem 4.1: Let $(X, N, *)$ be a complete N-fuzzy metric space and assume that $\phi, \psi:[0,1] \rightarrow[0,1]$ satisfies the foregoing properties $\left(\mathrm{q}_{1}\right),\left(\mathrm{q}_{2}\right)$ and $\left(\mathrm{q}_{3}\right)$. Let S and T be maps that satisfy the following condition:
(i) $T(X) \subset S(X)$
(ii) S continuous

$$
\begin{equation*}
\phi(N(T x, T x, T y, t)) \leq \phi(N(S x, S x, S y, t))-\psi(N(S x, S x, S y, t)) \tag{4.1}
\end{equation*}
$$

where $x, y \in X$ and $t>0$, then S and T have a unique common fixed point provided S and T commute.

Proof Let x_{0} be a point in X. By hypothesis (i), we can fixed $x_{1} \in X$ such that $S x_{1}=T x_{0}$, by induction, we can define a sequence $\left\{x_{n}\right\}$ in X such that $S x_{n}=T x_{n-1}$. By induction again and by (4.1) we have

$$
\begin{align*}
\phi\left(N\left(S x_{n,} S x_{n,} S x_{n+1}, t\right)\right) & =\phi\left(N\left(T x_{n-1}, T x_{n-1}, T x_{n}, t\right)\right) \\
& \leq \phi\left(N\left(S x_{n-1}, S x_{n-1}, S x_{n}, t\right)\right)-\psi\left(N\left(S x_{n-1}, S x_{n-1}, S x_{n}, t\right)\right) \tag{4.2}
\end{align*}
$$

Setting $\theta_{n}(t)=N\left(S x_{n}, S x_{n}, S x_{n+1}, t\right)$ then, $\phi\left(\theta_{n}(t)\right) \leq \phi\left(\theta_{n-1}(t)\right)-\psi\left(\theta_{n-1}(t)\right)$

Since ϕ is strictly decreasing, it is easy to show that $\left\{\theta_{n}(t)\right\}$ is an increasing sequence for every $t>0$ with respect to n. That is $\theta_{n}(t) \geq \theta_{n-1}(t)$ for all $n \geq 1$. We put $\lim _{n \rightarrow \infty} \theta n(t)=\theta(t)$ and assume that $0<\theta(t)<1$. From (4.2), we have

$$
\begin{equation*}
\phi\left(\theta_{n}(t)\right) \leq \phi\left(\theta_{n-1}(t)\right)-\psi\left(\theta_{n-1}(t)\right) \tag{4.3}
\end{equation*}
$$

for every t, by supposing that $n \rightarrow \infty$, Since ϕ is left continuous, we have

$$
\begin{equation*}
\phi(\theta(t)) \leq \phi(\theta(t))-\psi(\theta(t)) \tag{4.4}
\end{equation*}
$$

which implies that $\psi(\theta(t))=0$. Hence $\theta(t)=1$. That is the sequence $\left\{\theta_{n}(t)\right\}$ converges to 1 for any $t>0$. Next, we show that the sequence $\left\{S x_{n}\right\}$ is a Cauchy sequence. Assume that it is not, then there exist $0<\varepsilon<1$ and two sequences $\{\mathrm{p}(\mathrm{n})\}$ and $\{\mathrm{q}(\mathrm{n})\}$ such that for every $n \in N \cup\{0\}$ and $t>0$, we obtain:

$$
\begin{align*}
p(n)>q(n) & \geq n \\
N\left(x_{p(n)}, x_{p(n)}, x_{q(n)}, t\right) & \leq 1-\varepsilon \tag{4.5}\\
N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)-1}, t\right) & >1-\varepsilon \\
N\left(S x_{p(n)-1}, S x_{p(n)-1}, S x_{q(n)}, t\right) & >1-\varepsilon
\end{align*}
$$

for each $n \in N \cup\{0\}$, we assume that $\delta n(t)=N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}, t\right)$, then we have

$$
\begin{align*}
1-\varepsilon \geq \delta n(t)= & N\left(S x_{p(n)}, S x_{p(n)}, S x_{q(n)}, t\right) \\
> & N\left(S x_{p(n)}, S x_{p(n)}, S x_{p(n)-1}, \frac{t}{3}\right) * N\left(S x_{p(n)}, S x_{p(n)}, S x_{p(n)-1}, \frac{t}{3}\right) \\
& * N\left(S x_{q(n)}, S x_{q(n)}, S x_{p(n)-1}, \frac{t}{3}\right) \\
> & \theta_{p(n)-1}\left(\frac{t}{3}\right) * \theta_{p(n)-1}\left(\frac{t}{3}\right) * 1-\varepsilon \quad \text { by }(4.5) \tag{4.6}
\end{align*}
$$

