New Classes of Open Sets in Topological Spaces

Beyda S. Abdullah¹, Sabih W. Askandar² and Amir A. Mohammed³ Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul-Iraq *Email*¹: <u>baedaa419@uomosul.ed.iq</u> Email ²: <u>sabihqaqos@uomosul.edu.iq</u> Email ³: amirabdulillah@uomosul.edu.iq

ABSTRACT

In this paper, we have introduce a new open sets in topological spaces named *ic*-open sets. We present the relation of *ic*-open sets with other classes of open sets namely : semi-open, $\alpha - open$, i - open sets and $i \alpha$ -open sets. Furthermore, we introduce the notion of *ic*-continuous map on topological spaces and we prove some properties and characterizations. Also, we study some separation axioms of this new class. Finally, depending on *ic*-open sets we define a new class called *icc*-open set and we discuss the same results obtained by the first one, as each open (closed) set in a topological spaces of any kind (X, τ) is *icc*-open (*icc*-closed) set.

Keywords: α – open set, *i* – open set, *ic*- open set, Continuous map and Separation Axioms.

1. Introduction and Preliminaries

In topology and its applications, the concept of open sets is fundamental. In this work, we presented *ic*-open sets for a topological space (X, τ) as follows: $A \subseteq X$ is said to be *ic*-open set assuming there is a closed set $F \neq X$, $\emptyset \in \tau^c$ such that $F \cap A \subseteq int(A)$, where int(A) denotes the interior points of A and τ^c denotes the family of closed sets. To investigate the relationship among these classes and the new class of *ic*-open sets, we present the semi-open set introduced by Levine in[3], the α -open set intruded by Njastad in[6], the *i*-open set introduced by Askander and Mohammed in [1], and the *i* α -open sets introduced by Mohammed and Kahtab in[4] in the first part. In the second part, we have proved some important theorems to discuss the property of *ic*-continuous map . In part three, we look at a few different types of separating axioms spaces and discuss the relationship between them such as $T_o, T_1, T_2, T_{oic}, T_{1ic}, and T_{2ic}$. Finally, we define *icc*-open sets, a new type of open set that is based on *ic*-open set: $A \subseteq X$ is said to be *icc*-

open set if $A \in \tau^{ic} \cap \tau^{int}$ where τ^{ic} denotes the family of *ic* open sets and τ^{int} denotes the family of *int*- open sets, and we got similar results as in the part 2 and part 3. Throughout this paper we denote to any topological space by *TS* and we denote open set, respectively closed set by (os), (cs).

Definition.1.1. A subset *A* of *TS* (X, τ) is called

- 1. Semi-open set denoted by (s os)[3] if " $A \subseteq cl(int(A))$ ".
- 2. α -open set denoted by $(\alpha os)[6]$ if " $A \subseteq int(cl(int(A)))$ ".
- 3. i-open set denoted by (i os)[1] assuming there is an open set $G \in \tau(x)$ that way i) $G \neq X, \emptyset$. ii) " $A \subseteq cl(A \cap G)$ ".
- 4. $i\alpha$ -open set denoted by $(i\alpha os)[3]$ assuming there is an open set $G \in \tau^{\alpha}$ that way i)" $G \neq X, \emptyset$ ". ii) " $A \subseteq cl(A \cap G)$ ".
- 5. *Int*-open set denoted by (*int*-os)[3] assuming there is an open set G ∈ τ that way
 i) "G ≠ X, Ø". *ii*) " int (A)=G".
 The family of all (os) [resp.(s-os),(α-os),(i-os), (iα-os),(int-os)] sets are denoted by τ, τ^s, τ^α, τⁱ, τ^{iα}, τ^{int}.

