NEW SEPARATION AXIOMS IN ζ -NANO TOPOLOGICAL SPACES

¹K. S. JENAVEE, ²R. ASOKAN and ³O. NETHAJI

^{1,2}School of Mathematics, Madurai Kamaraj University, Maduari -625021, Tamil Nadu, India. e-mail : jenaveeharshi@gmail.com, <u>asokan.maths@mkuniversity.org</u>

³PG and Research Department of Mathematics, Kamaraj College, Thoothukudi , Tamil Nadu, India. e-mail : jionetha@yahoo.com

Abstract

In this paper, we represents few separation axioms are ζ - T_0 , ζ - T_1 and ζ - T_2 in (V, τ_{ζ}) . ζ - T_0 deals with the distinct points which not has same ζ -open set. ζ - T_1 gives that the distinct points are in different ζ -open set. ζ - T_2 approaches that the distinct points contain in disjoint ζ -open set. We discuss among with \mathcal{N} - T_0 (resp. \mathcal{N} - T_1 , \mathcal{N} - T_2) and ζ - T_0 (resp. ζ - T_1 , ζ - T_2). ζ -topologically distinguishable and ζ -symmetry space are associate with these separation axioms in ζ -nano Topology.

Keywords: ζ *-T*₀, ζ *-T*₁ and ζ *-T*₂

1 Introduction and Preliminaries

Thivagar and Richard [3] are introduced the term Nano topology. Some few separation axioms of nano topology are \mathcal{N} - T_0 , \mathcal{N} - T_1 and \mathcal{N} - T_2 was developed by Sathishmohan et al.[5]. Jenavee et al.[1] extended the idea of nano topology into ζ -nano topological space. ζ -topologically distinguishable, ζ -separated and ζ -sierpinksi space are formed by Jenavee et al.[2].

Definition 1.1 [3] Let \mathcal{V} be a non-empty finite set of members are called the universe and \mathcal{R} has an equivalence relation on \mathcal{V} known as the indiscernibility relation. Members belonging to the same equivalence class are called to be indiscernible with each other. The pair $(\mathcal{V}, \mathcal{R})$ is called to be the approximation-space. Let $\mathcal{X} \subset \mathcal{V}$.

1. The lower approximation of \mathcal{X} with respect to \mathcal{R} is the set of all members, which can be for certain classified as \mathcal{X} with respect to \mathcal{R} and it is represented by $\mathcal{L}_{\mathcal{R}}(\mathcal{X})$. That is,

$$\mathcal{L}_{\mathcal{R}}(\mathcal{X}) = \cup_{x \in \mathcal{V}} \{ \mathcal{R}(\mathcal{X}) : \mathcal{R}(\mathcal{X}) \subseteq \mathcal{X} \},\$$

where $\mathcal{R}(\mathcal{X})$ denoted the equivalence class determined by \mathcal{X} .

2. The upper approximation of \mathcal{X} with respect to \mathcal{R} is the set of all members, which can be possibly classified as \mathcal{X} with respect to \mathcal{R} and it is represented by $\mathcal{U}_{\mathcal{R}}(\mathcal{X})$.

(i.e.),
$$\mathcal{U}_{\mathcal{R}}(\mathcal{X}) = \bigcup_{x \in \mathcal{V}} \{\mathcal{R}(\mathcal{X}) : \mathcal{R}(\mathcal{X}) \cap \mathcal{X} \neq \phi\}$$

3. The boundary region of \mathcal{X} wit respect to \mathcal{R} is the set of all members, which can be neither in nor as not- \mathcal{X} with respect to \mathcal{R} and it is represented by $\mathcal{B}_{\mathcal{R}}(\mathcal{X})$.

