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Abstract 

In this paper, we represents few separation axioms are 𝜁‑𝑇0, 𝜁‑𝑇1 and 𝜁‑𝑇2 in (𝑉, 𝜏𝜁). 𝜁‑𝑇0 deals with the distinct points which not has 

same 𝜁-open set. 𝜁‑𝑇1 gives that the distinct points are in different 𝜁‑open set. 𝜁‑𝑇2 approaches that the distinct points contain in 

disjoint 𝜁-open set. We discuss among with 𝒩‑𝑇0 (resp. 𝒩‑𝑇1, 𝒩‑𝑇2) and 𝜁‑𝑇0 (resp. 𝜁‑𝑇1, 𝜁‑𝑇2). 𝜁-topologically distinguishable 

and 𝜁-symmentry space are associate with these separation axioms in 𝜁-nano Topology.  
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1  Introduction and Preliminaries 

 

Thivagar and Richard [3] are introduced the term Nano topology. Some few separation axioms of nano topology are 

𝒩‑𝑇0, 𝒩‑𝑇1𝑎𝑛𝑑𝒩‑𝑇2 was developed by Sathishmohan et al.[5]. Jenavee et al.[1] extended the idea of nano topology into 

𝜁-nano topological space. 𝜁-topologically distinguishable, 𝜁-separated and 𝜁-sierpinksi space are formed by Jenavee et 

al.[2]. 

 

Definition 1.1 [3] Let 𝒱 be a non-empty finite set of members are called the universe and ℛ has an equivalence relation 

on 𝒱 known as the indiscernibility relation. Members belonging to the same equivalence class are called to be 

indiscernible with each other. The pair (𝒱, ℛ) is called to be the approximation-space. Let 𝒳 ⊂ 𝒱.   

    1.  The lower approximation of 𝒳 with respect to ℛ is the set of all members, which can be for certain 

classified as 𝒳 with respect to ℛ and it is represented by ℒℛ(𝒳). That is,  

ℒℛ(𝒳) =∪𝑥∈𝒱 {ℛ(𝒳): ℛ(𝒳) ⊆ 𝒳},  

  where ℛ(𝒳) denoted the equivalence class determined by 𝒳.  

    2.  The upper approximation of 𝒳 with respect to ℛ is the set of all members, which can be possibly 

classified as 𝒳 with respect to ℛ and it is represented by 𝒰ℛ(𝒳).  

 (i.e.), 𝒰ℛ(𝒳) =∪𝑥∈𝒱 {ℛ(𝒳): ℛ(𝒳) ∩ 𝒳 ≠ 𝜙} 

 

    3.  The boundary region of 𝒳 wit respect to ℛ is the set of all members, which can be neither in nor as 

not-𝒳 with respect to ℛ and it is represented by ℬℛ(𝒳).  

 (i.e.), ℬℛ(𝒳) = 𝒰ℛ(𝒳) − ℒℛ(𝒳). 
 

Definition 1.2 [3] Let 𝒱  be the universe ℛ  be an equivalence relation on 𝒱  and 𝜏ℛ(𝒳) =
{𝒱, 𝜙, 𝒰𝑅(𝑋), ℒℛ(𝒳), ℬℛ(𝒳)}, where 𝒳 ⊂ 𝒱. Then 𝜏ℛ(𝒳) satisfies the following axioms:   

    1.  𝒱 and 𝜙 ∈ 𝜏ℛ(𝒳).  

    2.  The union of the members of any sub-collection of 𝜏ℛ(𝒳) is in 𝜏ℛ(𝒳).  

    3.  The intersection of the members of finite sub-collection of 𝜏ℛ(𝒳) is in 𝜏ℛ(𝒳).  

  That is, 𝜏ℛ(𝒳) is a topology on 𝒱 is called the Nano topology on 𝒱 with respect to 𝒳. (𝒱, 𝜏ℛ(𝒳)) is called 

the Nano topological space. Members of the Nano topology are called Nano open sets in 𝒱. Members of [𝜏ℛ(𝒳)]𝑐 are 
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called Nano closed sets.  

 

Definition 1.3 In (𝑉, 𝜏𝒩), [5]   

    1.  V is said to be 𝒩‑𝑇0 for 𝑢, 𝑤 ∈ 𝑉 and 𝑢 ≠ 𝑤, ∃ disjoint 𝒩-open sets U such that 𝑢 ∈ 𝑈 and 𝑤 ∉ 𝑈.  

    2.  V is said to be 𝒩‑𝑇1 for 𝑢, 𝑤 ∈ 𝑉 and 𝑢 ≠ 𝑤, ∃ disjoint 𝒩-open sets U and V such that 𝑢 ∈ 𝑈, 𝑤 ∉
𝑊 and 𝑤 ∈ 𝑊, 𝑢 ∉ 𝑊.  

    3.  V is said to be 𝒩‑𝑇2 for 𝑢, 𝑤 ∈ 𝑉 and 𝑢 ≠ 𝑤, ∃ disjoint 𝒩-open sets U and V such that 𝑢 ∈ 𝑈 and 

𝑤 ∈ 𝑊.  

