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Abstract: A service facility modeled as a queueing system with finite or infinite capacity. Arriving customers enter if there is 

room in the facility and if they are willing to pay the price posted by the service provider. Customers belong to one of a finite 

number of classes that have different willingnesses-to-pay. Moreover, there is a penalty for congestion in the facility in the form 

of state-dependent holding costs. The service provider may advertise class-specific prices that may fluctuate over time. The 

existence of a unique optimal stationary pricing policy in a continuous and unbounded action space that maximizes the long-run 

average profit per unit time. To determine an expression for this policy under certain conditions and also analyze the structure and 

the properties of this policy. 
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1. Introduction  

A decision maker wishes to quote prices at the most profitable level. When a customer arrives, the 

customer decides whether to pay the quoted price and enter the service system or to depart without obtaining 

service
[1]

. Rather than being restricted to a single price that is offered to all customers, the decision maker has a 

great deal of flexibility in setting prices
[3]

. The decision maker is allowed to use two pieces of information when 

making a quotation. The decision maker knows the number of customers currently in the service system, which is 

a measure of the congestion in the system
[5]

. Allowing the price to depend upon the level of congestion will be 

called congestion-dependent pricing. In addition, the decision maker is able to classify the customers into different 

types, and the decision maker knows the probability of a customer of a particular type accepting a particular price. 

Allowing the price to depend upon information about a customer will be referred to as precision pricing.   

Thus, the decision maker can use a congestion dependent, precision pricing strategy. If all customers are 

classified as the same type then the decision maker uses only congestion-dependent pricing
[7]

. If the decision 

maker is not allowed to use information about the current level of congestion when setting prices then the decision 

maker will be using static pricing. 

We assume that the probability of a particular type of customer accepting a price does not increase as the price 

increases. Already the decision maker faces a trade-off. If prices are high, each customer pays a lot, but few 

customers pay; if prices are low, each customer pays a little, but many pay
[9]

. If there is no limit on the number of 

customers that can be in the service system simultaneously and the decision maker has no reason to keep the number 
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of customers in the system at a low level, then the most profitable prices could easily result in a large average 

number of customers in the system. In most applications this would be unacceptable
[11]

. To give the decision maker 

an incentive to reduce congestion, we assume that  the decision maker incurs a cost at rate hs  when there are s customers in 

the service system. These costs will be nonnegative and no decreasing in s. 

2. Mathematical Model 

We  model the service facility as a queueing system of  capacity  N    ; that is, no more   than N 

customers are allowed in the system at any time. There  are I  classes of customers  and customers from class 

i =1 , . . . , I  arrive according to a Poisson process with parameter λi > 0. The arrival processes from customer 

classes are independent of each other. This formulation is equivalent to having arriving customers randomly 

assigned to a specific class, independent of everything else
[13]

. 

The maximum amounts that successive class i 1 , . . . , I  customers are willing to pay are independent, 

identically distributed random variables with distribution Fi. The amount a class        i = 1 , . . . , I  customer is 

willing to pay is independent of the amount a class j = 1 , . . . , I  customer is willing to pay for i  j. For all i 

= 1 , . . . , I  , we assume that the cumulative distribution function F i( . ) is absolutely continuous with density 

f i( . )support (α i ,β i)and finite mean. Let ri(.) denote the hazard rate function of F i( . )   

r i(z)  =   for  α i  < z < β i     ……. (1)  

We assume that Fi has Increasing Generalized Hazard Rate (IGHR)  that is, zri(z) is strictly increasing for 

all z in [α i ,β i]  . we can interpret zri(z) as the price elasticity of the demand function for class-i customers
[15]

. 

The service provider can advertise different prices to different classes.  Without loss of generality, only prices 

in   [α i ,β i]  can be advertised to class-i customers. 

3. An Optimal Stationary Policy 

We use a Markov Decision Process (MDP) approach to exhibit an optimal stationary policy. The MDP 

associated with our system behaves as abirth–death process. Since the death rates are strictly positive, the MDP is 

unichain for any stationary policy. We set up the system of Average-Cost Optimality Equations (ACOE) as  

l (-1) = 0. 

 

l(s) =            ,  0  s  N -1. 