Definition1.2. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is named:

- 1. Continuous denoted by (contm) [1] if $f^{-1}(U)$ is (os) in X for each (os) U in Y.
- 2. α -continuous denoted by $(\alpha contm)$ [5] if $f^{-1}(U)$ is (αos) in X for each (os) U in Y.
- 3. Semi-continuous denoted by (s contm) [3] if $f^{-1}(U)$ is (s os) in X for each (os) U in Y.
- 4. *i*-continuous denoted by (i contm) [1] if $f^{-1}(U)$ is (i os) in X for each (os) U in Y.
- 5. *i* α -continuous denoted by $(i\alpha contm)$ [4] if $f^{-1}(U)$ is $(i\alpha os)$ in X for each (os) U in Y.

2. *ic*-Open Sets in Topological Spaces

Definition2.1. A subset A of TS (X,τ) is named *ic*-open set denoted by (ic - os)[2] assuming there is $(cs) F \neq X, \emptyset \in \tau^c$ such that $F \cap A \subseteq int(A)$. The opposite of the *ic*-open set is named *ic*-closed set denoted by (ic - cs). We use τ^{ic} to represent the family of all *ic*-open sets of (X,τ) .

Example2.2. If $X = \{1,3,5\}$, $\tau = \{\phi, X, \{3\}, \{1,3\}\}$

Then, $\tau^{ic} = \{ \phi, X, \{1\}, \{3\}, \{1,3\} \}$.

Theorem 2.3. Each (os) in TS (X, τ) is (ic- os) but not conversely.

Proof: Suppose that (X,τ) be a TS and let $A \subseteq X$ be an (os). Then, A = int(A) but $F \cap A \subseteq A$ for any (cs) $F \neq X$, \emptyset therefore, $F \cap A \subseteq A = int(A)$. Hence A is (ic - os).

Example2.4. If $X = \{2,4,6\}$ and $\tau = \{X, \emptyset, \{2\}, \{4,6\}\}$ Then $\{2,4\}$ is (ic - os) but it is not(os). **Corollary.2.5.** Any (cs) in a*TS* (X, τ) is (ic - cs). **Remark2.6.** There is no relationship among $(\alpha - os)$ [resp.(s - os),(i - os),(i - os)] and (ic - os) in a *TS* (X, τ) as shown in the following examples. **Example2.7.** Let $X = \{1,3,5\}$. Now,

- (1) If $\tau = \{\phi, X, \{1,3\}\}$. Then $\{1\}$ is (ic os) but not (αos) and not (s os).
- (2) If $\tau = \{\phi, X, \{5\}\}$. Then $\{3, 5\}$ is (αos) and (s os) but it is not (ic os).
- (3) If $\tau = \{\phi, X, \{1\}\}$. Then $\{1,3\}$ is (i os) but it is not (ic os) and $\{1,3\}$ is $(i\alpha os)$.
- (4) If $\tau = \{\phi, X, \{1\}, \{3,5\}\}$. Then $\{1,3\}$ is (ic os) but it is not (i os) and not $(i\alpha os)$.

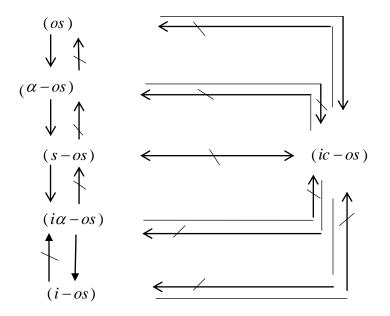


Figure (1)

The connections between (ic - os) and the other classes mentioned above.

3. ic-Continuous Mappings on Topological Spaces

Definition3.1. A mapping $f:(X,\tau) \to (Y,\sigma)$ is named *ic*-continuous denoted by (ic - contm) if $f^{-1}(U)$ is (ic - os) in X for each (os) U in Y.

Theorem3.2. Each (*contm*) is (*ic* – *contm*) *but not conversely*.

Proof: Assume that $f:(X,\tau) \to (Y,\sigma)$ be (contm) and let U be an (os) in Y. Since f is (contm), then $f^{-1}(U)$ is (os) in X. Since each (os) is (ic - os), then $f^{-1}(U)$ is (ic - os). Hence f is (ic - contm).