 

Definition 1.4  [1] A subset J of a Nano topological space (𝑉, 𝒩ℛ) is called 𝜁-Nano-open set if there exists a Nano open 

set 𝑍 ∈ 𝒩ℛ‑𝑂, such that   

    1.  𝑍 ≠ 𝜙, 𝑉.  

    2.  𝐽 ⊆ 𝒩ℛ‑𝑖𝑛𝑡(𝐽) ∪ 𝑍.  

 In (𝑉, 𝒩ℛ), the member of the open set is said to be 𝜁-Nano-open and the complement is 𝜁-Nano-closed set. 

The collection of all 𝜁-Nano-open including 𝜙, 𝑉 is said to be 𝜁-Nano-topological space if satisfies topological space 

definition. So, this (𝑉, 𝒩ℛ , 𝜁) or 𝒩‑𝜏𝜁(𝐽) can be rewritten in the form 𝜁-Nano-topological space on V.  

 

Definition 1.5  [1] Let E be a subset of a 𝜁-Nano-Topology.   

    1.  The union of all Nano-𝜁 sets contained in E is represent in the form of 𝜁-Nano-int(E). We can rewrite in 

the form 𝜁𝑖(𝐸).  

    2.  The intersection of all Nano-𝜁 sets containing in E is represent in the form of 𝜁-Nano-cl(E). Also we 

write in the form 𝜁𝑐(𝐸).  

    3.  The exterior of 𝜁-Nano-Topology in E is defined by 𝜁𝑒(𝐸) = 𝜁𝑖(𝑉 − 𝐸).  

    4.  The frontier of 𝜁-Nano-Topology in E is defined by 𝜁𝑓(𝐸) = 𝜁𝑐(𝐸) ∩ 𝜁𝑐(𝑉 − 𝐸).  

 

Definition 1.6 [2] Let (𝑉, 𝜏𝜁) be a 𝜁-nano topological space.   

    1.  The two membersu andw inVare𝜁-topologically distinguishableif they do not have exactly the 

same𝜁-neighbourhoods.  

    2.  Two subsetsUandWofVare𝜁‑separatedif each is disjoint from the other’s 𝜁𝑐 .  

    3.  UandWare two subsets of V. Then it said to be 𝜁- separated by 𝜁‑neighbourhoodsif they have disjoint 

𝜁-neighbourhoods.  

 

Remark 1.7 [2] In (𝑉, 𝜏𝜁), the two membersu andw inVare have exactly the same𝜁-neighbourhoods then is called 𝜁- 

topologically indistinguishable.  

 

Proposition 1.8 [2] Any two 𝜁- topologically distinguishable points in (𝑉, 𝜏𝜁) are 𝜁-separated (another name is 𝜁- R0 or 

𝜁- symmentry).  

 

Remark 1.9 [2] In (𝑉, 𝜏𝜁), any of the two 𝜁- topologically distinguishable points are not 𝜁-separated. (another name is 

𝜁- Sierpinski space).  

 

The structure of this paper is represent: In Section 2, represents some new separation axioms 𝜁‑𝑇0, 𝜁‑𝑇1 and 𝜁‑𝑇2 in 

(𝑉, 𝜏𝜁). 𝜁‑𝑇0 gives the result that the distinct points is does not contain in same 𝜁 - open set. 𝜁‑𝑇1 says that the distinct 

points contain in different 𝜁-open set. 𝜁‑𝑇2 represents that the distinct points contain in disjoint 𝜁-open set. We compare 

relationship between 𝒩‑𝑇0 (resp. 𝒩‑𝑇1 , 𝒩‑𝑇2) and 𝜁‑𝑇0  (resp. 𝜁‑𝑇1 , 𝜁‑𝑇2). Few characterization of 𝜁-topologically 

distinguishable, 𝜁-symmentry space are relate with these separation axioms in 𝜁-Nano Topology. The conclusion of this 

paper is set forth in section 3. 

Note:𝜏𝒩 or 𝒩 denotes Nano Topology and 𝜏𝜁  or 𝜁 denotes 𝜁-Nano Topology. 

 

2  Separation axioms 

 
In this section, We study about 𝜁‑𝑇0, 𝜁‑𝑇1 and 𝜁‑𝑇2 in 𝜏𝜁 . Some of it’s properties are handle.  

