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Abstract 

K-frames were recently introduced by Găvruţa in Hilbert spaces to study atomic systems with 

respect to a bounded linear operator. K-g-frames are more general than of g-frames in Hilbert 

spaces.Results on k-g- frames have been proved through operator- theoretic results of 

bounded operators. 
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1. Introduction 

Frames for Hilbert spaces were introduced by R.J. Duffin and A.C. Schaeffer in 1952, while 

discussing some problems in the theory of non-harmonic Fourier series.  Frame theory was 

developed by Peter G. Casazzaand O.Christensen [6,7].A.Najati and A. Rahimi [1] have 

developed the generalized frame theory and introduced methods for generating g-frames of a 

Hilbert space.  

The notion of K-frames has been introduced by L.Gavruta [5] to study yhe atomic systems 

with respect to a bounded linear operator K in Hilbert space H. K-frames are more more 

general than ordinary frames in the sense that the lower frame bound only holds for the 

elements in the range of K.Dingli Hua and Yongdong Huang [2] are proposed for 

construction methods for K-g-frames.Results on K-frames have been proved through 

operator-theoritic results on quotient of bounded operators byG. Ramu and P.Johnson[4]. 

In this paper some results on k-g- frames have been proved through operator- theoretic results 

of bounded operators. Some results on K-g frames are studied by GU Reddy [8] and 

(𝐾1⨂𝐾2)-g frame for the tensor product of Hilbert space 𝐻1⨂𝐻2 is introduced and some 

results on it are established. 

 

2. Notations and Preliminaries 

The basics of frame theory and related topics, we refer to the book by Christian [6]. Here we 

recall a few basic definition and results needed in the sequel[1,5 and 7]. 

Definition2.1: a family {𝑓𝑖}𝑖=1
∞  of vectors in H is called a Bessel sequence if there exists a constant 

A>0 such that HffAff
Jj

j 


22

,  

Definition 2.2 A sequence  
Jjjf


of vectors in a Hilbert space H is called a frame if there 

exist two constants 0 < A ≤ B <,  such that 
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HffBfffA
Jj

j 


222
,  

The above inequality is called a frame inequality. The numbers A and B are called the lower 

and upper frame bounds respectively. If A=B then  
Jjjf


is called tight frame, if A=B=1 

then  
Jjjf


 is called normalized tight frame. A synthesis operator   T:l2→ H is defined as   

Tej = fj where {ej} is an orthonormal basis for l2. The analysis operator T   : H →l2 is an 

adjoint of synthesis operator T and is defined as  HfefffT
Jj

jj =


 , . A frame 

operator HHTTS →=  : is defined as    HffffSf
j

jj = ,  

Throughout this paper {H Jjj , } will denote a sequence of Hilbert spaces. Let 

),( jHHL  be a collection all bounded linear operators from H to 
jH and

 JjHHL jj  :),( . 

Definition 2.3.  A sequence of operators {
j }

Jj
is said to be g-frame for Hilbert space H 

with respect to sequence of Hilbert spaces {H Jjj , }, if there exist two constants   0 < A ≤ 

B <, such that HffBffA
Jj

j 


222
 . 

The above inequality is called a g-frame inequality. The numbers A and B are called the 

lower frame bound and upper frame bound respectively. A g-frame {
j }

Jj
for H is said to 

be g-tight frame if A = B and g-normalized tight frame for H if A = B = 1.  

Definition 2.4.  Let {
j }

Jj
be a g-frame for Hilbert space H. A g-frame operator 

 S: H →H is defined as  HffSf
Jj

jj =


 . 

By using above definitions, the following theorem on g-frame operator can be derived easily, 

so left to reader.  

Theorem 2.5.  If S is a g- frame operator, then we have  

(i)< Sf, f> = 



Jj

j f
2

, for all f  H. 

(ii)   S is a positive operator. 

(iii)  S is a self-adjoint operator. 

Theorem 2.6.(Douglas' factorization theorem)[3].  Let H be a Hilbert space and 

𝐴, 𝐵 ∈ ℬ(𝐻). Then the following are equivalent: 

1. 𝑅(𝐴) ⊆ 𝑅(𝐵). 

2. 𝐴𝐴∗ ≤ 𝛼2𝐵𝐵∗ for some 𝛼 > 0. 

3. 𝐴 = 𝐵𝑋 for some 𝑋 ∈ ℬ(𝐻). 

Theorem 2.7[3].Let 𝐴, 𝐵, 𝐶 ∈ ℬ(𝐻). Then the following are equivalent: 

(i)𝑅(𝐴) ⊆ 𝑅(𝐵) + 𝑅(𝐶). 

     (ii)𝐴𝐴∗ ≤ 𝛼2(𝐵𝐵∗ + 𝐶𝐶∗) for some 𝛼 > 0. 

