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Abstract—Demand for the agricultural improvements using the 

advanced computer algorithms have increased in the recent 

years. The primary focus is on the higher crop production 

rates with least damage to the crops due to various diseases. In 

the recent times, a good number of research attempts are 

observed to formulate multiple computerized algorithms to 

identify the Amino Acid sequence and further protein 

sequences, which are responsible for diseases to the plants and 

crops. However, due to the higher complexity of DNA structure 

and further the complex process for DNA to Amino Acid 

extraction, these recent researches have produced 

unsatisfactory outcomes.  Henceforth, in order to solve the 

primary challenge of higher time complexity of the DNA 

processing methods, this work proposes two algorithms to 

reduce the DNA sequence length without losing vital 

information using machine learning. Firstly, the use of 

clustering method to reduce the size ensures least information 

loss and best processing time. Secondly, the look up based 

indexed Amino Acid extraction process ensures higher 

correctness of the extraction and again in best possible time. 

The proposed framework produced nearly 98% accuracy in 

0.107 sec time frame, which is relatively 5% improvement in 

accuracy and 10% improvement in time complexity.  

Keywords— Sequence Reduction, K-Means Clustering, Sequence 

Benchmarking, Amino Acid Information, Indexed LookUp  

 

I. INTRODUCTION  

"Simple sequence repeats" (SSRs) are a collection of 
short and repeated oligonucleotide sequences found mostly 
in between long DNA sequences, according to S. Mondal et 
al. [1] These short oligonucleotides differ structurally and 
functionally from normal DNA sequences. An SSR-based 
parallel processing paradigm for fundamental DNA sequence 
operations using k-mers is described in this study. In the 
initial phase of this effort, k-mer is used to identify SSRs. As 
a result, this study utilises the MapReduce-based K-mer 
method in order to benefit from parallel execution and the 
distributed platform. A pipelined K-mer toolset known as 
KAnalyze was compared to the results of this study and 
found a considerable improvement in computing time. 
MapReduce-based k-mer has the ability to minimise memory 
footprint and properly identify every SSR of any defined 
length, according to our research. SSRs (Simple Sequence 
Repetitions) may be found using our MapReduce-based k-
mer approach on any distributed platform. 

Microsatellites, which are short sequence repeats, make 
up a large fraction of genomes. SSRs in organellar genomes, 
on the other hand, have yet to be fully appreciated for their 
relevance. With the availability of organelle genome 

sequences, we can examine how SSRs are organised in the 
coding and noncoding portions of the genomes of various 
organisms. We found and classified SSRs in the wheat 
mitochondrial and chloroplast DNA in the current research. 
According to the findings of A. K. Mishra et al. [2], the 
number of SSRs in the non-coding region is higher than in 
the coding region, and the frequency of mononucleotides is 
highest in the chloroplast genome of wheat while the 
frequency of tetranucleotides is highest in the mitochondrial 
genome of wheat.  

SSRs (Simple Sequence Repeats) are common 
biomarkers in genetic investigations because of their 
abundance in genomic sequences. C.-P. Sio et al. [3] 
demonstrated the importance of many SSRs in gene 
regulation. For example, a disease may be caused by aberrant 
repetition patterns of these essential SSRs. SSR 
polymorphism identification was made easier by Next 
Generation Sequencing methods. Prior techniques to 
detecting SSR markers were hampered by the need of 
labour-intensive, manual procedures. SSR polymorphisms at 
genome scales may be detected using an automated and 
efficient technique that does not need human curation and 
examination. De novo or reference mapping techniques to 
data assembling were both supported in this process. It was 
then possible to acquire the consensus sequences by 
assembling the contigs together and aligning them to the 
specified reference sequences. As a further step, a system for 
mining SSRs was devised to obtain all possible polymorphic 
SSRs whenever insertions or deletions happened. The 
CODIS SSR markers and nine well-known diseases related 
SSR motifs were used as the testing targets for the 1000 
genomes Trio studies. This technique was able to detect 
known polymorphic SSRs and new SSR markers when there 
were no sequencing or mapping mistakes in the consensus 
sequences. NGS technology were used to find SSR 
polymorphism and speed up related studies in order to enable 
the identification of new SSR biomarkers and the discovery 
of regulatory elements 

II. FOUNDATIONAL DNA ANALYSIS   

After setting the context of the proposed research, in this 
section of the work, the foundational methods for DNA 
analysis are furnished.  