 

Definition 2.1 A space V is said to be 𝜁‑𝑇0 if for each pair of points u, w of V are distinct, there exists a 𝜁-open set X such 
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that 𝑢 ∈ 𝑋 and 𝑤 ∉ 𝑋 in (𝑉, 𝜏𝜁).  

 

Example 2.2 In 𝑉 = {𝑠1, 𝑠2, 𝑠3}, 𝑉 ∕ ℛ = {{𝑠1}, {𝑠2}, {𝑠3}}, 𝑌 = {𝑠1, 𝑠2} and 𝜏𝒩(𝑌) = {𝜙, 𝑉, {𝑠1, 𝑠2}}. Then, 𝜁 =
{𝑠1, 𝑠2} ⇒ 𝜏𝜁(𝑌) = {𝜙, 𝑉, {𝑠1}, {𝑠2}, {𝑠1, 𝑠2}}. Therefore, (𝑉, 𝜏𝜁) is 𝜁‑𝑇0 space because:   

    1.  for 𝑠1 and 𝑠2, ∃ an open set {𝑠1} such that 𝑠1 ∈ {𝑠1} and 𝑠2 ∉ {𝑠1}.  

    2.  for 𝑠1 and 𝑠3, ∃ an open set {𝑠1} such that 𝑠1 ∈ {𝑠1} and 𝑠3 ∉ {𝑠1}.  

    3.  for 𝑠2 and 𝑠3, ∃ an open set {𝑠2} such that 𝑠2 ∈ {𝑠2} and 𝑠3 ∉ {𝑠2}.  

 

Theorem 2.3  In (𝑉, 𝜏𝜁), every 𝜁‑𝑇0 has a pair of distinct points.  

 

Proof. Let assume that u and w are 𝜁‑𝑇0 in V. Then, ∃ u and w are in V and the open subset U such that 𝑢 ∈ 𝑈 and 𝑤 ∉
𝑈 by the definition of 𝜁‑𝑇0. From our assumption, clearly it gives u and w are distinct points.  

 

Remark 2.4 The converse of the theorem 2.3 cannot be true.  

 

Example 2.5 𝑉 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} with 𝑉 ∕ ℛ = {{𝑠1}, {𝑠2}, {𝑠3, 𝑠4, 𝑠5}}, 𝑌 = {𝑠1, 𝑠2, 𝑠3} ⊂ 𝑉. 𝜏𝒩(𝑌) =
{𝜙, 𝑉, {𝑠1, 𝑠2}, {𝑠3, 𝑠4, 𝑠5}}. And 𝜁 = {𝑠1, 𝑠2} ⇒ 𝜏𝜁(𝑌) =

{𝜙, 𝑉, {𝑠1}, {𝑠2}, {𝑠1, 𝑠2}, {𝑠3, 𝑠4, 𝑠5}, {𝑠1, 𝑠3, 𝑠4, 𝑠5}, {𝑠2, 𝑠3, 𝑠4, 𝑠5}}. If a pair of distinct points are 𝑠3and 𝑠4, then 

∃{𝑠3, 𝑠4, 𝑠5} such that {𝑠3} ⊆ {𝑠3, 𝑠4, 𝑠5}. Similarly, {𝑠4} ⊆ {𝑠3, 𝑠4, 𝑠5}. Hence, it is not 𝜁‑𝑇0 space.  

 

Theorem 2.6  Every 𝒩‑𝑇0 is 𝜁‑𝑇0 in (𝑉, 𝜏𝜁).  

 

Proof. Let u and w are 𝜁-topologically distinguishable in 𝒩‑𝑇0. Then, ∃ an 𝜁-open subset U such that 𝑢 ∈ 𝑈 and 𝑤 ∉
𝑈 . This implies, 𝑢 ∈ 𝒩𝑖(𝑈) ⊆ (𝒩𝑖(𝑈) ∪ 𝜁)  and 𝑤 ∈ 𝒩𝑖(𝑊) ⊆ (𝒩𝑖(𝑊) ∪ 𝜁)  by our assumption is 𝜁 -topologically 

distinguishable. Now, we can hold that every 𝒩‑𝑇0 is 𝜁‑𝑇0.  

 

Remark 2.7 The converse of the before theorem 2.6 cannot be true.  

 

Example 2.8 In example 2.5, {𝑠1} and {𝑠2} are 𝜁‑𝑇0 but not 𝒩‑𝑇0.  

 

Theorem 2.9  In (𝑉, 𝜏𝜁), Z is 𝜁- closed set iff Z = 𝜁- closure set.  