     (iii)𝐴 = 𝐵𝑋 + 𝐶𝑌 for some 𝑋, 𝑌 ∈ ℬ(𝐻). 
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3. Operator frames 

Definition 3.1. Let )(HBK  . A sequence  
Jjjf


 in Hilbert space H is said to be a K-frame 

for H if there existtwo constants   0 < A ≤ B <, such that 

HffBfffKA
Jj

j 


 ,,
222

. 

Where A and B are called lower and upper frame bounds for k-frame respectively. If K=I, 

then K-frames are just ordinary frames.  

Definition 3.2: Let {𝑓𝑗}𝑗∈𝐽is a K- frame for H. Obviously it is a Bessel sequence, so we can 

define the following operator 𝑇: 𝑙2 → 𝐻 by 
2

j

}{)( lcfccT jjjj =  

is called Synthesis operator for K- frame{𝑓𝑗}𝑗∈𝐽. Also, we have 

𝑇∗: 𝐻 → 𝑙2by
2* },{)( lfffT Jjj =   is called Analysis operator for K- frame{𝑓𝑗}𝑗∈𝐽.  

The frame operator is given by S k : H →H is defined as S k f = j

Jj

j fff


,  , for all f H. 

Definition3.3. Let )(HLK  and
Jjjj HHL  ),( . A sequence of operators  

Jjj 
   is said 

to be K-g-frame for Hilbert space H with respect to sequence of Hilbert spaces  
JjjH


   if 

there exist two constants   0 < A ≤ B <,  such that   




 
Jj

j HffBffKA .,
222

 . 

The above inequality is called a K-g-frame inequality. The numbers A and B are called the 

lower and upper frame bounds of K-g-frame respectively.  When K=I, K-g-frame is a g-

frame. 

A k-g- frame is said to be tight if there exist a positive constant A such that  




 =
Jj

j HffKAf .,
22

 

If A=1 then  
Jjj 

  is said to be parseval tight k-g-frame. 

Definition3.4.Let  
Jjj 

   be a K-g-frame for H. A synthesis operator     ( ) HHlT
Jjj →



2:    

is defined as    ( )    ( )
JjjJjj

Jj

jjJjj HlgggT







= 2  . 

Definition3.5. Let  
Jjj 

  be a K-g-frame for H.The analysis operator  ( )
JjjHlHT



 → 2:  

is the adjoint of synthesis operator T and is defined as     HfffT
Jjj =



  

Definition 3.6.  Let {
j }

Jj
be a K-g-frame for Hilbert space H. A K- g-frame operator 

HHS →:  is defined as  


 =
Jj

jj HfffS , . 

Note that   


=
Jj

j ffSf
2

, . 
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Proposition 3.7[5]. Let {𝑓𝑗}𝑗=1
∞

 be a Bessel sequence in 𝐻. Then {𝑓𝑗}𝑗=1
∞

 is a 𝐾 -frame for 𝐻 if 

and only if there exists constant 𝐴 > 0 such that 𝑆 ≥ 𝐴𝐾𝐾∗, where 𝑆 is the frame operator for 

{𝑓𝑗}𝑗=1
∞

 

Theorem 3.8[2 ].If )(HLK  and  
Jjj 

   is a K-g-frame for Hilbert space H with respect to 

 
JjjH


  then   

 AKKS . 

Proof.  Suppose  
Jjj 

   is a K-g-frame for H 

                            


 
Jj

j HffBffKA .,
222

 

                            HffSffKfKA  ,,  

                            HffSfffAKK  ,,  

                                               
 AKKS . 

        

4. Operators preserving K-g- Frames 

Results on K-frames have been proved through operator-theoretic results on quotient of 

bounded operators byG. Ramu and P.Johnson[4]. In this section theorem 3.4, 3.8 and 

proposition 3.3 were discussed in [4] are extended to K-g- frames. 

Proposition4.1: Let {Λ𝑗}𝑗∈𝐽be a K-g- frame for H. Let 𝑇 ∈ ℬ(𝐻) with 𝑅(𝑇) ⊆ 𝑅(𝐾) then 

{Λ𝑗}𝑗∈𝐽is a T-g- frame for H. 

