
Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1490 

 

 

DESIGN OF SOFTWARE PATTERN FRAMEWORK BASED ON 

AUTOMATIC TEST SYSTEM 

1Kunthumalla Latha, 2Dr.Dhanraj Verma 
1Research Scholar, Dept. of C.S.E, Dr.A.P.J. Abdul Kalam University, Indore- Dewas Bypass Road, 

Indore, M.P, India. 
2Research Guide, Dept. of C.S.E, Dr.A.P.J. Abdul Kalam University, Indore- Dewas Bypass Road, 

Indore, M.P, India. 
 

 

ABSTRACT: In this paper the design of software pattern framework based on automatic test system is 

introduced. Basically in software engineering, pattern framework is considered as most re-useful design. 

Complexity is improved in the testing software applications. Hence to improve the performance in software 

development automatic test technology is introduced. This software pattern framework is independent of 

hardware system. Software pattern framework works well when it is implemented with automatic test 

system. This software pattern framework reduces the development cost and improves the accuracy of the 

system in effective way. 

 
KEYWORDS: Software Pattern Framework, Automatic Test System, Software Engineering, Common 

Technology Analysis, Function models. 
 

I. INTRODUCTION 

Software testing is a fundamental and fundamental quality of programming that is used to 

confirm the desired results of the software program / application. A successful test should show 

that a program contains errors instead of working properly. Testing is inherent every time the 

SDLC is run. When the item is manufactured and added to the build structure, tests are 

performed to ensure that it works accurately and properly [1]. The deception information during 

the test method is reduced to quantify the unshakable quality of the software. 

 

As the profits of the PC business gradually become fundamental and entangled in the high- 

tech society, the unshakable quality and quality of PC software become more and more 

important and fundamental. In fact, the software should become a real source of power outages 

that were revealed in various environments. With the growing interest in software, so does its 

size, code complexity, and criticality. The size of the expanded code leads to more bugs in the 

software. A software module is said to be error prone if it contains an immense number of errors 

that fundamentally impair its usefulness. 
 

Predicting the future has always fascinated people around the world. Various advances by 

individuals, such as glass observers, meteorologists, stock market researchers, specialists, 

computer scientists and architects, seek to improve the viability of waiting for the approach of 

perfect situations. 

 

Normally, prediction should be possible   in   two   different   ways. The   first   forecast 

method is guesswork and the second method is based on available information or recorded 

information [2]. Guess-based predictions generally do not produce good results and often lead to 

poor decisions that lead to bad luck. The most popular way to create expectations depends on 

information. For example, information in visionary terms includes information about an 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1491 

 

 

individual's birth, the location of the stars, and the past. After a long study of people with 

comparable birth information, the heavenly prophets established some guidelines and purposes 

that are subject to rigorous review, and rules are derived for future expectations. Therefore, 

forecasting is a logical endeavor. 

 

Requirements engineering is one of the main periods of the software development life 

cycle. This phase begins the development life cycle with a social event that meets the customer's 

requirements. Clients can generally be of different types, so the types of activities also change 

depending on the client. In general, there are three types of activities. These are 1) small or 

custom companies, 2) large or market-driven tasks, and 3) very large companies. Regardless of 

the size of the company, ensuring the quality of the end result is a major concern. It is important 

then to test the item against these requirements [3]. There are two types of requirements in a 

milling business. You are: 
 

Functional requirements: you determine what the manager has to do. This type of requirement 

manages the iconic substance of the software. They indicate the behavior or functionality of the 

software item. 
 

Non-functional requirements: In software development, requirements that describe how the 

framework should function or perform functions under different conditions are called non- 

functional requirements [4]. These types of requirements are intended to complement the 

functional properties of the framework. They are difficult to test and are periodically checked in 

the abstract. 
 

Different types of requirements, such as business requirements, market requirements, and user 

interface requirements, structure the subset of the two main types of software requirements. The 

main concern of this investigation is the properties of the malfunctioning frame. These properties 

are difficult to decipher and destroy [5]. These traits are exceptionally emotional and, when it 

comes to the real world, they continue in unusual ways, making them difficult to remove. 