 

Proof. Let Z is 𝜁-closed and 𝑦 ∈ 𝑍. We know that, 𝑍 ⊆ 𝜁𝑐(𝑍). Suppose that 𝑦 ∉ 𝑍. Then Z is 𝜁-closed, 𝑌 = 𝑉 − 𝑍 is 

𝜁-open and contains y, but Z not contains ⇒ 𝑦 ∉ 𝜁𝑐(𝑍). Contradiction 𝑦 ∈ 𝑍 ⇒ 𝑦 ∈ 𝜁𝑐(𝑍) and 𝑦 ∉ 𝑍 ⇒ 𝑦 ∉ 𝜁𝑐(𝑍). So, 

𝑍 = 𝜁𝑐(𝑍). ⇐(Conversely) If 𝑍 = 𝜁𝑐(𝑍), then Z is 𝜁-closed. Let 𝑦 ∈ 𝑉 − 𝑍. Then 𝑦 ∉ 𝜁𝑐(𝑍), so there is few 𝜁-open sets 

Y such that 𝑦 ∈ 𝑌 and 𝑌 ∩ 𝑍 = 𝜙 ⇒ 𝑌 ⊆ 𝑉 − 𝑍, This gives that all points of 𝑉 − 𝑍 are contained in Y, 𝑉 − 𝑍 =∪
{𝑌: 𝑦 ∈ 𝑉 − 𝑍}, whose union of 𝜁-open sets. So, 𝑉 − 𝑍 is 𝜁-open sets ⇒ 𝜁-closed.  

 

Corollary 2.10 In (𝑉, 𝜏𝜁), Z is 𝜁-open set iff Z = 𝜁-interior set.  

 

Proof. The proof is follows from the contradiction result of the theorem 2.9.  

 

Lemma 2.11  In (𝑉, 𝜏𝜁), 𝜁𝑐(𝑆) is the smallest 𝜁-closed set containing S.  

 

Proof. Let S is the 𝜁-closed set and 𝜁𝑐(𝑆) = 𝑆 ∪ 𝜁𝑓(𝑆) ⇒ 𝜁𝑐(𝑆) ⊆ 𝑆 or 𝜁𝑐(𝑆) ⊆ 𝜁𝑓(𝑆). 

Case (i): If 𝜁𝑐(𝑆) ⊆ 𝑆, then 𝜁𝑐(𝑆) is the smallest 𝜁-closed set containing S because S is the 𝜁-closed set, by the 

theorem 2.9. 

Case (ii): If 𝜁𝑐(𝑆) ⊆ 𝜁𝑓(𝑆), then 𝜁𝑐(𝑆) is the smallest 𝜁-closed set because 𝜁𝑐(𝑆) ⊆ 𝜁𝑓(𝑆) = 𝜁𝑐(𝑆) ∩ 𝜁𝑐(𝑉 −

𝑆). Hence, the proof.  

 

Lemma 2.12  In (𝑉, 𝜏𝜁), if 𝜁𝑐(𝑆) = (𝜁𝑖(𝑆))𝑐, then 𝜁𝑖(𝑆) ≠ 𝜁𝑐(𝑆).  

 

Proof. Let 𝑆 = 𝜁𝑐(𝑆)  in V and 𝑆 ⊆ 𝜁𝑐(𝑆) = (𝜁𝑖(𝑆))𝑐 , by the definition of 𝜏𝜁 . Then, (𝜁𝑖(𝑆))𝑐 = 𝑉 − (𝜁𝑖(𝑆))  is a 
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𝜁-closed set. From our assumption and lemma 2.11, 𝑉 − (𝜁𝑖(𝑆)) = 𝜁𝑐(𝑆) ≠ 𝜁𝑖(𝑆). Hence, we hold 𝜁𝑖(𝑆) ≠ 𝜁𝑐(𝑆).  

 

Theorem 2.13  In (V, 𝜏𝜁), Z is a subset of V, then every   

    1.  𝜁‑𝑇0 if and only if (⇔)𝜁-topologically distinguishable points.  

    2.  𝜁‑𝑇0 ⇔ 𝜁-separated points.  

 

 

Proof.1.  To prove that 𝜁‑𝑇0 ⇒ 𝜁-topologically distinguishable points. Assume that 𝑢 and 𝑤 are 𝜁‑𝑇0 and its open. By 

the definition of 𝜁‑𝑇0, there exists a open set U such that 𝑢 ∈ 𝑈 and 𝑤 ∉ 𝑈 then 𝑢 ⊆ (𝜁‑𝑖𝑛𝑡(𝑈) ∪ 𝜁). That is, 𝑢 ⊆ (𝑈 ∪
𝜁) ⇒ 𝑢 ⊆ 𝑈 by our assumption. From the definition of 𝜁-neighbourhood, ∃ an open sets U and W such that 𝑢 ⊆ 𝑈 ⊆
𝑁𝜁𝑈. Similarly, for 𝑤 ⊆ 𝑊 ⊆ 𝑁𝜁𝑊 by our assumption. Now, we get two disjoint neighbourhood for two point u and w. 