  

                                         l (N) =l (N-1)-                                           …….  (2) 

where g is the gain and l(·) is the bias vector. Since the value of µ0 does not matter as long as it is positive, we 

will consider µ0 = µ1 without loss of generality
[17]

. In this system we are solving for g and l(·). We can 

transform these equations into a simpler equivalent form by letting G(−1) = 0 and G(s) = l(s) − l(s + 1) for      

s = 0 , . . . ,N  − 1. Then 

G(−1) = 0                                                …….(3) 

g + hi − µ i G(s − 1) =   { z – G (s) ) λi (z) }  if  s=0 ,….,N-1,      ……(4) 
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                          G (N -1 ) =                                                                    ……. (5) 

If a solution (g, G(.), z) to the system of ACOE exists, we call it a canonical triplet, where z are prices that 

achieve  the supreme in (4). Precisely, for s = 0 , . . . ,N-1 and i =1 , . . . , I , the component z i , s  of z satisfies       

z i , s  = arg sup  {(z - G(s))λi (z)} . 

Example : 3.1 

We assume that the probability of a particular type of customer accepting a price does  not increase 

as the price increases. Already the decision maker faces a trade-off
[19]

 . 

Let x-axis considered as hN 

      y-axis considered as µN  and g –different values 

G (N-1)  =   (using normal distribution) 

Therefore, G(s) =  (where S =0,1,….(N-1) 

If price are high, each customers pays a lot, but few customers pay  

Table 3.1(a) 

X   

Price are High 

(inmillions) 

1 2 3 4 5 6 7 8 9 10 11 

Y  

Customers Pays a 

Lot  

3.48 3.51 3.53 3.56 3.58 3.60 3.63 3.65 3.68 3.70 3.73 

Graph 3.1(a) 
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Price are High (inmillions) 

 

   
Table 3.1(b) 
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X  

 Price are High 

(inmillions) 

1 2 3 4 5 6 7 8 9 10 11 

Y 

 Few customers 

to Pays  

3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.41 

 

Graph 3.1(b) 

 

 

 

 

 

 

 

 

 

 

 

If prices are low each customers pays a little , but many Customers to pay  

Table 3.2(c) 

X   

Price are Low 

(inmillions) 

1 2 3 4 5 6 7 8 9 10 11 

Y  

Customers Pays 

a Little  

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 

 

 

 

 

            

            

            

            

                        

            

Few 

Customer to 

Pay 

Price  are High (inmillions) 
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Graph 3.2(c) 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2(d) 

X   

Price are Low 

(inmillions) 

1 2 3 4 5 6 7 8 9 10 11 

Y  

Many Customers 

to Pay 

3.26 3.29 3.32 3.35 3.38 3.41 3.44 3.47 3.50 3.53 3.56 

 

Graph 3.2(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Many 

customers to pay 

Prices are Low (in millions) 

Prices are Low (in millions) 

Many 

customers to pay 
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Theorem 3.1. There exists a canonical triplet (g, G(·), z) for the system of ACOE (3)–(5). Moreover, the optimal 

long-run average reward is   = g, and = z is a unique optimal stationary policy, where, for                        

s = 0 , . . . ,N  − 1 and      i = 1 , . . . , I ,  

 = inf {z: r i (z) (z – G(s))  1 }  

Lemma 3.1. For all s = −1, . . . ,N − 1, G(s,·) is nondecreasing and continuous
[2]

. Moreover, there exists g ≥ 0 

such that G(−1, g) = 0. 

Proof.  Let G( N-1, g )  =  (g +  )   is   continuous  and  nondecreasing  in  g. Suppose that G(s, g) 

is nondecreasing and continuous in g for some state s between 0 and N - 1.  As sup {  λi(z) (z-G(s,g)) } is 

the supremum of a bounded continuous function of z, we can claim that 

µs   G    ( s-1,g ) = g – { λi (z) (z – G(s}  

is continuous and nondecreasing in g.  By induction,  for all s =-1 , . . . ,N -1 G(s,˙) is nondecreasing and 

continuous
[4]

. 

Hence the lemma 

Lemma 3.2. Let (g,G(·),z)  be a  canonical triplet. Then, for all  s = −1,...,N − 1, 0 ≤ G(s) ≤ (g + hs + 1) / µs +1. 

Proof.  For all s =0,….., N-1,sup{(z-G(s)) λi (z)}  0. Therefore, we have  G(s -1) ≤ (g + hs )/µs from  

(4). Using  (3)  and  (5)  as  well,  G(s) ≤ (g+hs-1)/µ s+1  for  all  s= -1 , . . . ,N-1. 