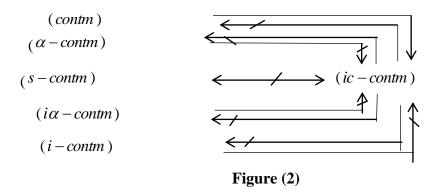
Example3.3. Let $X = Y = \{2,4,6\}, \tau = \{\phi, X, \{2\}, \{2,4\}\}, \sigma = \{\phi, Y, \{2\}, \{4\}, \{2,4\}\}$ and let $f:(X,\tau) \to (Y,\sigma)$ be an identity map. Then f is not (*contm*), because $\{4\}$ is (*os*) in Y but $f^{-1}(\{4\}) = \{4\}$ is not (*os*) in X. But f is (*ic* - *contm*).

Remark3.4. There is no relationship among $(\alpha - contm)$ [resp.(s - contm), (i - contm), $(i\alpha - contm)$] mapping and (ic - contm).

Example3.5. Let $X = Y = \{1,3,5\}, f: (X,\tau) \rightarrow (Y,\sigma)$ is an identity map. Now,

- (1) If $\tau = \{\emptyset, X, \{1,3\}\}, \sigma = \{\emptyset, Y, \{1\}\}$. Then f is (ic contm), but it is not $(\alpha contm)$ and it is not (s contm) because $\{1\}$ is (os) in Y but $f^{-1}(\{1\}) = \{1\}$ is not (αos) and it is not (s os).
- (2) If $\tau = \{\emptyset, X, \{5\}\}, \sigma = \{\emptyset, Y, \{3,5\}\}$. Then $f(\alpha contm)$ and (s contm) but it is not (ic contm) because $f^{-1}(\{3,5\}) = \{3,5\}$ is not (ic os).
- (3) If $\tau = \{\emptyset, X, \{1\}\}, \sigma = \{Y, \emptyset, \{1,3\}\}$. Then *f* is (i contm) and $(i\alpha contm)$ but it is not (ic contm) because $f^{-1}(\{1,3\}) = \{1,3\}$ is not (ic os).
- (4) If $\tau = \{ \emptyset, X, \{1\}, \{3,5\}\}\sigma = \{Y, \emptyset, \{1\}, \{3\}, \{1,3\}\}$. Then *f* is (ic contm) but it is not (i contm) and it is not $(i\alpha contm)$ because $f^{-1}(\{1,3\})=(\{1,3\})$ is not (i os) and it is not $(i\alpha os)$.

Remark3.6. The connections of (ic - contm) and (contm) can be explaining through the following diagram:



4. ic -Open Sets and Separating Axioms

Definition 4.1. A *TS* (X, τ) is named

- 1. T_{0ic} space if for any $m, n \in X$ with $m \neq n$ assuming there is (ic os), L such that either, $m \in L$ and $n \notin L$ or $n \in L$ and $m \notin L$.
- 2. T_{lic} space if for any $m, n \in X$ with $m \neq n$ assuming there is (ic os) L, M containing m, n respectively that is either, $n \notin L$ and $m \notin M$.
- 3. T_{2ic} space if for any $m, n \in X$ with $m \neq n$ assuming there is disjoint (ic os), L, M containing m, n respectively.

Theorem4.2. Each T_{0} space is T_{0ic} space but not conversely.

Proof: Consider that X is a T_0 - space and let m, n be two different X points. Since X is T_0 -space. Assuming there is $os \ L$ in X that is $m \in L$ and $n \notin L$ or $n \in L$ and $m \notin L$. Since each(os) is(ic - os). We get L is (ic - os) in X that is $m \in L$ and $n \notin L$ or $n \in L$ and $m \notin L$. Henceforth X is T_{0ic} -space.