Therefore, 𝜁‑𝑇0 ⇒ 𝜁-topologically distinguishable points. 

The converse part of theorem, prove that 𝜁-topologically distinguishable points ⇒ 𝜁‑𝑇0. Let there are two points 

𝑢  and 𝑤  are distinct in 𝜁 -topologically distinguishable points. From the definition, its gives that it has disjoint 

𝜁-neighbourhood. That is, ∃ an open sets U and W such that 𝑢 ⊆ 𝑈 ⊆ 𝑁𝜁𝑈 and 𝑤 ⊆ 𝑊 ⊆ 𝑁𝜁𝑊 ⇒ U and W are distinct 

⇒ 𝑁𝜁𝑈 and 𝑁𝜁𝑊 are distinct. Finally, its satisfy the 𝜁‑𝑇0 condition. Hence 𝜁‑𝑇0 ⇒ 𝜁-topologically distinguishable points.  

 

2.  Prove that 𝜁‑𝑇0 ⇒ 𝜁-separated points. Let u and w are 𝜁‑𝑇0 with w is closed in V. If u and w are 𝜁‑𝑇0, then 𝑢 ∈ 𝑈 and 

𝑤 ∉ 𝑈 where U is open. This implies 𝑤 ∈ (𝜁𝑖(𝑈))𝑐 ⇒ 𝑤 ∈ 𝜁𝑐(𝑈) ⇒ 𝑈 ∩ 𝜁𝑐(𝑈) = 𝜙 by lemma 2.12.Thus, the result is 

proved. 

The another part, prove 𝜁-separated points ⇒ 𝜁‑𝑇0. Suppose x and y are 𝜁-separated points with u is open in V 

(𝑖. 𝑒{𝑢} ∈ 𝑈) . Then, 𝑈 ∩ 𝜁𝑐(𝑈) = 𝜙 ⇒ 𝑈 ≠ 𝜁𝑐(𝑈) ⇒ {𝑢} ∈ 𝑈 and {𝑢} ∉ 𝑉 − 𝑈 = 𝜁𝑐(𝑈) ∋ 𝑤, by our assumption and 

lemma 2.12. Thence, the another part is proved.  

 

Corollary 2.14 In (𝑉, 𝜏𝜁), every u and w are pair of disjoint are 𝜁‑𝑇0 ⟺ every u and w are pair of disjoint are 𝜁- 

symmentry.  

 

Proof. From the before theorem 2.13 (1) and (2), we can say 𝜁‑𝑇0 ⟺ 𝜁-topologically distinguishable and 𝜁- separated ⇒
𝜁- symmetry.  

 

Theorem 2.15  A space (𝑉, 𝜏𝜁) is 𝜁‑𝑇0 ⇔ for each pair of points u, w of V are distinct, 𝜁𝑐({𝑢}) ≠ 𝜁𝑐({𝑤}).  

 

Proof. To prove: 𝜁‑𝑇0 ⇒ 𝜁𝑐({𝑢}) ≠ 𝜁𝑐({𝑤}). Let V be a 𝜁‑𝑇0 with u and w are 𝜁-topologically distinguishable and clopen 

set. Then, ∃ an 𝜁-open set U and W such that 𝑢 ∈ 𝑈 ⊆ 𝑁𝜁𝑈  and 𝑣 ∈ 𝑊 ⊆ 𝑁𝜁𝑊 . Since (𝑈 ∩ 𝑊) ⊆ 𝑁𝜁𝑈 ∩ 𝑁𝜁𝑉 = 𝜙. 

Now, 𝑈 ∩ 𝑊 = 𝜙 ⇒ 𝑈𝑐 ∩ 𝑊𝑐 = 𝜙 = 𝜁𝑐({𝑢}) ∩ 𝜁𝑐({𝑤}), by lemma 2.12 and our assumption. Therefore, 𝜁𝑐({𝑢}) ≠
𝜁𝑐({𝑤}) because it is a disjoint. Converse part of the theorem is the reverse part of the theorem.  

 

 

Corollary 2.16 In a space, (𝑉, 𝜏𝜁) is 𝜁‑𝑇0 ⇔ for each pair of points u, w of V are distinct, 𝑢 ∉ 𝜁𝑐(𝑤) and 𝑤 ∉ 𝜁𝑐(𝑢). 

 

Proof. Assume that u and w are 𝜁‑𝑇0 in V. From the theorem 2.15, 𝑢 ∈ 𝑈 = 𝜁𝑐({𝑢}) and 𝑤 ∈ 𝑊 = 𝜁𝑐({𝑤}), where U 

and W are open. This implies, 𝜁𝑐({𝑢}) and 𝜁𝑐({𝑤}) are disjoint. From this, we can conclude that 𝑢 ∉ 𝜁𝑐(𝑤) and 𝑤 ∉
𝜁𝑐(𝑢). ⇐, Let each pair of points u, w of V are distinct, 𝑢 ∉ 𝜁𝑐(𝑤) and 𝑤 ∉ 𝜁𝑐(𝑢) are 𝜁-topologically distinguishable. 