 

II. SOFTWARE DEVELOPMENT LIFE CYCLE 

An SDLC has different activities together to achieve the ideal results. SDLC is a software 

procedure model that talks about the life model of software development. Different software 

process models are anticipated with different patterns like waterfall model, spiral model, 

incremental model, etc. Each of these models is based on related software engineering exercises 

to shape the overall process system. Fig.1 shows the time periods for the procedural structure 

exercises. These SDLC periods are invaluable for IT professionals to achieve ideal task 

goals. These SDLC periods are given below: 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1492 

 

 

 

 

 

Fig. 1: SOFTWARE DEVELOPMENT LIFE CYCLE 

(a) Analysis and specification of needs 

In the software development process, requirements research and specification is a notable 

process among the core activities. At this point, all the framework requirements can be 

restricted. The prerequisite survey integrates the strengths, for example, accessibility of need, 

unwavering quality of the item, execution, constraints, and goals that the customer expects from 

the framework (Pressman 2010). Requirements are compiled by customers and an SRS 

(Software Requirements Specification) dataset is created, leading to the transition to the next  

procedural model period. 

 

(b) Planning 

Planning provides a series of exercises that characterize the scope of the business, with each 

special run directed by the designer and the risk factor. These exercises organize the resources 

needed to create the job on time. Finally, planning manages and supervises the business 

activities that allow the association to deliver the business on the scheduled time. 

 

(c) Systems and software design 

This movement has to do with a structuring process to solve the problems identified with the 

software. Specifications and requirements planning are modified in a format appropriate for use 

in certain programming languages. Planning requires the general grouping of the designer to 

characterize software engineering. All the special features of the peer-to-peer setup can become 

too expensive at a later time and also affect the presentation of the software. 

 

(d) Encoding 

In this step, the organized structure is converted to a programming language such as C, C ++, 

Pascal, and Java to update the planned design. The coding step affects the testing and execution 

steps. Due to the cost of testing and maintenance, the software is much higher than the cost of 

coding. In this way, the main concern of the coding phase is to develop simple and clear projects 

to reduce testing and maintenance costs. 

Implementation &Maintenance 

Testing 

Coding 

Software Design 

Planning 

Requirement Analysis & Specification 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1493 

 

 

 

(e) System test 

Testing is an important step in software development. The main purpose of testing is to find 

bugs in the software. The software bug can be displayed during the prerequisite, structure, and 

coding phase. There can be many reasons for software failure. The primary testing period is unit 

testing, which is performed by designers at the time of development. After the unit tests are 

performed, coordination tests are performed that focus on testing the interconnected 

modules. After the frame is assembled, frame tests are performed to verify that all requirements 

are met. Finally, commit tests are performed to show the client that the framework is active. This 

is the key strategy for dynamically reviewing and approving a framework. There are various test 

devices and strategies available for testing. 

 

(f) Implementation and maintenance 

When the SDLC is exhausted, the software is passed for operational use and shipped to the 

customer. Some problems identified with the framework created can be discovered immediately 

after it begins to be used in practice and are understood from then on. Some issues continue to 

occur inconsistently and will be addressed as needed. Now this procedure applies to 

maintenance. 

 

III. TYPES OF SOFTWARE TESTS 

There are a number of testing strategies and procedures to meet different requirements at 

different stages of the life cycle. Software testing can be divided into complementary classes: 

black box testing, white box testing, gray box program testing, quality assurance (QA) testing, 

functional testing, performance testing, performance testing scalability, manual tests, automatic 

tests. The description of each type of test is given below: 

 

(a) Black box test 

The screening test is not identified with the company's internal code region. Take an outside 

perspective on the test questions. These tests may or may not be helpful, but they are generally 

helpful. The tester selects essential and invalid information and selects the error in the correct 

place (Bell et al. 2006). There is no information about the internal structure of the exam 

question. As a discovery tester, you do not need to understand program code. 

 

(b) White box test 

White box testing uses an internal perspective of the framework to design test cases. It requires 

programming skills to perceive all routes through the element. The evaluator selects the test jobs 

to practice routes through the code and selects the appropriate performance (Bell et al. 2006). 

 

(c) Gray box test 

This type of programming test is a combination of black box tests and white box tests. An 

attempt is made to change the quality of each type and combine them into a "complete" test more 

unmistakable than the absolute of its parts. Dim Box can use the simple and easy-to-use method 

of screening versus end-to-end testing, the code of which is focused on white box testing (Bell et 

al. 2006). 

 

(d) Test run 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1494 

 

 

Functional tests are carried out to verify the best possible handling of the element. It can be 

combined with tests of counting and numerical precision for intelligent and monetary 

programming and practical tests for graphical user interfaces (Bell et al. 2006). 

 

(e) Performance test 

Performance tests select item performance through the speed of estimates or response to the 

customer (Bell et al. 2006). 