Since $\theta_{p(n)-1}\left(\frac{t}{3}\right) \rightarrow 1$ as $n \rightarrow \infty$ for every t . We note that $\{\delta n(t)\}$ converges to $1-\varepsilon$ as $n \rightarrow \infty$ for any $t>0$, moreover by (4.1), we have

$$
\begin{equation*}
\phi\left(\delta_{n}(t)\right) \leq \phi\left(\delta_{n-1}(t)\right)-\psi\left(\delta_{n-1}(t)\right) \tag{4.7}
\end{equation*}
$$

Going to the limit in (4.7) as $n \rightarrow \infty$, for every $t>0$, we obtain:

$$
\phi(1-\varepsilon) \leq \phi(1-\varepsilon)-\psi(1-\varepsilon)
$$

Clearly, this leads to $1-\varepsilon=1$, which is a contradiction. Hence $\left\{S x_{n}\right\}$ is Cauchy sequence in the complete $N-$ fuzzy metric space X. Therefore we conclude that there exists a point $y \in X$ such that

$$
\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T \mathrm{x}_{\mathrm{n}-1}=y .
$$

It can be seen that from (4.1) and the properties of ϕ and ψ, that the continuity of S implies the continuity of T. So $T\left(S x_{n}\right) \rightarrow T(y)$. However $T\left(S x_{n}\right)=S\left(T x_{n}\right)$ by the commutativity of S and T. So $S\left(T x_{n}\right)$ converges to $S(y)$. Because the limit is unique $S(y)=T(y)$. So by commutativity, we have $S(S(y))=S(T(y))$ and

$$
\phi(N(T y, T y, T(T y), t))=\phi(N(S y, S y, S(T y), t))
$$

$$
\leq \phi(N(T y, T y, T(T y), t))-\psi(N(T y, T y, T(T y), t))
$$

Hence, necessarily $T y=T(T(y))$, thus $T y=T(T y)=S(T y)$. So $T y$ is a common fixed point of S and T. Now we prove the uniqueness of the common fixed point of S and T.

If y and z are two common fixed points to S and T with $y \neq z$, then

$$
\begin{aligned}
\phi(N(y, y, z, t)) & =\phi(N(T y, T y, T z, t)) \\
& \leq \phi(N(S y, S y, S z, t))-\psi(N(S y, S y, S z, t)) \\
& \leq \phi(N(y, y, z, t))-\psi(N(y, y, z, t))
\end{aligned}
$$

then $\psi(N(y, y, z, t)) \leq 0$, So $N(y, y, z, t)=1$ contradiction.
Example 4.2: Let $X=[0, \infty), \mathrm{a} * \mathrm{~b} * \mathrm{c}=$ a.b.c for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in[0,1]$. Define $N: \mathrm{X} \times \mathrm{X} \times \mathrm{X} \times[0, \infty) \rightarrow[0,1]$ by

$$
N(x, y, z, t)=\left\{\begin{array}{cc}
e^{\frac{-[|x-y|+|y-z|+|z-x|]}{2 t}} & \text { if } t>0, \\
0 & \text { if } t=0, \text { for all } x, y, z \in X
\end{array}\right.
$$

We claim that $(X, N, *)$ is an N-fuzzy metric space. In fact, it is enaugh to prove that for $\mathrm{r}, \mathrm{s}, \mathrm{t}>0, x, y, z, a \in X$

$$
\begin{aligned}
N(x, x, a, r) * N(y, y, a, s) * N(z, z, a, t) & \leq e^{\frac{-2|x-a|}{2 r}} \cdot e^{\frac{-2|y-a|}{2 s}} \cdot e^{\frac{-2|z-a|}{2 t}} \\
& \leq e^{\frac{-2|x-a|}{2(r+s+t)} \cdot e^{\frac{-2|y-a|}{2(r+s+t)}} \cdot e^{\frac{-2|z-a|}{2(r+s+t)}}} \\
& =e^{\frac{-2| | x-a|+|y-a|+|z-a|]}{2(r+s+t)}} \\
& \leq e^{\frac{-[|x-y|+|y-z|+|z-x|]}{2(r+s+t)}} \\
& =N(x, y, z, r+s+t)
\end{aligned}
$$