 

Assuming that the DSX[] is the set of DNA sequences 
with m number of samples and each sample with n sequence 
length. Thus, this can be presented as,  

 



 

1243 

 

 [] , , , m

nDSX A C G T    (Eq.1) 

Thus, one sample from the set can be represented as,  

 [ ] , , , nDSX i A C G T    (Eq.2) 

As the extraction of Amino Acids from the DNA 
sequences, follows a simple 4 step process, the first step 
involves considering a sample DNA sequence with length 4 
as,  

 

 , , ,DSP A C G T    (Eq.3) 

 

Further, matching DNA sequence, MSeqDNA must be extracted as,  

 

 [ ]DNAMSeq DSX i X DSP   (Eq.4) 

 

Once the matching DNA pair is extracted, the messenger RNA or 

MSeqmRNA will be extracted. For the extraction of m-RNA, 

another matching sequence must be considered as RSP = <A, C, G, 

U>. Hence, with the help of RSP, the MSeqm-RNA will extracted as,  

 

 { }DNA A U G Cm RNA
MSeq X RSPMSeq      (Eq.5) 

  

Further, by repeating the Eq. 5 once again with 
m RNAMSeq   and 

RSP, the transferable RNA or t-RNA can be extracted as,  

 

{ }A U G Ct RNA m RNA
MSeq MSeq X RSP     

 (Eq.6) 

 

The 
t RNAMSeq   can further matched with the Amino Acid 

lookup, LTA to extract the set of matching Amino Acid as,  

  [] t R ANAMA TSeq X L   (Eq.7) 

  

Further, in the light of the foundational method of DNA to Amino 

Acid extraction, the recent research improvements are analyzed in 

the next section of this work.  

III. PARALLEL RESEARCH OUTCOMES  

An artificial life simulation is used in this work to 
examine the DNA sequence repeat pattern in order to 
determine if an agent's DNA sequence will be repeated in 
future generations. This also involves study into identifying 
patterns in repetitions and the ratio of unique and repeated 
DNA sequences, as well as the development and lifespan of 
the agent. A representation of life, 'agents,' was chosen for 
this piece. The agents are intelligent enough to make 
judgments about their own existence and to adjust to slight 
changes in the situation. Clogged corners are avoided on the 
two-dimensional plane. Reproduction is done using a diploid 

system and a two-point crossover. They also make use of 
rudimentary learning algorithms and random selection-based 
weighting when deciding how they should move. Using 
simple logic that mimics evolutionary processes improves 
the efficiency of the agents in their environment. In our 
approach, DNA sequences are saved and the behaviours of 
individuals in a population are tracked and recorded. Data 
from successful sessions is analysed to look for patterns in 
DNA sequence repeats and abnormalities, as well as how life 
evolves over time and how many people survive. As 
established by S. Ismail et al. [4], the agents have evolved to 
guarantee an ideal ratio of unique and repetitive DNA 
sequences. 

According to the findings of S. V. Tenneti et al. [5], 
DNA's tandem repeats are periodic segments. DNA testing is 
critical in forensics, demographic studies, and other areas. 
This study attempts to solve the challenge of finding them in 
lengthy DNA sequences. Based on the newly proposed 
Ramanujan Filter Bank, a novel approach is described 
(RFB). Many of the older DSP period estimate methods, 
such as those based on spectral estimation, have been found 
to have significant shortcomings (STFT etc.). It just requires 
basic integer operations and uncovers multiple previously 
undetected repetitions. 

 

An amino acid sequence contains tandemly repeating 
portions called protein repeats. They have a significant 
impact on the protein's structure and binding characteristics. 
However, the most effective methods for detecting such 
recurrence have relied on costly approaches like dynamic 
programming, HMMs and so forth. Traditional DSP 
techniques such as STFT, however, are unable to handle 
mutations in a meaningful way. S. V. Tenneti et al. [6] offer 
a unique approach based on the recently built Ramanujan 
Filter Bank. Using just basic integer calculations, its 
performance has been shown on various well-known 
repetition families. 

 

A DNA-specific compression method may be developed 
based on the features of DNA sequences. Priyanka et al. [7] 
describe a DNA sequence lossless two-phase compression 
technique. Prior to compressing the genetic sequences, a 
modified form of Run Length Encoding (RLE) is used to 
generate an ASCII-encoded version. For eight-bit ASCII 
codes, one-fourth compression is guaranteed, no matter 
whether the sequence is repeated or not, and the modified 
RLE approach further boosts the compression. Aside from its 
promising compressibility, the algorithm's straightforward 
compression method adds to its appeal. 