(i.e.),
$$\mathcal{B}_{\mathcal{R}}(\mathcal{X}) = \mathcal{U}_{\mathcal{R}}(\mathcal{X}) - \mathcal{L}_{\mathcal{R}}(\mathcal{X}).$$

Definition 1.2 [3] Let \mathcal{V} be the universe \mathcal{R} be an equivalence relation on \mathcal{V} and $\tau_{\mathcal{R}}(\mathcal{X}) = \{\mathcal{V}, \phi, \mathcal{U}_{\mathcal{R}}(\mathcal{X}), \mathcal{L}_{\mathcal{R}}(\mathcal{X}), \mathcal{B}_{\mathcal{R}}(\mathcal{X})\}$, where $\mathcal{X} \subset \mathcal{V}$. Then $\tau_{\mathcal{R}}(\mathcal{X})$ satisfies the following axioms:

- 1. \mathcal{V} and $\phi \in \tau_{\mathcal{R}}(\mathcal{X})$.
- 2. The union of the members of any sub-collection of $\tau_{\mathcal{R}}(\mathcal{X})$ is in $\tau_{\mathcal{R}}(\mathcal{X})$.

3. The intersection of the members of finite sub-collection of $\tau_{\mathcal{R}}(\mathcal{X})$ is in $\tau_{\mathcal{R}}(\mathcal{X})$.

That is, $\tau_{\mathcal{R}}(\mathcal{X})$ is a topology on \mathcal{V} is called the Nano topology on \mathcal{V} with respect to \mathcal{X} . $(\mathcal{V}, \tau_{\mathcal{R}}(\mathcal{X}))$ is called the Nano topological space. Members of the Nano topology are called Nano open sets in \mathcal{V} . Members of $[\tau_{\mathcal{R}}(\mathcal{X})]^c$ are

called Nano closed sets.

Definition 1.3 *In* (V, τ_N) , [5]

1. V is said to be \mathcal{N} - T_0 for $u, w \in V$ and $u \neq w$, \exists disjoint \mathcal{N} -open sets U such that $u \in U$ and $w \notin U$. 2. V is said to be \mathcal{N} - T_1 for $u, w \in V$ and $u \neq w$, \exists disjoint \mathcal{N} -open sets U and V such that $u \in U, w \notin U$.

W and $w \in W$, $u \notin W$. 3. V is said to be \mathcal{N} - T_2 for $u, w \in V$ and $u \neq w$, \exists disjoint \mathcal{N} -open sets U and V such that $u \in U$ and

 $w \in W$.

Definition 1.4 [1] A subset J of a Nano topological space $(V, \mathcal{N}_{\mathcal{R}})$ is called ζ -Nano-open set if there exists a Nano open set $Z \in \mathcal{N}_{\mathcal{R}}$ -0, such that

1. $Z \neq \phi, V$.

2. $J \subseteq \mathcal{N}_{\mathcal{R}}$ -int $(J) \cup Z$.

In $(V, \mathcal{N}_{\mathcal{R}})$, the member of the open set is said to be ζ -Nano-open and the complement is ζ -Nano-closed set. The collection of all ζ -Nano-open including ϕ, V is said to be ζ -Nano-topological space if satisfies topological space definition. So, this $(V, \mathcal{N}_{\mathcal{R}}, \zeta)$ or $\mathcal{N}-\tau_{\zeta}(J)$ can be rewritten in the form ζ -Nano-topological space on V.

Definition 1.5 [1] Let E be a subset of a ζ -Nano-Topology.

1. The union of all Nano- ζ sets contained in E is represent in the form of ζ -Nano-int(E). We can rewrite in the form $\zeta_i(E)$.

2. The intersection of all Nano- ζ sets containing in E is represent in the form of ζ -Nano-cl(E). Also we write in the form $\zeta_c(E)$.

3. The exterior of ζ -Nano-Topology in E is defined by $\zeta_e(E) = \zeta_i(V - E)$.

4. The frontier of ζ -Nano-Topology in E is defined by $\zeta_f(E) = \zeta_c(E) \cap \zeta_c(V - E)$.

Definition 1.6 [2] Let (V, τ_{ζ}) be a ζ -nano topological space.

1. The two membersu and winVare ζ -topologically distinguishable if they do not have exactly the same ζ -neighbourhoods.

2. Two subsetsUandWofVare ζ -separated if each is disjoint from the other's ζ_c .

3. UandWare two subsets of V. Then it said to be ζ - separated by ζ -neighbourhoods if they have disjoint ζ -neighbourhoods.

Remark 1.7 [2] In (V, τ_{ζ}) , the two membersu and winVare have exactly the same ζ -neighbourhoods then is called ζ -topologically indistinguishable.

