A common fixed point theorem for two pairs of weakly compatible self-maps

Swatmaram

Department of Mathematics, C.B.I.T., Hyderabad, India, 500075.ramuswatma@gmail.com

Abstract

A common fixed point theorem for four self maps is proved through the notion of weakly compatible self-map and property EA. The obtained result generalizes the result of Brain Fisher.

Keywords: Common fixed point, Property EA, Compatible and weakly compatible self-maps.

Introduction:

Let (X, d) be a metric space. Self-maps M and P are said to be commuting if $M P x=P M x$ for all $x \in X$.
Definition 1.1:According to Jungck [3], self-maps M and P on X are compatible if $\lim _{n \rightarrow \infty} d\left(M P x_{n}, P M x_{n}\right)=0$, when ever $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence in X such that
$\lim _{n \rightarrow \infty} M x_{n}=\lim _{n \rightarrow \infty} P x_{n}=z$ for some $z \in X$.
Definition 1.2:According to Jungck and Rhoades [4], self-maps M and P of a metric space (X, d) are weakly compatible if $M u=P u$ for some $u \epsilon X$ then MPu $=P M u$.
Definition 1.3:According to Aamri [1] Self maps M and P on X satisfy property E.A. if there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ such thatlim ${ }_{n \rightarrow \infty} M x_{n}=\lim _{n \rightarrow \infty} P x_{n}=z$.
Brain Fisher [2] proved the following result:
Theorem A:Let M be a self-map on a complete metric space X satisfying inequality $d^{2}(M x, M y) \leq \alpha d(x, M y) d(y, M x)+\gamma d(x, M x) d(y, M y) \quad$ for all $x, y \in X, \ldots$.
Where $0 \leq \alpha, \gamma<1$. Then M has a unique fixed point.
In this paper we extend Theorem A, to four self-maps using the notion of property EA and weakly compatible maps.

Main Result:

Theorem B.The self maps M, N, P and Q on X satisfying the inclusions

$$
M(X) \subset Q(X) \text { and } N(X) \subset P(X)
$$

(2)And the inequality

$$
\begin{equation*}
d^{2}(M x, N y) \leq \alpha d(P x, N y) d(Q y, M x)+\beta d(M x, N y) d(P x, Q y)+\gamma d(M x, P x) d(N y, Q y) \tag{3}
\end{equation*}
$$

Where $0 \leq \alpha, \beta, \gamma<1$.
Suppose that
(i) either (M, P) or (N, Q) satisfies property $E A$
(ii) one of $P(X)$ and $Q(X)$ is complete
(iii) (M, P) and (N, Q) are weakly compatible

Then all the four self maps will have a unique common fixed point.
Prof. Suppose that property EA satisfied by the pair of self maps (M, P). From (2) we have $M(X) \subset$ $Q(X)$, hence there exist a sequence $\{y\}_{n=1}^{\infty}$ in X such that $M x_{n}=Q y_{n}$ for all n so that fromDefinition 1.3 we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M x_{n}=\lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} Q y_{n}=z \tag{4}
\end{equation*}
$$

Let $\lim _{n \rightarrow \infty} N y_{n}=s$ now we prove that $s=z$.
Taking $x=x_{n}, y=y_{n}$ in (3), we have

$$
\begin{gathered}
d^{2}\left(M x_{n,}, N y_{n}\right) \leq \alpha d\left(P x_{n}, N y_{n}\right) d\left(Q y_{n}, M x_{n}\right)+\beta d\left(M x_{n,}, N y_{n}\right) d\left(P x_{n}, Q y_{n}\right) \\
+\gamma d\left(M x_{n}, P x_{n}\right) d\left(N y_{n}, Q y_{n}\right)
\end{gathered}
$$

As limit $n \rightarrow \infty$, this along with (4) implies that
$d^{2}(z, s) \leq \alpha .0+\beta .0+\gamma .0=0$ so that $s=z$.
Thus $\lim _{n \rightarrow \infty} M x_{n}=\lim _{n \rightarrow \infty} P x_{n}=\lim _{n \rightarrow \infty} Q y_{n}=\lim _{n \rightarrow \infty} N y_{n}=z$
Similarly (5) can be obtained if the self maps (N, Q) satisfy the property EA.
Case (i): Suppose that $Q(X)$ is complete subspace of X.
Note that $\left\{Q y_{n}\right\}_{n=1}^{\infty}$ is Cauchy and convergent sequence in $Q(X)$. We see thatz $\in Q(X)$.
i.e. $z=Q s$ for some $s \in X$. Now we Prove that $Q s=N s$.

Writing $x=x_{n}, y=\sin (3)$ and using (5) we get

$$
\begin{aligned}
& d^{2}\left(M x_{n}, N s\right) \leq \alpha d\left(P x_{n}, N s\right) d\left(Q s, M x_{n,}\right)+\beta d\left(M x_{n,}, N s\right) d\left(P x_{n,}, Q s\right) \\
& +\gamma d\left(M x_{n,}, P x_{n,}\right) d(N s, Q s)
\end{aligned}
$$

Appling the limit as $n \rightarrow \infty$, and using (4) we see that
$d^{2}(Q s, N s) \leq \alpha .0+\beta .0+\gamma .0=0$ so that $Q s=N s$.
From (2) we have $N(X) \subset P(X) \Rightarrow N s \in P(X)$ or $N s=P t$ for some $t \in X$.
Now taking $x=t$ and $y=s$ in (3) and using $Q s=N s=P t$ we get

$$
d^{2}(M t, N s) \leq \alpha d(P t, N s) d(Q s, M t)+\beta d(M t, N s) d(P t, Q s)+\gamma d(M t, P t) d(N s, Q s)
$$

$d^{2}(M t, P t) \leq 0$ or $M t=P t$. Hence $Q s=N s=P t=M t$.
That is, s is a coincidence point of Q and N and t is a coincidence point of P and M.
Case (ii): Suppose that $P(X)$ is complete subspace of X.
Since $\left\{P x_{n}\right\}_{n=1}^{\infty}$ is Cauchy and convergent sequence in $P(X)$. Therefore $z \in P(X)$.
i.e. $z=P u$ for some $u \in X$. Now we Prove that $P u=M u$.