Proof:Suppose {Λ𝑗}𝑗=1
∞

 is a 𝐾 -g-frame for 𝐻. Then there existtwo positive constants 𝜆 and 𝜇 

such that 

2

1

22
* fffK

j

j


=

  Hf     …(1) 

Since 𝑅(𝑇) ⊂ 𝑅(𝐾), by Douglas’ factorization theorem, there exists 𝛼 > 0 such that 𝑇𝑇∗ ≤

𝛼2𝐾𝐾∗then  ∀𝑓 ∈ 𝐻we have  

 ffKKffTT ,, *2*  Hf   

 

  ffKKffTT ,, *2*  Hf   

  fKfKfTfT **2** ,,   


2

*2
2

* fKfT   


2

*
2

*

2

1
fKfT 


 


2

*
2

*

2
fKfT 




   since 0  
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=


1

2

j

j f  


2

f by (1) 


2

2

1

2
*

2
fffT

j

j 







=

  for all Hf   

 

Hence  
Jjj 

 is a T-g- frame for H 

Theorem4.2: Let 𝐾 ∈ ℬ(𝐻)be with a dense range. Let {Λ𝑗}j=1
∞

 be a 𝐾 -g-frame and 𝑇 ∈

ℬ(𝐻) have closed range. If {𝑇Λ𝑗}𝑗=1
∞

  and {𝑇∗Λ𝑗}𝑗=1
∞

are a 𝐾 -g-frames for 𝐻, then 𝑇𝑇∗ is 

invertible. 

Proof: Suppose {𝑇Λ𝑗}𝑗=1
∞

 is a 𝐾 -g-frame for 𝐻 with frame bounds 𝜆 and 𝜇. Then for any 𝑓 ∈

𝐻 we have 

    

2

1

22
* ffTfK

j

j


=

   


2

1

2
* , ffTfTfK

j

jj


=

  Hf   


2

1

*
2

* , fffTTfK
j

jj


=

  Hf   …(1) 

As 𝐾 is with a dense range, 𝐾∗ is injective. Then from (1), 𝑇∗𝑇 is injective since 𝑁(𝑇∗𝑇) ⊂

𝑁(𝐾∗). Moreover, 𝑅(𝑇𝑇∗) = 𝑁(𝑇∗𝑇)⊥ = 𝐻. Thus 𝑇∗𝑇 is surjective. 

Suppose 
=


1

*

jjT  is a K-g- frame for H with bounds α and β. Then for any  

𝑓 ∈ 𝐻 

2

1

2
*

2
* ffTfK

j

j


=

  Hf   


2

1

*
2

* , fffTTfK
j

jj


=

  Hf     …(2) 

As 𝐾 has a dense range, 𝐾∗ is injective. Then from (2) 𝑇𝑇∗ is injective since 

𝑁(𝑇𝑇∗) ⊂ 𝑁(𝐾∗). 

⟹ 𝑇∗𝑇 is bijective.     By bounded inverse theorem 𝑇∗𝑇 invertible. 

Theorem 4. 𝟑: Let 𝐾 ∈ ℬ(𝐻) and let {Λ𝑗}j=1
∞

 be a 𝐾 -g-frame for 𝐻. And let 𝑇 ∈ ℬ(𝐻)be 

isometry then {TΛ𝑗}𝑗=1
∞

is a 𝐾-g-frame for 𝐻. 

Proof: Suppose {Λ𝑗}𝑗=1
∞

is a K-g- frame for H. then for each  𝑓 ∈ 𝐻 we have 

2

1

22
* fffK

j

j


=

  … (1) 
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Consider    


=



=

=
1 1

22

j j

jj ffT        since T is isometry 

                                             

2
* fK ….(2) 

Consider     


=



=

=
1 1

22

j j

jj ffT  

                                             
2

f ….(3) 

From (2) and (3) we have  




=


1

222
*

j

j ffTfK  Hf   

Which shows that {TΛ𝑗𝑖}𝑖=1

∞

is a 𝐾-g-frame for H. 

Let {𝑓𝑗}𝑗=1
∞

be a K-frame for H with the frame operator S and let A be a positive operator then 

{𝑓𝑗 + 𝐴𝑓𝑗}𝑗=1
∞

   is K-frame for H have been discussed in [4]. We extend this result to K-g 

frames in the fallowing Proposition. 

Proposition 4.4: Let{Λ𝑗}j=1
∞

 be a K-g- frame for H with frame operator S and let A be a 

positive operator which commutes with Λ𝑗 for every j then 

{Λ𝑗 + 𝐴Λ𝑗}j=1
∞

is a K-g- frame for H. 

Proof: Suppose {Λ𝑗}j=1
∞

is K-g-frame for H. then by the theorem 3.8, there exists  

𝛼 > 0 such that
*KKS   

For each Hf   consider   

     

fAIAIfAA jj

j

jjj

j

j ++=++ 


=



=

)())(()()( *

1

*

1

 

fAIAI j

j

j ++=


=

)()( *

1

*
 




=

++=
1

** )()(
j

jj fAIAI  

                                                                SfAIAI )()( * ++=     by the definition of frame operator 

                                                                S  

                                                               
*KK  

Hence by the theorem 3.7 we can conclude that {Λ𝑗 + 𝐴Λ𝑗}j=1
∞

is a K-g- frame for H. 
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