Proposition 1.8 [2] Any two ζ - topologically distinguishable points in (V, τ_{ζ}) are ζ -separated (another name is ζ -R0 or ζ - symmetry).

Remark 1.9 [2] In (V, τ_{ζ}) , any of the two ζ - topologically distinguishable points are not ζ -separated. (another name is ζ - Sierpinski space).

The structure of this paper is represent: In Section 2, represents some new separation axioms $\zeta -T_0$, $\zeta -T_1$ and $\zeta -T_2$ in (V, τ_{ζ}) . $\zeta -T_0$ gives the result that the distinct points is does not contain in same ζ - open set. $\zeta -T_1$ says that the distinct points contain in different ζ -open set. $\zeta -T_2$ represents that the distinct points contain in disjoint ζ -open set. We compare relationship between \mathcal{N} - T_0 (resp. \mathcal{N} - T_1 , \mathcal{N} - T_2) and ζ - T_0 (resp. ζ - T_1 , ζ - T_2). Few characterization of ζ -topologically distinguishable, ζ -symmetry space are relate with these separation axioms in ζ -Nano Topology. The conclusion of this paper is set forth in section 3.

<u>Note</u>: $\tau_{\mathcal{N}}$ or \mathcal{N} denotes Nano Topology and τ_{ζ} or ζ denotes ζ -Nano Topology.

2 Separation axioms

In this section, We study about ζ - T_0 , ζ - T_1 and ζ - T_2 in τ_{ζ} . Some of it's properties are handle.

Definition 2.1 A space V is said to be ζ -T₀ if for each pair of points u, w of V are distinct, there exists a ζ -open set X such

that $u \in X$ and $w \notin X$ in (V, τ_{ζ}) .

Example 2.2 In $V = \{s_1, s_2, s_3\}, V / \mathcal{R} = \{\{s_1\}, \{s_2\}, \{s_3\}\}, Y = \{s_1, s_2\} \text{ and } \tau_{\mathcal{N}}(Y) = \{\phi, V, \{s_1, s_2\}\}.$ Then, $\zeta = \{s_1, s_2\} \Rightarrow \tau_{\zeta}(Y) = \{\phi, V, \{s_1\}, \{s_2\}, \{s_1, s_2\}\}.$ Therefore, (V, τ_{ζ}) is ζ -T₀ space because:

- 1. for s_1 and s_2 , \exists an open set $\{s_1\}$ such that $s_1 \in \{s_1\}$ and $s_2 \notin \{s_1\}$.
- 2. for s_1 and s_3 , \exists an open set $\{s_1\}$ such that $s_1 \in \{s_1\}$ and $s_3 \notin \{s_1\}$.
- 3. for s_2 and s_3 , \exists an open set $\{s_2\}$ such that $s_2 \in \{s_2\}$ and $s_3 \notin \{s_2\}$.

Theorem 2.3 In (V, τ_{ζ}) , every ζ - T_0 has a pair of distinct points.

Proof. Let assume that u and w are ζ - T_0 in V. Then, \exists u and w are in V and the open subset U such that $u \in U$ and $w \notin U$ by the definition of ζ - T_0 . From our assumption, clearly it gives u and w are distinct points.

Remark 2.4 *The converse of the theorem 2.3 cannot be true.*

Example 2.5 $V = \{s_1, s_2, s_3, s_4, s_5\}$ with $V / \mathcal{R} = \{\{s_1\}, \{s_2\}, \{s_3, s_4, s_5\}\}, Y = \{s_1, s_2, s_3\} \subset V.$ $\tau_{\mathcal{N}}(Y) = \{\phi, V, \{s_1, s_2\}, \{s_3, s_4, s_5\}\}$. And $\zeta = \{s_1, s_2\} \Rightarrow \tau_{\zeta}(Y) = \{\phi, V, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3, s_4, s_5\}, \{s_1, s_3, s_4, s_5\}, \{s_2, s_3, s_4, s_5\}\}$. If a pair of distinct points are s_3 and s_4 , then $\exists \{s_3, s_4, s_5\}$ such that $\{s_3\} \subseteq \{s_3, s_4, s_5\}$. Similarly, $\{s_4\} \subseteq \{s_3, s_4, s_5\}$. Hence, it is not ζ - T_0 space.