Example4.3. Let $X = \{2,4,6\}, \tau = \{\emptyset, X, \{2,4\}\}$. Therefore, (X, τ) is not T_{0} space, but (X, τ^{ic}) is T_{0ic} -space.

Theorem4.4. Each T_{1} space is T_{1ic} space but not conversely.

Proof: Consider *m*, *n* be two distinct points in *X*. Since *X* is T_{1} - space. Then there is two (*os*) *L* and *M* in *X* that is $m \in L$, $n \notin L$ and $n \in M$ and $m \notin M$. Since each (*os*) is (*ic* - *os*). Then *L*, *M* is (*ic* - *os*) in *X*, that is $m \in L$ and $n \notin L$ and $n \in M$ and $m \notin M$. Henceforth *X* is T_{1ic} -space. **Example 4.5.** Let $X = \{1,3,5\}$, $\tau = \{\emptyset, X, \{1\}, \{1,3\}, \{1,5\}\}$. Then (*X*, τ) is not T_{1} - space, but

 (X, τ^{ic}) is T_{lic} space.

Theorem4.6. Any T_{2} space is T_{2ic} space but not conversely.

Proof: Consider X as a T_2 - space and *m*, *n* be two distinct points in X. Since X is T_2 - space. Then there is disjoint (os), *L*, *M* containing *m*, *n* respectively. Since each (*os*) is (*ic* – *os*). Then *L* and *M* are disjoint (*ic* – *os*) containing *m*, *n* respectively. Hence X is T_{2ic} - space.

Example4.7. Let $X = \{2,4,6\}, \tau = \{\emptyset, X, \{2\}, \{4,6\}\}$. Then (X, τ) is not T_2 -space, but (X, τ^{ic}) is T_{2ic} -space.

Remark4.8. The connections among separation axioms.

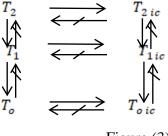


Figure (3)

Theorem 4.9. Aspace (χ, τ) is **T**2ic – space iff (χ, τ^{ic}) is Hausdorff -space.

Proof: Assumes $n, m \in \chi$ with $n \neq m$. Since χ is T_{2ic} -space, there exists disjoint (*ic-os*) H and K in χ s.t. $n \in H$ and $m \in K$, $H \cap K = \emptyset$. Here, $H, K \in \tau^{ic}$, so, obviously (χ, τ^{ic}) ceases to be a T_{2ic} -space i.e. a Hausdorff space.

Conversely, whenever (χ, τ^{ic}) is a T_{2ic} -space, there exists a pair of members of τ^{ic} , say, p & Q for a pair of distinct points p & q of χ such that $p \in p \& q \in Q \& p \cap Q = \emptyset$. But $ico(\chi, \tau) = \tau^{ic}$. Combing all these facts (χ, τ) is T_{2ic} -space.

Theorem 2.10. Each open subspace of a T_{2ic} -space is T_{2ic} .

Proof: Suppose U be an open subspace of a T_{2ic} -space (χ, τ) . Let k and p be any two distinct points of U. Since χ is T_{2ic} -space and $U \subset \chi$, there exists two disjoint (*ic-os*) G and H in χ such that $k \in G \& p \in H$. Let $A = U \cap G \& B = U \cap H$. Then A & B are (*ic-os*) in U containing k and p. Also, $A \cap B = \emptyset$. Hence (U, T_u) is T_{2ic} .

5. icc-Open Sets in Topological Spaces

Definition5.1. A subset A of $TS(X,\tau)$ is named *icc*- open set denoted by (icc - os) if $A \in \tau^{ic} \cap \tau^{int}$ where τ^{ic} denotes the family of (ic - os) and τ^{int} denotes the family of *int*-open sets. The opposite of the *icc*-open set is named *icc*-closed set denoted by (icc - cs). We denote the family of all (icc - os) of topological space by τ^{icc} .