This gives 𝑢 ∈ (𝑉 − 𝜁𝑐(𝑤)) ⇒ 𝑢 ∈ 𝑈, where U is open. Similarly,𝑤 ∈ 𝑊. From our assumption, 𝑈 ∩ 𝑊 = 𝜙. Clearly, 

each pair of u and w are 𝜁‑𝑇0.Thence, it is proved.  

 

 

Definition 2.17  A space V in 𝜏𝜁  is said to be a 𝜁‑𝑇1. If for any points of u and w are disjoint, then ∃ two 𝜁- open sets U 

and W such that 𝑢 ∈ 𝑈, 𝑤 ∉ 𝑈 and 𝑢 ∉ 𝑊, 𝑤 ∈ 𝑊.  

 

Theorem 2.18  Every 𝒩‑𝑇1 is 𝜁‑𝑇1.  

 

Proof. Assume that u and w are 𝒩‑𝑇1  in (𝑉, 𝜏𝒩).Then, ∃ the 𝜁 -open subset U such that 𝑢 ∈ 𝑈 ⊆ (𝑈 ∪ 𝜁) ⇒ 𝑢 ∈
𝜁𝑖({𝑢}) and 𝑤 ∈ 𝜁𝑐({𝑤}) ⊆ 𝑈𝑐 by the lemma 2.11 and the definition of 𝜁‑𝑇1 are separated. It gives, every 𝒩‑𝑇1 is 𝜁‑𝑇1.  
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Remark 2.19 The converse of the theorem 2.18 cannot be true.  

 

Example 2.20 𝑉 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} with 𝑉 ∕ ℛ = {{𝑠1}, {𝑠3}, {𝑠2, 𝑠4}}, 𝑌 = {𝑠1, 𝑠2} ⊂ 𝑉. 𝜏𝒩(𝑌) =
{𝜙, 𝑉, {𝑠1}, {𝑠2, 𝑠4}, {𝑠1, 𝑠2, 𝑠4}}. And 𝜁 = {𝑠1, 𝑠2, 𝑠4} ⇒ 𝜏𝜁(𝑌) =

{𝜙, 𝑉, {𝑠1}, {𝑠2}, {𝑠4}, {𝑠1, 𝑠2}, {𝑠1, 𝑠4}, {𝑠2, 𝑠4}, {𝑠1, 𝑠2, 𝑠4}}.Now {𝑠2} and {𝑠4} are 𝜁‑𝑇1 but not 𝒩‑𝑇1.  

 

Theorem 2.21  For a space (𝑉, 𝜏𝜁), then the following are equivalent:   

    1.  V is 𝜁‑𝑇1.  

    2.  For every 𝑢 ∈ 𝑉, {𝑢} = 𝜁𝑐({𝑢}).  

    3.  For each 𝑢 ∈ 𝑉, the intersection of all 𝜁 open sets containing u is {u}.  

 

Proof.  1.  Case(1): Prove (1) ⇒ (2). Suppose V is 𝜁‑𝑇1 and it is a clopen set. From the definition of 𝜁 − 𝑇1, ⇒ ∃ an 

open set U such that {𝑢} ∈ 𝑈 but {𝑤} ∉ 𝑈 ⇒ {𝑢} = 𝑈. By our assumption, {𝑢} = 𝜁𝑐(𝑢). Hence, the result is proved.  

 2.  Case(2): To prove(2) ⇒ (3). We take, every 𝑢 ∈ 𝑉, {𝑢} = 𝜁𝑐(𝑢) are clopen set. Then,∃ is 𝜁 - open set 

such that {𝑢} ⊆ 𝑈. {𝑢} =∩𝑥∈𝑉 𝑈 where x is index value. Thus, it is proved.  

 3.  Case(3): Prove (3) ⇒ (1). Let for each 𝑢 ∈ 𝑉, {𝑢} =∩𝑥∈𝑉 𝑈 where x is a index value and 𝜁-separated by 

𝜁-neighbourhood. Then, there is a distinct pair u and w in V, ∃ an open set U and W such that 𝑢 ∈ 𝑈 ⊆ 𝑁𝑢 and 𝑤 ∈ 𝑊 ⊆
𝑁𝑤 ⇒ 𝑁𝑢 ∩ 𝑁𝑤 = 𝜙, by our assumption. Its clearly, says that each distinct 𝜁-points has distinct 𝜁-open set which implies 

distinct 𝜁-neighbourhood. Therefore, we found the result.  