Theorem 2.6 Every \mathcal{N} - T_0 is ζ - T_0 in (V, τ_{ζ}) .

Proof. Let u and w are ζ -topologically distinguishable in \mathcal{N} - T_0 . Then, \exists an ζ -open subset U such that $u \in U$ and $w \notin U$. This implies, $u \in \mathcal{N}_i(U) \subseteq (\mathcal{N}_i(U) \cup \zeta)$ and $w \in \mathcal{N}_i(W) \subseteq (\mathcal{N}_i(W) \cup \zeta)$ by our assumption is ζ -topologically distinguishable. Now, we can hold that every \mathcal{N} - T_0 is ζ - T_0 .

Remark 2.7 The converse of the before theorem 2.6 cannot be true.

Example 2.8 In example 2.5, $\{s_1\}$ and $\{s_2\}$ are ζ - T_0 but not \mathcal{N} - T_0 .

Theorem 2.9 In (V, τ_{ζ}) , Z is ζ - closed set iff $Z = \zeta$ - closure set.

Proof. Let Z is ζ -closed and $y \in Z$. We know that, $Z \subseteq \zeta_c(Z)$. Suppose that $y \notin Z$. Then Z is ζ -closed, Y = V - Z is ζ -open and contains y, but Z not contains $\Rightarrow y \notin \zeta_c(Z)$. Contradiction $y \in Z \Rightarrow y \in \zeta_c(Z)$ and $y \notin Z \Rightarrow y \notin \zeta_c(Z)$. So, $Z = \zeta_c(Z)$. \leftarrow (Conversely) If $Z = \zeta_c(Z)$, then Z is ζ -closed. Let $y \in V - Z$. Then $y \notin \zeta_c(Z)$, so there is few ζ -open sets Y such that $y \in Y$ and $Y \cap Z = \phi \Rightarrow Y \subseteq V - Z$. This gives that all points of V - Z are contained in Y, $V - Z = \cup \{Y: y \in V - Z\}$, whose union of ζ -open sets. So, V - Z is ζ -open sets $\Rightarrow \zeta$ -closed.

Corollary 2.10 In (V, τ_{ζ}) , Z is ζ -open set iff $Z = \zeta$ -interior set.

Proof. The proof is follows from the contradiction result of the theorem 2.9.

Lemma 2.11 In (V, τ_{ζ}) , $\zeta_{c}(S)$ is the smallest ζ -closed set containing S.

Proof. Let S is the ζ -closed set and $\zeta_c(S) = S \cup \zeta_f(S) \Rightarrow \zeta_c(S) \subseteq S$ or $\zeta_c(S) \subseteq \zeta_f(S)$.

Case (i): If $\zeta_c(S) \subseteq S$, then $\zeta_c(S)$ is the smallest ζ -closed set containing S because S is the ζ -closed set, by the theorem 2.9.

Case (ii): If $\zeta_c(S) \subseteq \zeta_f(S)$, then $\zeta_c(S)$ is the smallest ζ -closed set because $\zeta_c(S) \subseteq \zeta_f(S) = \zeta_c(S) \cap \zeta_c(V - S)$. Hence, the proof.

Lemma 2.12 In (V, τ_{ζ}) , if $\zeta_c(S) = (\zeta_i(S))^c$, then $\zeta_i(S) \neq \zeta_c(S)$.

Proof. Let $S = \zeta_c(S)$ in V and $S \subseteq \zeta_c(S) = (\zeta_i(S))^c$, by the definition of τ_{ζ} . Then, $(\zeta_i(S))^c = V - (\zeta_i(S))$ is a

 ζ -closed set. From our assumption and lemma 2.11, $V - (\zeta_i(S)) = \zeta_c(S) \neq \zeta_i(S)$. Hence, we hold $\zeta_i(S) \neq \zeta_c(S)$.

Theorem 2.13 In (V, τ_{ζ}) , Z is a subset of V, then every

- 1. ζ - T_0 if and only if $(\Leftrightarrow)\zeta$ -topologically distinguishable points.
- 2. ζ - $T_0 \Leftrightarrow \zeta$ -separated points.