Example 5.2. Let $X = \{1,3,5\}$ and $\tau = \{\emptyset, X, \{1,3\}\}$. Then $\tau^{ic} = \{X, \emptyset, \{1\}, \{3\}, \{1,3\}\}$,

 $\tau^{int} = \{X, \emptyset, \{1,3\}\}, \tau^{icc} = \tau^{ic} \cap \tau^{int} = \{X, \emptyset, \{1,3\}\}.$

Theorem5.3. Each (*os*) in any *TS* (X, τ) is (*icc* – *os*) *but not conversely*. **Proof:** Clear.

Example5.4. Let $X = \{2,4,6\}$ and $\tau = \{\emptyset, X, \{2\}, \{4,6\}\}$.

 $\text{Then} \tau^{ic} = \{X, \emptyset, \{2\}, \{4\}, \{6\}, \{2,4\}, \{2,6\}, \{4,6\}\}, \tau^{int} = \{X, \emptyset, \{2\}, \{4,6\}, \{2,4\}, \{2,6\}\},$

 $\tau^{icc} = \tau^{ic} \cap \tau^{int} = \{X, \emptyset, \{2\}, \{2, 4\}, \{2, 6\}, \{4, 6\}\}.$ Obviously, $\{2, 6\}$ is (icc - os) but it is not (os).

Corollary5.5. Any (*cs*) in any *TS* (X, τ) is (*icc* – *cs*).

Remark5.6. Note for any *TS* (*X*, τ), each (*icc* – *os*) is (*ic* – *os*) and (*int* – *os*). But the converses are not true as shown in Example 5.4, it is clear that $A = \{4\}$ is not (*icc* – *os*) set but it is (*ic* – *os*).

Remark5.7. There are no relationships among $(\alpha - os), (s - os), (i - os)$ and $(i\alpha - os)$ with (icc - os) as shown in the following example:

Example5.8. Let $X = \{1,3,5\}$. Now:

1. If $\tau = \{\emptyset, X, \{1\}, \{3,5\}\}$, Then $\{1,3\}$ is (icc - os) but it is not $(\alpha - os)$ and it is not (s - os).

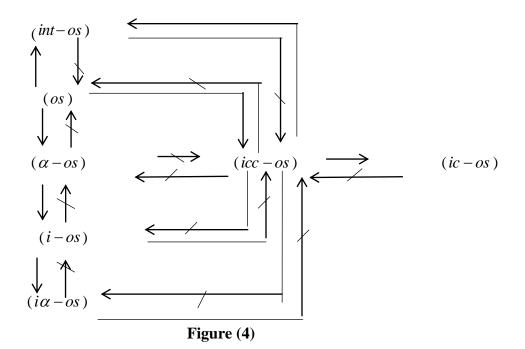
2. If $\tau = \{\emptyset, X, \{5\}\}$. Then $\{3,5\}$ is $(\alpha - os)$ and (s - os) but it is not (icc - os).

3. If $\tau = \{\emptyset, X, \{1\}\}$. Then $\{1,3\}$ is *i*-open set but it is not (icc - os), it is $(i\alpha - os)$.

Vol.13 No.03 (2022), 247-256 Research Article

4. If $\tau = \{\emptyset, X, \{1\}, \{3,5\}\}$ Then $\{1,3\}$ is (icc - os) but it is not (i - os) and it is not $(i\alpha - os)$.

Remark5.9. The connections among *icc*-open sets and other classes:



Definition5.10. A mapping $f:(X,\tau) \to (Y,\sigma)$ is called *icc*-continuous denoted by (icc - contm) if $f^{-1}(U)$ is (icc - os) in X for each (os) U in Y.

Theorem5.11. Any (*contm*) is (*icc* – *contm*). **Proof:** Clear. \blacksquare

Example5.12. Consider $X = Y = \{2,4,6\}, \tau = \{\emptyset, X, \{2\}, \{4,6\}\}, \sigma = \{\emptyset, Y, \{2,4\}\}$ and let $f:(X,\tau) \to (Y,\sigma)$ be an identity mapping. f is not (*contm*), because $\{2,4\}$ is (*os*) in Y but $f^{-1}(\{2,4\}) = \{2,4\}$ is not (*os*) in X. f is (*icc* - *contm*).