 

(f) Manual test 

With manual testing, testers physically execute the code piece by piece. At the end of the day, 

this type of test takes the tests gradually. Human impedance is an important part of these 

tests. Using manual tests to test the code, the tester / designer presses the socket, selects the 

connection, confirms the benefits, and physically performs the entire test task. In this way, the 

term “manual” is legitimized. 

 

(g) Automated tests 

Mechanized tests try to run the code in auto run mode. The tests are set up with the fully 

automated route of a QA tester / QA technician using the equipment so that a collection of tests 

can be limited by pressing an isolated output or entering a single command without limits. 

 

IV. SOFTWARE PATTERN FRAMEWORK BASED ON AUTOMATIC TEST SYSTEM 

The below Fig. 2 shows the flow chart of software pattern framework based on automatic test 

system. In this initially, input data is analyzed using common technology. Implementation is 

done based on the function models. Framework is designed and built. Now testing procedure is 

implemented for the designed framework. After testing exact outcome is obtained then data is 

moved to the block of specific application. If the exact outcome is not obtained then feedback is 

given to framework block so that it will check and give update. After that process will be 

stopped. 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1495 

 

 

 

 
Fig. 2: FLOW CHART OF SOFTWARE PATTERN FRAMEWORK BASED ON AUTOMATIC TEST 

SYSTEM 
 

ALGORITHM: 

Step-1: In this initially, input data is analyzed using common technology. 
 

Step-2: Implementation is done based on the function models. 

 

Step-3: Framework is designed and built. 

 

Step-4: Now testing procedure is implemented for the designed framework. 

 

Step-5: After testing exact outcome is obtained then data is moved to the block of specific 

application. 

 

Step-6: If the exact outcome is not obtained then feedback is given to framework block so that it 

will check and give update. 

 

Step-7: After that process will be stopped. 

 

Software testing provides a technique for reducing maintenance costs, limiting errors, and 

overhead programming costs. Due to the life cycle of the program change, it turned out to be the 

most extraordinary parameter. With the help of IT test tools, developers and analyzers can easily 

automate the entire test move by changing programming. Change its appearance and source 

code. Very impressive programming testing through efficient testing 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1496 

 

 

In programming automation, tests are similar to an item progression method. Experience a life 

cycle similar to that of the programming difference. The remarkable feeling that it have to deal 

with who invents it. There is constant research on who creates the content, be it a fashion 

designer or a trial partner. It is certainly a wise task, and several affiliates hope that the effort 

will be a joint effort between the analyzer and the architect. The automation system is associated 

with a considerable amount of effort, which requires joint work, considering how much 

additional time and budget requirements are spent 

 
Table 1: PARAMETERS OF SOFTWARE PATTERN FRAMEWORK BASED ON AUTOMATIC TEST 

SYSTEM 

 

 

S.No 

 

 

Parameter 

Software Pattern 

Framework Based 

On Automatic Test 

System 

1 Cost Low 

2 Accuracy High 

3 Time Less 

4 Scalability High 

 

The below Fig.3 shows the Accuracy and Scalability of software pattern framework based on 

automatic test system. Accuracy is improved and less time is taken while testing the software 

pattern framework based on automatic test system. Therefore scalability of the system is also 

improved. 

 

 

 

 

 

 

 

 

 

 

Fig. 3: ACCURACY AND SCALABILITY 

Table 2: COST ANALYSIS 

Software pattern framework based on 
automatic test system 

95.5 

95 

94.5 

94 

93.5 

Accuracy Scalability 

parameters 

p
er

ce
n

ta
ge

 

Method Cost with respect to 

average value 

Interactive Design 

Pattern 
Recommendation 

64% 

 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1497 

 

 

 

Software pattern 

framework based on 

Automatic Test 
System 

15% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: COST ANALYSIS 

 

The above Fig. 4 shows the cost analysis of two methods as ‘Interactive Design Pattern 

Recommendation’ and ‘software pattern framework based on automatic test system’. Cost is 

reduced in software pattern framework based on automatic test system. 

The effectiveness is the impact of the solution that provided by design pattern. Most of the 

developers using design patterns to solve problems. This shows how the patterns effectively in 

software developments. This methodology will formalize depend on the questionnaire that will 

spread to the developers and students in the college of computer science, and gather the answers 

to validates our goals. The questions are answered using the likert scale that is ranging from 1 to 

5. 

 Very low effect indicating 1 

 Low effect indicating 2 

 Nominal/Average effect indicating 3 

 High effect indicating 4 

 Very high effect indicating 5 

Table 3 showed that 47.2% of the responses agreed with effectiveness of design pattern in which 

6.4% of the software engineers strongly agreed and 40.8% of the professionals agreed with it. 