*Proof.*1. To prove that ζ - $T_0 \Rightarrow \zeta$ -topologically distinguishable points. Assume that u and w are ζ - T_0 and its open. By the definition of ζ - T_0 , there exists a open set U such that $u \in U$ and $w \notin U$ then $u \subseteq (\zeta - int(U) \cup \zeta)$. That is, $u \subseteq (U \cup \zeta) \Rightarrow u \subseteq U$ by our assumption. From the definition of ζ -neighbourhood, \exists an open sets U and W such that $u \subseteq U \subseteq N_{\zeta U}$. Similarly, for $w \subseteq W \subseteq N_{\zeta W}$ by our assumption. Now, we get two disjoint neighbourhood for two point u and w. Therefore, ζ - $T_0 \Rightarrow \zeta$ -topologically distinguishable points.

The converse part of theorem, prove that ζ -topologically distinguishable points $\Rightarrow \zeta - T_0$. Let there are two points u and w are distinct in ζ -topologically distinguishable points. From the definition, its gives that it has disjoint ζ -neighbourhood. That is, \exists an open sets U and W such that $u \subseteq U \subseteq N_{\zeta U}$ and $w \subseteq W \subseteq N_{\zeta W} \Rightarrow$ U and W are distinct $\Rightarrow N_{\zeta U}$ and $N_{\zeta W}$ are distinct. Finally, its satisfy the ζ - T_0 condition. Hence ζ - $T_0 \Rightarrow \zeta$ -topologically distinguishable points.

2. Prove that $\zeta - T_0 \Rightarrow \zeta$ -separated points. Let u and w are $\zeta - T_0$ with w is closed in V. If u and w are $\zeta - T_0$, then $u \in U$ and $w \notin U$ where U is open. This implies $w \in (\zeta_i(U))^c \Rightarrow w \in \zeta_c(U) \Rightarrow U \cap \zeta_c(U) = \phi$ by lemma 2.12. Thus, the result is proved.

The another part, prove ζ -separated points $\Rightarrow \zeta$ - T_0 . Suppose x and y are ζ -separated points with u is open in V $(i.e\{u\} \in U)$. Then, $U \cap \zeta_c(U) = \phi \Rightarrow U \neq \zeta_c(U) \Rightarrow \{u\} \in U$ and $\{u\} \notin V - U = \zeta_c(U) \ni w$, by our assumption and lemma 2.12. Thence, the another part is proved.

Corollary 2.14 In (V, τ_{ζ}) , every u and w are pair of disjoint are ζ - $T_0 \Leftrightarrow$ every u and w are pair of disjoint are ζ -symmetry.

Proof. From the before theorem 2.13 (1) and (2), we can say ζ - $T_0 \Leftrightarrow \zeta$ -topologically distinguishable and ζ - separated $\Rightarrow \zeta$ - symmetry.

Theorem 2.15 A space (V, τ_{ζ}) is ζ - $T_0 \Leftrightarrow$ for each pair of points u, w of V are distinct, $\zeta_c(\{u\}) \neq \zeta_c(\{w\})$.

Proof. To prove: $\zeta - T_0 \Rightarrow \zeta_c(\{u\}) \neq \zeta_c(\{w\})$. Let V be a $\zeta - T_0$ with u and w are ζ -topologically distinguishable and clopen set. Then, \exists an ζ -open set U and W such that $u \in U \subseteq N_{\zeta U}$ and $v \in W \subseteq N_{\zeta W}$. Since $(U \cap W) \subseteq N_{\zeta U} \cap N_{\zeta V} = \phi$. Now, $U \cap W = \phi \Rightarrow U^c \cap W^c = \phi = \zeta_c(\{u\}) \cap \zeta_c(\{w\})$, by lemma 2.12 and our assumption. Therefore, $\zeta_c(\{u\}) \neq \zeta_c(\{w\})$ because it is a disjoint. Converse part of the theorem is the reverse part of the theorem.

Corollary 2.16 In a space, (V, τ_{ζ}) is ζ - $T_0 \Leftrightarrow$ for each pair of points u, w of V are distinct, $u \notin \zeta_c(w)$ and $w \notin \zeta_c(u)$.