Theorem5.13. Each (*icc* – *contm*) is (*ic* – *contm*) *but not conversely*. **Proof:** Clear. **Example5.14.** Consider $X = Y = \{1,3,5\}, \tau = \{\emptyset, X, \{1,3\}\}, \sigma = \{\emptyset, Y, \{1\}\}$ and let $f:(X,\tau) \to (Y,\sigma)$ be an identity mapping. Then f is not (*icc* – *contm*), because $\{1\}$ is (*os*) in

 $Y \text{ but } f^{-1}(\{1\}) = \{1\} \text{ is not } (icc - os) \text{ in } X. f \text{ is } (ic - contm).$

Remark5.15. There are no relationships among $(\alpha - contm)$ [resp.,(s - contm),(i - contm) and $(i\alpha - contm)$] with (icc - contm) as indicated in the example below:

Example5.16. Consider $X = Y = \{2,4,6\}$ and let $f: (X,\tau) \rightarrow (Y,\sigma)$ be an identity map. Now,

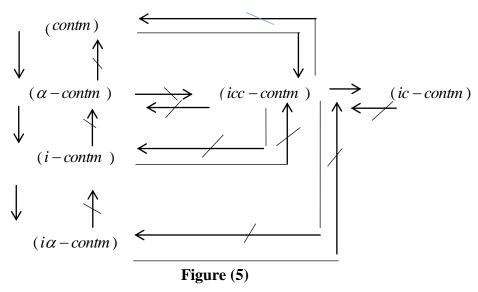
1. If $\tau = \{\emptyset, X, \{2\}, \{4,6\}\}, \sigma = \{\emptyset, Y, \{2,4\}\}$. Then *f* is (*icc* – *contm*) but it is not (α – *contm*), it is not (s – *contm*) because $\{2,4\}$ is (*os*) in *Y* but $f^{-1}(\{2,4\}) = \{2,4\}$ is not (α – *os*) and it is not (s – *os*) in *X*.

2. If $\tau = \{\emptyset, X, \{6\}\}, \sigma = \{\emptyset, Y, \{4, 6\}\}$. Then *f* is $(\alpha - contm)$ and (s - contm) but it is not (icc - contm), because $f^{-1}(\{4, 6\}) = \{4, 6\}$ is not (icc - os) in *X*.

3. If $\tau = \{\emptyset, X, \{2\}\}, \sigma = \{\emptyset, Y, \{2,4\}\}$. Then *f* is $(i\alpha - contm)$ and (i - contm) but it is not (icc - contm), because $f^{-1}(\{2,4\}) = \{2,4\}$ is not (icc - os) in *X*.

4. If $\tau = \{\emptyset, X, \{2\}, \{4,6\}\}, \sigma = \{\emptyset, Y, \{2\}, \{2,4\}\}$. Then *f* is (icc - contm) but it is not (i - contm) and it is not $(i\alpha - contm)$, because $f^{-1}(\{2,4\}) = \{2,4\}$ is not (i - os) and it is not $(i\alpha - os)$ in *X*.

Remark5.17. The connections among (icc - contm) and some other classes which are mentioned above.



Definition 5.18. A *TS* (X, τ) is named

- 1. T_{0icc} space if for any $m, n \in X$ with $m \neq n$ assuming there is (icc os), L, that is either, $m \in L$ and $n \notin L$ or $n \in L$ and $m \notin L$.
- 2. T_{licc} space if for any $m, n \in X$ with $m \neq n$ assuming there is two (*icc os*), *L*, *M* containing *m*, *n* respectively that is either, $n \notin L$ and $m \notin M$.
- 3. T_{2icc} space if for any $m, n \in X$ with $m \neq n$ assuming there is disjoint (icc os), L, M containing m, n respectively.