$\phi=1-\sqrt{t}, \psi(t)=1-\frac{\sqrt{t}}{2}$ for $t \in[0,1]$
$f(x)=\frac{x}{2}$ and $g(x)=\frac{x}{6}$ for $x \in X$.
Application: Let $\mathrm{Y}=\{\chi:[0,1[\rightarrow[0,1[, \chi$ is Lebesgue integrable mapping which is summable, nonnegative and satisfies $\int_{1-\varepsilon}^{1} \chi(t) d t>0$ for each $\left.0<\varepsilon<1\right\}$

Theorem 4.3: Let $(X, N, *)$ be a complete N-fuzzy metric space and assume that $\phi, \psi:[0,1] \rightarrow[0,1]$ satisfy the foregoing properties $\left(\mathrm{q}_{1}\right),\left(\mathrm{q}_{2}\right)$ and $\left(\mathrm{q}_{3}\right)$. Let S and T be maps that satisfy the following condition:
(i) $T(X) \subset S(X)$
(ii) S is continuous and

$$
\begin{equation*}
\int_{1-\phi(N(T x, T x, T y, t))}^{1} \chi(\mathrm{~s}) \mathrm{ds} \leq \int_{1-\phi(N(S x, S x, S y, t))}^{1} \chi(\mathrm{~s}) \mathrm{ds}-\int_{1-\psi(N(S x, S x, S y, t))}^{1} \chi(\mathrm{~s}) \mathrm{ds} \tag{4.3}
\end{equation*}
$$

for $y \in \chi$, where $x, y \in X$ and $x \neq y$. Then S and T have a unique common fixed point.
Proof. For $\chi \in Y$, we consider the function $\wedge:[0,1] \rightarrow[0,1]$ by $\wedge(\varepsilon)=\int_{1-\varepsilon}^{1} \chi(s)$ ds.
\wedge is continuous, $\wedge(0)=0, \wedge$ is strictly increasing (4.3) becomes

$$
\wedge(\phi(N(T x, T x, T y, t)))=\wedge(\phi(N(S x, S x, S y, t)))-\wedge(\psi(N(S x, S x, S y, t)))
$$

Setting $\phi_{1}=\wedge \mathrm{o} \phi$ and $\psi_{1}=\wedge \mathrm{o} \psi_{1} . \quad \phi_{1}$ is strictly decreasing, continuous and satisfies the foregoing properties $\left(\mathrm{q}_{1}\right)$ and $\left(\mathrm{q}_{2}\right)$ for any $t>0$, and ψ_{1} satisfies the property $\left(\mathrm{q}_{3}\right)$ then by theorem (4.1) S and T have a unique common fixed point.

References

Bousselsal M. and Kadri , (20XX) . A common fixed point theorem in fuzzy metric spaces; Thai J. Math. Vol. X No. X:XX-X.

Dhage B.C, (1992). Generalized Metric Space and Mapping with Fixed Point, Bull. Cal. Math. Soc. 84, 329-336.
Dhage B.C., (2000).Generalized Metric Spaces and Topological Structure. I, Analele stiintifice Universitatii Al. I. Cuzadin Iasi. Serie Noua. Matematica, Vol. 46, No. 1, pp.3-24.

Gahlers S., (1963). 2-metrische Raume ihre topologische structure, Math. Nachr, 26, 115-148.
Gahlers S., (1966). Zur Geometric 2-Metrische Raume, Revue Roumaine de Mathematiques Pures et Appliquees 40, 664-669.

George A., Veeramani P, (1994). On Some Results in Fuzzy Metric S paces. Fuzzy Sets Syst. 64, 395-399, https://doi.org/10.1016/0165-0114(94)90162-7.

Kramosil O., Michalek J, (1975). Fuzzy Metrics and Statistical Metric Spaces. Kybernetika 11, 326-334 .
Malviya N. The N-Fuzzy Metric Spaces and Mappings with Application, Fasciculi Mathe-matici, https://doi.org/10.1515/fascmath-2015-001.

Malviya, N., Fisher, B.: N-Cone Metric Space and Fixed Points of Asymptotically Regular Maps. Accepted in Filomat J. Math. (Preprint).

Mustafa Z., Sims B., 2 (2006). A New Approach to Generalized Metric Spaces. Journal of Nonlinear and convex Analysis 7, 289-297.

Sedghi S., Shobe N., Aliouche A., 3 (2012). A Generalization of Fixed Point Theorems in S-Metric Spaces Mathematicki Vesnik 64, 258-266.

Shen Y., Qiu D. and Chenc W., (2012). Fixed point theorems in fuzzy metric spaces, Applied Mathematics Letters, 25, 138-141.

Sun G. and Yang K., (2010). Generalized Fuzzy Metric Spaces with Properties, Research journal of Applied Sciences, Engineering and Technology, vol. 2, no. 7, pp. 673-678.