Proof. Assume that u and w are ζ - T_0 in V. From the theorem 2.15, $u \in U = \zeta_c(\{u\})$ and $w \in W = \zeta_c(\{w\})$, where U and W are open. This implies, $\zeta_c(\{u\})$ and $\zeta_c(\{w\})$ are disjoint. From this, we can conclude that $u \notin \zeta_c(w)$ and $w \notin \zeta_c(u)$. \leftarrow , Let each pair of points u, w of V are distinct, $u \notin \zeta_c(w)$ and $w \notin \zeta_c(u)$ are ζ -topologically distinguishable. This gives $u \in (V - \zeta_c(w)) \Rightarrow u \in U$, where U is open. Similarly, $w \in W$. From our assumption, $U \cap W = \phi$. Clearly, each pair of u and w are ζ - T_0 . Thence, it is proved.

Definition 2.17 A space V in τ_{ζ} is said to be a ζ - T_1 . If for any points of u and w are disjoint, then \exists two ζ - open sets U and W such that $u \in U, w \notin U$ and $u \notin W, w \in W$.

Theorem 2.18 Every \mathcal{N} - T_1 is ζ - T_1 .

Proof. Assume that u and w are \mathcal{N} - T_1 in $(V, \tau_{\mathcal{N}})$. Then, \exists the ζ -open subset U such that $u \in U \subseteq (U \cup \zeta) \Rightarrow u \in \zeta_i(\{u\})$ and $w \in \zeta_c(\{w\}) \subseteq U^c$ by the lemma 2.11 and the definition of ζ - T_1 are separated. It gives, every \mathcal{N} - T_1 is ζ - T_1 .

Remark 2.19 The converse of the theorem 2.18 cannot be true.

Example 2.20 $V = \{s_1, s_2, s_3, s_4\}$ with $V / \mathcal{R} = \{\{s_1\}, \{s_3\}, \{s_2, s_4\}\}, Y = \{s_1, s_2\} \subset V.$ $\tau_{\mathcal{N}}(Y) = \{\phi, V, \{s_1\}, \{s_2, s_4\}, \{s_1, s_2, s_4\}\}$. And $\zeta = \{s_1, s_2, s_4\} \Rightarrow \tau_{\zeta}(Y) = \{\phi, V, \{s_1\}, \{s_2\}, \{s_4\}, \{s_1, s_2\}, \{s_1, s_4\}, \{s_2, s_4\}, \{s_1, s_2, s_4\}\}$. Now $\{s_2\}$ and $\{s_4\}$ are ζ - T_1 but not \mathcal{N} - T_1 .

Theorem 2.21 For a space (V, τ_z) , then the following are equivalent:

- 1. V is ζ - T_1 .
- 2. For every $u \in V$, $\{u\} = \zeta_c(\{u\})$.
- 3. For each $u \in V$, the intersection of all ζ open sets containing u is $\{u\}$.

Proof. 1. Case(1): Prove (1) \Rightarrow (2). Suppose V is ζ - T_1 and it is a clopen set. From the definition of $\zeta - T_1$, $\Rightarrow \exists$ an open set U such that $\{u\} \in U$ but $\{w\} \notin U \Rightarrow \{u\} = U$. By our assumption, $\{u\} = \zeta_c(u)$. Hence, the result is proved. 2. Case(2): To prove(2) \Rightarrow (3). We take, every $u \in V$, $\{u\} = \zeta_c(u)$ are clopen set. Then, \exists is ζ - open set

such that $\{u\} \subseteq U$. $\{u\} = \bigcap_{x \in V} U$ where x is index value. Thus, it is proved.

3. Case(3): Prove (3) \Rightarrow (1). Let for each $u \in V$, $\{u\} = \bigcap_{x \in V} U$ where x is a index value and ζ -separated by ζ -neighbourhood. Then, there is a distinct pair u and w in V, \exists an open set U and W such that $u \in U \subseteq N_u$ and $w \in W \subseteq N_w \Rightarrow N_u \cap N_w = \phi$, by our assumption. Its clearly, says that each distinct ζ -points has distinct ζ -open set which implies distinct ζ -neighbourhood. Therefore, we found the result.