40.8% of the responses remained neutral for effectiveness of design pattern. 11.8% of the 

responses were not in favor of the effectiveness of design pattern. 

 
Table 3: ANALYSIS OF EFFECTIVENESS OF PATTERN 

Q.No. Low Nominal High Very 

high 

Q1 3 11 17 0 

Q2 1 20 7 3 

70% 
60% 
50% 
40% 
30% 
20% 
10% 

0% 

Interactive Design   Software pattern 
Pattern framework based 

Recommendation on Automatic Test 
System 

methods 

p
e

rc
en

ta
ge

 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1498 

 

 

 

Q3 7 7 14 3 

Total 11 38 38 6 

Avg. 11.8% 40.8% 40.8% 6.4% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5: EFFECTIVENESS OF PATTERN 

 

V. CONCLUSION 

Hence in this paper the design of software pattern framework based on automatic test system was 

introduced. Efficiency and quality of system is improved based on the applications of 

development. The pattern which is developed in this paper is convenient at ATS software 

framework. The 

Software framework is used in the every stage from design. The result of this paper is validated 

by questionnaire which estimates the efficiency of impact of the solution that provided by design 

pattern. States that 47.2% of the responses agreed with effectiveness of design pattern in which 

6.4% of the software engineers strongly agreed and 40.8% of the professionals agreed with it. 

Therefore from results it can observe that it reduces the cost & time, increases the accuracy and 

scalability with great efficiency. 

 

VI. REFERENCES 

[1] Guo RongBin, Zhao XiuCai. The trend of automatic test system [J]. Foreign Electronic 

Measurement Technology, 2014, 33(6)(In Chinese) 

[2] YANG Aibing, SUN Ye, PENG Wei. Research on the software development model of 

automatic test system [J]. Industrial instrumentation & automation, 2010(6), 16-18 

[3] Liu Q. Design of universal ATS software framework based on signal[J]. Electronic 

Measurement Technology, 2012 

[4] Wang Y P, Wang D G, Zhong-De W U. Signal-Oriented ATS Test Software Structure and 

the Model[J]. Journal of Naval Aeronautical & Astronautical University, 2013. 

Effectiveness of design pattern 

 
45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

very low    Nominal   High Very 
low  high 

Likert scale 

P
e

rc
e

n
ta

ge
 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1490-1499 
Research Article  

1499 

 

 

[5] Liu Qi, He Yuzhu. Design of universal ATS software framework based on signal[J]. 

Electronic Measurement Technology, 2012, (12):46-49. 

[6] Sun Xiaojin, Guo Enquan. Design of software architecture for fault diagnosis system based 

on IEEE1232[J].Journal of Electronic Measurement and Instrumentation, 2014, 28(1):36-42. 

[7] Li Chuan-Huang, WANG Wei-Ming, SHI Yin-Yan. Performance Prediction Method for 

UML Software Architecture and Its Automation[J]. Journal of Software, 2013, (7):1512-1528. 

[8] LIU Feng, SUN Yong. Application of Design Patterns and Component Technology to 

Business Logic Layer[J]. Computer Systems & Applications, 2011, 20(10):154-159. 

[9] ZHANG Yuan, ZHANG Zhao, LIU Rui. Modular design of virtual experiment system based 

on MVC design model[J]. Computer Engineering & Science, 2013, 35(8):125-129. 

[10] Guo Shungzhou, Liang Jinlan. Design and Implement action of Automated Testing 

Framework[C].Computer Measurement & Control. 2009:224-227. 

[11] LIU Jin Ning, MENG Chen, HOU Yan. Research of ATS software model[J]. Measurement 

Control Technology and Instruments, 2007, 33(9): 81-84. 

[12] WANG Ying-qiang, CHEN Sui-yang, WANG Zheng-feng. Design and Implementation of 

Reusable Software Development Framework Based on . Net[J]. Computer Technology and 

Development, 2014, (6):122-126. 


	1Kunthumalla Latha, 2Dr.Dhanraj Verma
	I. INTRODUCTION
	II. SOFTWARE DEVELOPMENT LIFE CYCLE
	(a) Analysis and specification of needs
	(b) Planning
	(c) Systems and software design
	(d) Encoding
	(e) System test
	(f) Implementation and maintenance
	III. TYPES OF SOFTWARE TESTS
	(a) Black box test
	(b) White box test
	(c) Gray box test
	(d) Test run
	(e) Performance test
	(f) Manual test
	(g) Automated tests
	ALGORITHM:
	V. CONCLUSION
	VI. REFERENCES