Theorem5.19. Each T_{0} space is T_{0icic} space but not conversely.

Proof: Clear.

Example5.20. Consider $X = \{1,3,5\}, \tau = \{\emptyset, X, \{1\}, \{3,5\}\}$. Then, (X, τ) is not T_{0-} space, but (X, τ^{icc}) is T_{0icc} -space.

Theorem 5.21. Each T_{I-} space is T_{Iicc} space but not conversely.

Proof: Clear.

Example5.22. Let $X = \{2,4,6\}, \tau = \{\emptyset, X, \{4\}, \{2,4\}\}$. Then, (X, τ) is not T_1 space, but (X, τ^{icc}) is T_{licc} -space.

Theorem5.23. Any T_{2} space is T_{2icc} space.

Proof: Consider X as a T_2 - space and m, n be two distinct points in X. Since X is T_2 - space. Then there is disjoint (os), L, M containing m, n respectively. Since each (os) is (icc - os). Then L and M are disjoint (icc - os) containing m, n respectively. Hence X is T_{2icc} - space. **Theorem 5.24.** Aspace (χ, τ) is **T2icc** - **space** iff (χ, τ^{icc}) is Hausdorff -space.

Proof: Assumes $n, m \in \chi$ with $n \neq m$. Since χ is T2icc - space, there exists disjoint (*icc-os*) H and K in χ s.t. $n \in H$ and $m \in K$, $H \cap K = \emptyset$. Here, $H, K \in \tau^{icc}$, so, obviously (χ, τ^{icc}) ceases to be a T_{2icc} -space i.e. a Hausdorff space.

Conversely, whenever (χ, τ^{icc}) is a T_{2icc} -space, there exists a pair of members of τ^{icc} , say, p & Q for a pair of distinct points p & q of χ such that $p \in p \& q \in Q \& p \cap Q = \emptyset$. But $icco(\chi, \tau) = \tau^{icc}$. Combing all these facts (χ, τ) is T_{2icc} -space.

Theorem 2.10. Each open subspace of a T2icc - space is T_{2icc} .

Proof: Suppose U be an open subspace of a T_{2icc} -space (χ, τ) . Let k and p be any two distinct points of U. Since χ is T_{2icc} -space and $U \subset \chi$, there exists two disjoint (*icc-os*) G and H in χ such that $k \in G \& p \in H$. Let $A = U \cap G \& B = U \cap H$. Then A & B are (*icc-os*) in U containing k and p. Also, $A \cap B = \emptyset$. Hence (U, T_u) is T_{2icc} .

Remark 5.23. The connections among *icc*-separation axioms.

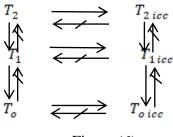


Figure (6)

REFERENCES

[1] Askandar, S.W. and Mohammed, A.A. (2018). "*i-Open Sets in Bi-Topological Spaces*", AL Rafidain Journal of Computer Sciences and Mathematics, 12, 13-23.

[2] Faisal, I.R. (2021), "*ic-Open Sets in Topological Spaces*", M.Sc., Thesis, Mathematics Department, College of Education for Pure Sciences, Mosul University, Mosul, Iraq.

[3] Levine, N. (1963), "Semi-Open Sets and Semi-Continuity in Topological Spaces", Amer. Math. Monthly, 70, 36-41.

[4] Mohammed, A.A. and Kahtab, O.Y. (2012), "*On iα* – *Open Sets*", Raf. J. of Comp. and Math's., 9, 219-228.

[5] Mashhour, A. S., Hasanein, I. A. and EI-Deeb, S. N. (1983)," α -Continuous and α -Open Mappings", Acta Math. Hungar. 41, 213-218.

[6] Njasted, O. (1965), "On Some Classes of Nearly Open Sets", Pacific, J. of Math., 15, 961-970.