Writing $x=u, y=y_{n}$, in (3) and using (5) we get

$$
\begin{aligned}
& d^{2}\left(M u, N y_{n}\right) \leq \alpha d\left(P u, N y_{n}\right) d\left(Q y_{n}, M u\right)+\beta d\left(M u, N y_{n}\right) d\left(P u, Q y_{n}\right) \\
& \quad+\gamma d(M u, P u) d\left(N y_{n}, Q y_{n}\right) \\
& d^{2}(M u, z) \leq \alpha d(z, z) d(z, M u)+\beta d(M u, z) d(z, z)+\gamma d(M u, P u) d(z, z)
\end{aligned}
$$

$d^{2}(M u, z) \leq 0$ or $M u=z$. That is $M u=P u=z$.
From (2) we have $M(X) \subset Q(X) \Rightarrow M u \in Q(X)$ or $M u=Q w$ for some $w \in X$.
Hence $P u=M u=Q w=z$.
Again writing $x=u, y=w$, in (3) and using (6) we get

$$
\begin{gather*}
d^{2}(M u, N w) \leq \alpha d(P u, N w) d(Q w, M u)+\beta d(M u, N w) d(P u, Q w) \tag{6}\\
+\gamma d(M u, P u) d(N w, Q w)
\end{gather*}
$$

$d^{2}(Q w, N w) \leq \alpha .0+\beta .0+\gamma .0=0$ or $Q w=N w$. Thus $P u=M u=Q w=N w$.
Hence w is a coincidence point of Q and N and u is a coincidence point of P and M.
As we know from (iii) the pairs (M, P) and (N, Q) are weakly compatible, we find that
$M P t=P M t$ and $N Q s=Q N s$. which implies $M z=P z a n d N z=Q z$.
Taking $x=y=z$ in (3) we get

$$
\begin{gathered}
d^{2}(M z, N z) \leq \alpha d(P z, N z) d(Q z, M z)+\beta d(M z, N z) d(P z, Q z)+\gamma d(M z, P z) d(N z, Q z) \\
d^{2}(M z, N z) \leq \alpha d(M z, N z) d(N z, M z)+\beta d(M z, N z) d(M z, N z)+\gamma d(M z, M z) d(N z, N z)
\end{gathered}
$$

$\operatorname{Or}(1-\alpha-\beta) d^{2}(M z, N z) \leq 0$ that is $d^{2}(M z, N z)=0$ orMz $=N z$.
Thus $M z=N z=P z=Q z$.
Know to prove $M z=z$ writing $x=z, y=s$ in (3) and using (7) we get

$$
\begin{gather*}
d^{2}(M z, N s) \leq \alpha d(P z, N s) d(Q s, M z)+\beta d(M z, N s) d(P z, Q s)+\gamma d(M z, P z) d(N s, Q s) \tag{7}\\
d^{2}(M z, z) \leq \alpha d(M z, z) d(z, M z)+\beta d(M z, z) d(M z, z)+\gamma d(M z, M z) d(z, z)
\end{gather*}
$$

Or $(1-\alpha-\beta) d^{2}(M z, z) \leq 0$ that is $d^{2}(M z, z)=0$ or $M z=z$.
Thus $M z=N z=P z=Q z=z$.
Hence z is a common fixed point of M, N, P and Q. The uniqueness of the fixed point can be easily proved.
Remark.In the Inequality (3) of Theorem B, taking $\beta=0, N=M$ and $P=Q=I$, the identity map on X we get the inequality (1) as a particular case. Also weknowthe identity map commutes and hence is weakly compatible with every map. Further from the proof of Theorem A, the sequence $\left\{M x_{n}\right\}_{n=1}^{\infty}$
is Cauchy for each $x \in X$. Therefore if X is complete, this converges to some $z \in X$ and its convergence is equivalent to the property EA of the pair (M, I), that is the condition (i) of Theorem B.

References

[1] Aamri, M. and EI Mountawaki D.I., Some new common fixed point theorems under strict contractive conditions, Journal of mathematical analysis and applications, 270 (2002), 181-188.
[2] Brian Fisher, Fixed points and constant mappings on metric spaces, Atti Acad. Naz. Lincci Rend, CL. Sci. Fis. Mat. Natur. 61 (1976), 329-332.
[3] Gerald Jungck, Compatible mappings and common fixed points, Int. Jour. Math. \& Math. Sci, 9 (1986), 771-779.
[4] Gerald Jungck and Rhoades, B.E., Fixed point for set-valued functions with out continuity, Indian J. pure appl. Math. 29 (3) (1998), 227-238.
[5] H. K. Pathak, R. R. Lopez and R. K. Verma, A common fixed point theorem using implicit relation and property E.A. in metric spaces. Filomat 21:2 (2007), 211-234.