Theorem 2.22 In (V, τ_{ζ}) , every u and w are pair of disjoint are ζ - $T_1 \Leftrightarrow V$ is ζ -topologically distinguishable.

Proof. Let $u \neq w$ are ζ - T_1 .So u and w are ζ - T_1 , then $\exists \zeta$ -open U and W which contains a member does not contain another member. From the result, we get $u \in U$ and $w \notin U$ (i.e) each member has an individual ζ -open and also ζ -neighbourhood. Thus, V is ζ -topologically distinguishable. Reverse part, assume that the pair u and w are pair of disjoint with ζ -topologically distinguishable. That is, $\{u\} \in U \subseteq N_U$ and $\{w\} \in W \subseteq N_W$. Therefore, it is ζ - T_1 because it does not have same ζ -neighbourhood and also ζ -open. Hence, ζ -topologically distinguishable is ζ - T_1 .

Theorem 2.23 A space (V, τ_{ζ}) is ζ - $T_1 \Leftrightarrow$ the singletons are ζ -closed sets.

Proof. Suppose $u \in U$. $\forall w \in \{u\}^c$, there is a ζ -open set W with $w \in W$ and $u \notin W$. Then, $W_o = \bigcup_{w \in \{u\}^c} W$ is ζ -open and it's complement of $\{u\}$ is exactly ζ -closed. \leftarrow (Conversely), Assume $u, w \in V$ with $u \neq w$. So, $\{u\}^c$ is a ζ -open set with $w \in \{u\}^c$ and $u \notin \{u\}^c$. Hence, it is ζ - T_1 .

Definition 2.24 A space V is said to be ζ - T_2 if for each pair of points u and w in V are distinct, $\exists a \zeta$ - open sets U and a ζ - open sets W are disjoint in V such that $u \in U$ and $w \in W$.

Theorem 2.25 Every \mathcal{N} - T_2 is ζ - T_2 .

Proof. Suppose u and w are ζ -open in $\mathcal{N} - T_2$. So, \exists an open subset U and W such that $u \in U \subseteq (U \cup \zeta) \Rightarrow u \in \zeta_i(\{u\})$ and similarly, $w \in \zeta_i(\{w\})$ by the definition of ζ - T_2 . Then, $\zeta_i(\{u\}) \cap \zeta_i(\{w\}) = \phi$ by our assumption. It says that every \mathcal{N} - T_1 is ζ - T_1 .

Remark 2.26 The converse of the theorem 2.25 cannot be true.

Example 2.27 In example 2.20, $\{s_4\}$ and $\{s_2\}$ are ζ - T_1 but not \mathcal{N} - T_1 .

Theorem 2.28 For a space (V, τ_z) , then the following are equivalent:

- 1. V is ζ - T_2 .
- 2. If $u, w \in V$, for each $u \neq w$, then there is a ζ -open set U containing u such that $w \notin \zeta_c(U)$.

Proof.(1) ⇒ (2). Suppose V is ζ - T_2 and clopen sets. Then, $u \neq W \exists \zeta$ -open U and W such that $u \in U, w \in W$ and $U \cap$

 $W = \phi. \text{ Since } U = \zeta_c(U) \text{ and } W = \zeta_c(W) \Rightarrow \zeta_c(U) \cap \zeta_c(W) = \phi, \text{ by our assumption. Hence, } w \notin \zeta_c(U).$ $(2) \Rightarrow (1). \text{ Let } u, w \in V, \text{ for each } u \neq w, \text{ then } \exists \text{ a } \zeta \text{-open } U \text{ where } u \in U \text{ such that } w \notin \zeta_c(U). \text{ Then, } w \in V - \zeta_c(U) \text{ by lemma } 2.11. \text{ So, } u \in U \subseteq \zeta_c(U) \text{ and } V - \zeta_c(U) \text{ are open } \Rightarrow U \cap \zeta_c(U) = \phi. \text{ Thus, it is } \zeta - T_2.$

Theorem 2.29 In (V, τ_{ζ}) , every u and w are pair of disjoint are ζ - $T_2 \Leftrightarrow$ every u and w are pair of disjoint are ζ -symmetry space.