 

 

Theorem 2.22 In (𝑉, 𝜏𝜁), every u and w are pair of disjoint are 𝜁‑𝑇1 ⟺ V is 𝜁-topologically distinguishable.  

 

Proof. Let 𝑢 ≠ 𝑤 are 𝜁‑𝑇1.So u and w are 𝜁‑𝑇1, then ∃𝜁-open U and W which contains a member does not contain 

another member. From the result, we get 𝑢 ∈ 𝑈 and 𝑤 ∉ 𝑈  (i.e) each member has an individual 𝜁 -open and also 

𝜁-neighbourhood. Thus, V is 𝜁-topologically distinguishable. Reverse part, assume that the pair u and w are pair of disjoint 

with 𝜁-topologically distinguishable. That is, {𝑢} ∈ 𝑈 ⊆ 𝑁𝑈 and {𝑤} ∈ 𝑊 ⊆ 𝑁𝑊. Therefore, it is 𝜁‑𝑇1 because it does 

not have same 𝜁-neighbourhood and also 𝜁-open. Hence, 𝜁-topologically distinguishable is 𝜁‑𝑇1.  

 

Theorem 2.23 A space (𝑉, 𝜏𝜁) is 𝜁‑𝑇1 ⇔ the singletons are 𝜁-closed sets.  

 

Proof. Suppose 𝑢 ∈ 𝑈. ∀𝑤 ∈ {𝑢}𝑐, there is a 𝜁-open set W with 𝑤 ∈ 𝑊 and 𝑢 ∉ 𝑊. Then, 𝑊𝑜 =∪𝑤∈{𝑢}𝑐 𝑊 is 𝜁-open 

and it’s complement of {𝑢} is exactly 𝜁-closed. ⇐ (Conversely), Assume 𝑢, 𝑤 ∈ 𝑉 with 𝑢 ≠ 𝑤. So, {𝑢}𝑐 is a 𝜁 - open 

set with 𝑤 ∈ {𝑢}𝑐 and 𝑢 ∉ {𝑢}𝑐. Hence, it is 𝜁‑𝑇1.  

 

Definition 2.24 A space V is said to be 𝜁‑𝑇2 if for each pair of points u and w in V are distinct, ∃ a 𝜁- open sets U and a 

𝜁- open sets W are disjoint in V such that 𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑊.  

 

Theorem 2.25  Every 𝒩‑𝑇2 is 𝜁‑𝑇2.  

 

Proof. Suppose u and w are 𝜁‑open in 𝒩 − 𝑇2. So, ∃ an open subset U and W such that 𝑢 ∈ 𝑈 ⊆ (𝑈 ∪ 𝜁) ⇒ 𝑢 ∈ 𝜁𝑖({𝑢}) 

and similarly, 𝑤 ∈ 𝜁𝑖({𝑤}) by the definition of 𝜁‑𝑇2. Then, 𝜁𝑖({𝑢}) ∩ 𝜁𝑖({𝑤}) = 𝜙 by our assumption. It says that every 

𝒩‑𝑇1 is 𝜁‑𝑇1.  

 

Remark 2.26 The converse of the theorem 2.25 cannot be true.  

 

Example 2.27 In example 2.20, {𝑠4} and {𝑠2} are 𝜁‑𝑇1 but not 𝒩‑𝑇1.  

 

Theorem 2.28  For a space (𝑉, 𝜏𝜁), then the following are equivalent:   

    1.  V is 𝜁‑𝑇2.  

    2.  If 𝑢, 𝑤 ∈ 𝑉, for each 𝑢 ≠ 𝑤, then there is a 𝜁-open set U containing u such that 𝑤 ∉ 𝜁𝑐(𝑈).  

 

Proof.(1) ⇒ (2). Suppose V is 𝜁‑𝑇2 and clopen sets. Then, 𝑢 ≠ 𝑊∃𝜁-open U and W such that 𝑢 ∈ 𝑈, 𝑤 ∈ 𝑊 and 𝑈 ∩
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𝑊 = 𝜙. Since 𝑈 = 𝜁𝑐(𝑈) and 𝑊 = 𝜁𝑐(𝑊) ⇒ 𝜁𝑐(𝑈) ∩ 𝜁𝑐(𝑊) = 𝜙, by our assumption. Hence, 𝑤 ∉ 𝜁𝑐(𝑈). 

(2) ⇒ (1). Let 𝑢, 𝑤 ∈ 𝑉, for each 𝑢 ≠ 𝑤, then ∃ a 𝜁-open U where 𝑢 ∈ 𝑈 such that 𝑤 ∉ 𝜁𝑐(𝑈). Then, 𝑤 ∈
𝑉 − 𝜁𝑐(𝑈) by lemma 2.11. So, 𝑢 ∈ 𝑈 ⊆ 𝜁𝑐(𝑈) and 𝑉 − 𝜁𝑐(𝑈) are open ⇒ 𝑈 ∩ 𝜁𝑐(𝑈) = 𝜙. Thus, it is 𝜁‑𝑇2.  