Now suppose that there exists s =0,...,N - 1 such that G(s) < 0. Since G(-1)  0, there exists s 

such that G(s) < 0 and G(s- 1)  0.  Hence, µs+1   G(s) < µ sG(s -1).   

 we have 

 (zi.s+1) G (s + 1) =  (zi.s+1) zi.s+1 –g – h s+1 +µs-1 G(s) 

     =  (zi.s+1) (zi.s+1 – G(s) + ((zi.s+1)G(s) + µs-1 G(s)-g- h s+1 

               <  (zi.s+1) (zi.s+1 – G(s) + ((zi.s+1)G(s) + µs G(s-1)-g-hs 

<  (zi.s+1)G(s). 

If  (zi.s+1)=0 then G(s) =(g + hs+1)/µs+1  0. Which is impossible  

Therefore, G (s + 1) < G(S) < 0. Since µs+2  µs+1.  

We have µs+2 G (s +1) < µs+1 G (s) < 0. Consequently, we can repeat the argument above until we 

reach state N -1.for which G(N-1) < 0 . 
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But G(N-1) =  (g + hN ) / µN  0.which yields a contradiction
[6]

 .Therefore for all s =-1 ,….,N - 1, 

0  G(s)  (g + hs+1) / µs+1. 

Main Proof of Theorem 3.1. The existence of a canonical triplet (g, G(˙ ), z) to (3) – (5) is a direct 

consequence of Lemma 3.1. Since the state space is finite,     by  a result (g.G (˙),Z is an optimal solution. 

Therefore  = g and  = z. 

It remains to show that = inf { z : ri (z) (z – G(s))  1} and that it is the unique optimal stationary policy 

. For s = 0,….,N-1 and i = 1 …… I. Let 

v i.s(z) = λ i(z)(z − G(s)), 

 (z) = (1 – Fi (z)) − fi (z)(z − G(s))    almost everywhere (a.e.) on [α i, β i]. 

Also  (z) > 0 is equivalent to ri(z)(z − G(s))<1 and  (z) < 0  is equivalent to      ri (z)(z − G(s))  1.   

The IGHR assumption implies that r i(z)  (z − G(s))  ≥  1 a.e. on  inf  { z : r i(z)(z − G(s)) ≥ 1 }, β I . 

 

Therefore,   (·) > 0 a.e. on (α i , inf  {z : r i (z)(z − G(s)) ≥ 1}) and  

 (·) < 0 a.e. on inf { z : r i(z) (z − G(s)) ≥ 1}, β i . 

Thus, v i.s (·) is strictly unimodal and = inf { z : ri (z) (z – G(s))  1} is its unique maximizer on [α i, β i]. 

We still need to show that  is the unique optimal stationary policy [8] .Under IGHR,  is the 

unique maximizer of sup {λi (z)(z − G(s))}. So, 

 >  (zi) (zi -G(s)) + µs G(s-1)-hs  for all zi   

Since we have a unichain model, by a  result we say that the uniqueness of the optimal 

stationary policy,  

We are now able to characterize an optimal stationary policy explicitly
[10]

. It might be possible that          

  =   for some state s.  In this case it is optimal for the service provider not to accept customers of 

class i when in state s. However, this can only occur if the class-i customers’ willingness-to-pay distribution 

has finite support. Indeed, if F i  has infinite support then, for all  s = 0, . . . , N − 1, sup{λi (z)(z − G(s))} > 0 

and < ∞ = . Moreover,  

= inf{z : (z − G(s))ri(z) ≥ 1} ≥ inf{z : zr i(z) ≥ 1}. 

Since inf  {z : zri (z)  1}is the optimal price to charge when the demand function is 1 -  F i(z), we observe that 

holding costs and capacity limitations force the service provider to charge higher prices
[12]

 .Therefore, one can 

understand G(s) as a price premium charged by the service provider to account for the additional congestion created 

by a customer’s admission into state s. 

4. Conclusion  

We characterized optimal pricing policies that maximize the long-run average profit per unit time. In 

systems with finite capacity and in systems with infinite capacity under uniform asymptotic holding cost and 
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service rate, we found an exact solution to the Average –cost optimality equations (ACOE) that cor- responds to 

an optimal stationary pricing policy. In systems with infinite capacity and more general holding cost and service 

rate structure, we showed that an optimal stationary pricing policy exists as the limiting pricing solution for finite 

capacity systems whose size grows to ∞.  Moreover, we proved that the optimal stationary prices are nondecreasing 

with the state index and perform a congestion control that prevents high holding costs in congested states. 
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