Proof. Suppose $u \neq w$ are $\zeta - T_2$ with ζ -topologically distinguishable and ζ -clopen set in V. Then, $\exists \zeta$ -open set U and W such that $u \in U$ and $w \in W \Rightarrow U \cap W = \phi$. From our assumption of clopen, $\Rightarrow U \cap W = \phi \Rightarrow U \cap \zeta_c(W) = \phi$. Therefore, it is ζ -seperated $\Rightarrow \zeta$ -symmetry. Suppose V is ζ -symmetry. Then, $\exists two \zeta$ -open sets U and W such that $U \cap \zeta_c(W) = \phi \subseteq U \cap W = \phi$. We have, the two sets are distinct $U \cap W = \phi$, by the definition ζ -topologically distinguishable. Thence, it is ζ - T_2 .

Theorem 2.30 For a space $(V, \tau_{\zeta}), \zeta - T_2 \Rightarrow \zeta - T_1 \Rightarrow \zeta - T_0$

Proof. Case(1): Let (V, τ_{ζ}) be a ζ - T_2 . Prove ζ - $T_2 \Rightarrow \zeta$ - T_1 . Assume $u, w \in V$, $u \neq w$. Since V is ζ - T_2 , $\exists two\zeta$ -open set U and W in V such that $u \in U$, $w \in W$ and $U \cap W = \phi$. It represents $u \in U$ and $U \cap W = \phi \Rightarrow w \notin U$ and $w \in W$ and $U \cap W = \phi \Rightarrow u \notin W$. Therefore, ζ - $T_2 \Rightarrow \zeta$ - T_1 . Case(2): Let (V, τ_{ζ}) be a ζ - T_1 . Prove ζ - $T_1 \Rightarrow \zeta$ - T_0 . From the definition of ζ - T_1 , $\exists \zeta$ -open set U such that $u \in U$ and $w \notin U$. It gives $u \in U$ and not containing other member $\Rightarrow \zeta$ - T_0 .

Remark 2.31 The converse of the theorem 2.30 cannot be true.

Example 2.32 1. $V = \{s_1, s_2\}$ with $V / \mathcal{R} = \{\{s_1\}, \{s_2\}\}, Y = \{s_1\} \subset V$. $\tau_{\mathcal{N}}(Y) = \{\phi, V, \{s_1\}\}$. And $\zeta = \{s_1\} \Rightarrow \tau_{\zeta}(Y) = \{\phi, V, \{s_1\}\}$. Here, s_2 and s_1 are ζ - T_0 but not ζ - T_1 . This is also called ζ - Sierpinski space. 2. In example 2.2, $\{s_1\}$ and $\{s_3\}$ are ζ - T_1 but not ζ - T_2 .

3 Conclusion

We can established the ζ nanotopology using ζ - T_0 , ζ - T_1 and ζ - T_2 . In future, We can extend into the idea of ζ - T_3 , ζ - T_4 , ζ - T_5 , ζ - $T_{1/2}$ and ζ - $T_{3/2}$. Also, we can approach in another field like an ideal nano topology, fuzzy nano topology, grill nano topology, bi-nano topology, neutrosophic nano topology, graph structures in nano topology, micro topology etc with few results related on some applications.

References

- [1] K. S. Jenavee, R. Asokan and O. Nethaji, ζ open sets in nano topological space (Communicated).
- [2] K. S. Jenavee, R. Asokan and O. Nethaji, A Note on ζ -nano topological Space (Communicated).

[3] M. Lellis Thivagar and Carmel Richard, *On nano forms of weakly open sets*, International Journal of Mathematics and Statistics Invention, 1(1) (2013), 31-37.

[4] Lynn Arthur Steen and J. Arthur Seebach, *Counterexamples in topology*, Dover Publications, (1995).

[5] P. Sathishmohan, V. Rajendran and P. K. Dhanasekaran, *Further properties of nano pre-T*₀, *nano pre-T*₁ and *nano pre-T*₂ spaces, Malaya Journal of Matematik, 7(1) (2019), 34-38.

[6] Z. Pawalk, *Rough Sets*, International Journal of Computer and Information Science, 11 (5)(1982), 341-356.

[7] Z. Pawalk, *Rough Sets*: Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Boston, (1991).