 

 

Theorem 2.29 In (𝑉, 𝜏𝜁), every u and w are pair of disjoint are 𝜁‑𝑇2 ⟺ every u and w are pair of disjoint are 

𝜁-symmentry space.  

 

Proof. Suppose 𝑢 ≠ 𝑤 are 𝜁‑𝑇2 with 𝜁-topologically distinguishable and 𝜁-clopen set in V. Then, ∃𝜁-open set U and W 

such that 𝑢 ∈ 𝑈  and 𝑤 ∈ 𝑊 ⇒ 𝑈 ∩ 𝑊 = 𝜙  . From our assumption of clopen, ⇒ 𝑈 ∩ 𝑊 = 𝜙 ⇒ 𝑈 ∩ 𝜁𝑐(𝑊) = 𝜙 . 

Therefore, it is 𝜁-seperated ⇒ 𝜁-symmentry. Suppose V is 𝜁-symmentry. Then, ∃two 𝜁-open sets U and W such that 

𝑈 ∩ 𝜁𝑐(𝑊) = 𝜙 ⊆ 𝑈 ∩ 𝑊 = 𝜙 . We have, the two sets are distinct 𝑈 ∩ 𝑊 = 𝜙 , by the definition 𝜁 -topologically 

distinguishable.Thence, it is 𝜁‑𝑇2.  

 

Theorem 2.30  For a space (𝑉, 𝜏𝜁), 𝜁‑𝑇2 ⇒ 𝜁‑𝑇1 ⇒ 𝜁‑𝑇0 

 

Proof. Case(1): Let (𝑉, 𝜏𝜁) be a 𝜁‑𝑇2. Prove 𝜁‑𝑇2 ⇒ 𝜁‑𝑇1. Assume 𝑢, 𝑤 ∈ 𝑉, 𝑢 ≠ 𝑤. Since V is 𝜁‑𝑇2, ∃𝑡𝑤𝑜𝜁 - 

open set U and W in V such that 𝑢 ∈ 𝑈, 𝑤 ∈ 𝑊 and 𝑈 ∩ 𝑊 = 𝜙. It represents 𝑢 ∈ 𝑈 and 𝑈 ∩ 𝑊 = 𝜙 ⇒ 𝑤 ∉ 𝑈 and 

𝑤 ∈ 𝑊 and 𝑈 ∩ 𝑊 = 𝜙 ⇒ 𝑢 ∉ 𝑊. Therefore, 𝜁‑𝑇2 ⇒ 𝜁‑𝑇1 . Case(2): Let (𝑉, 𝜏𝜁) be a 𝜁‑𝑇1. Prove 𝜁‑𝑇1 ⇒ 𝜁‑𝑇0 .From 

the definition of 𝜁‑𝑇1, ∃𝜁-open set U such that 𝑢 ∈ 𝑈 and 𝑤 ∉ 𝑈. It gives 𝑢 ∈ 𝑈 and not containing other member ⇒
𝜁‑𝑇0. Hence, 𝜁‑𝑇1 ⇒ 𝜁‑𝑇0.  

 

Remark 2.31 The converse of the theorem 2.30 cannot be true.  

 

Example 2.32 1.  𝑉 = {𝑠1, 𝑠2} with 𝑉 ∕ ℛ = {{𝑠1}, {𝑠2}}, 𝑌 = {𝑠1} ⊂ 𝑉. 𝜏𝒩(𝑌) = {𝜙, 𝑉, {𝑠1}}. And 𝜁 = {𝑠1} ⇒
𝜏𝜁(𝑌) = {𝜙, 𝑉, {𝑠1}}. Here, 𝑠2 and 𝑠1 are 𝜁‑𝑇0 but not 𝜁‑𝑇1. This is also called 𝜁 - Sierpinski space.  

    2.  In example 2.2, {𝑠1} and {𝑠3} are 𝜁‑𝑇1 but not 𝜁‑𝑇2.  

 

3  Conclusion 

 
 We can established the 𝜁  nanotopology using 𝜁‑𝑇0 , 𝜁‑𝑇1  and 𝜁‑𝑇2 . In future, We can extend into the idea of 

𝜁‑𝑇3, 𝜁‑𝑇4, 𝜁‑𝑇5, 𝜁‑𝑇1/2 𝑎𝑛𝑑 𝜁‑𝑇3/2 . Also, we can approach in another field like an ideal nano topology, fuzzy nano 

topology, grill nano topology, bi-nano topology, neutrosophic nano topology, graph structures in nano topology, micro 

topology etc with few results related on some applications. 
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