According to Zhang and colleagues [8], the goal of their 
research was determining the cytochrome B gene (cyt B) 
features of Zaocys dhumnades. PCR technology was utilised 
in combination with bioinformatics technologies to build 
primers, sequence, and blast. The specificity, sensitivity, and 
stability of a new Zaocys dhumnades DNA test kit was all 
assessed. China Pharmacopeia results were in line with those 
obtained using the kit procedure (2012 edition).  
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The amino acid encoding plays a critical role in the 
effectiveness of machine-learning based protein structure and 
function prediction algorithms. It is possible to utilise the 
amino acid encoding to predict the characteristics of a 
protein at both the residue level and the sequence level by 
combining multiple techniques. A lack of attention in the last 
decades has led to a lack of complete evaluations and 
evaluations of encoding techniques thus far. However, 
According to X. Jing et al. [9], a systematic categorization 
and evaluation of several amino acid encoding techniques are 
presented in this paper. All of these approaches are divided 
into five categories depending on how they gather and 
extract information. These are the five ways listed above: 
binary code, physical-chemical property code, evolution-
based code, structural code, and code learned by machine-
learning. Then, 16 typical approaches from five categories 
were chosen and evaluated using large-scale benchmark 
datasets for protein secondary structure prediction and 
protein fold identification. After analysing all of the methods 
used in this study, PSSM emerged as the best method for 
encoding amino acid positions, followed by the structure-
based and machine learning encoding methods; the neural 
network based distributed representation of amino acids in 
particular may shed new light on this area. This study hopes 
that the examination and evaluation of amino acid encoding 
experiments will be relevant for future research. 

 

Predicting protein subcellular localization has gotten a lot 
of interest recently since it's critical for understanding protein 
function and developing new drugs that are specifically 
aimed at it. Traditional approaches for determining the 
subcellular localization of proteins are time-consuming and 
expensive. More and more machine learning-based protein 
sub-cellular location predictors have been produced in the 
previous two decades, and many more are expected in the 
near future. Most of these predictors, on the other hand, are 
limited to predicting proteins at a single subcellular site. 
There have been an increasing number of proteins discovered 
that may be present in two or more different subcellular sites. 
Such proteins have a much greater impact on both 
fundamental biology and bioinformatics research; thus, their 
study is more important than ever. Prediction accuracy may 
be improved by extracting much more feature information 
that can accurately reflect the protein sequence. The multi-
label knearest neighbours (ML-KNN) algorithm was used to 
estimate protein sub-cellular locations in this study by X. Qu 
et al. [10].  

 

One of the most fundamental parts of cell structure and 
function is SIPs, which are self-interacting proteins (SIPs). 
Today's molecular biologists are focused on a critical 
problem: how to find SIPs. SIPs data has been obtained 
through experimental techniques, however wet laboratory 
methodologies are both time-consuming and expensive. 
Because of this, they have a large number of false positives 
and negatives. Thus, there is a pressing need for in silico 
algorithms to reliably and effectively anticipate SIPs. A 
novel sequence-based technique for predicting SIPs has been 
developed in this work. For the Position-Specific Scoring 
Matrix (PSSM), evolutionary information is retrieved from 
proteins with known sequence. As a final step, we feed the 

characteristics into an ensemble classifier to determine if a 
protein is self-interacting or not. When compared to the 
SVM classifier, the approach of J. -Q. Li et al. [11] also 
performs well. Thus, the suggested technique may be 
regarded an innovative and promising tool for predicting 
SIPs. 

 

It is necessary to evaluate protein sequences in order to 
anticipate their activities because of how the amino acids are 
arranged in a protein sequence. Due to their speed in 
comparison to BLAST and FASTA-based techniques, 
machine learning-based systems fail to perform effectively 
for large protein sequences (with more than 300 amino 
acids). Two different feature sets for proteins have been 
constructed using a bi-directional long short-term memory 
network that analyses fixed single-sized and multi-sized 
segments, respectively, in this study by A. Ranjan and 
colleagues [12]. With the suggested feature set, based on 
multi-sized segments, paired with the model trained using 
multilabel linear discriminant analysis (MLDA) features, the 
accuracy is increased even more.  

 

Secondary and tertiary structure prediction, protein fold 
prediction, and protein function analysis all benefit from 
knowledge of protein structural classes. The ability to 
correctly classify proteins based on their structural 
classifications is critical. In recent years, a number of 
computational approaches have been developed to predict 
protein structure classes with modest sequence similarity (25 
percent to 40 percent). There are some discrepancies between 
the claimed accuracy and the actual accuracy of the 
predictions. Wei et al. [13] offered three distinct feature 
extraction approaches in order to increase prediction 
accuracy even more and created a complete feature set that 
includes both sequence and structural information. This 
study further develops a unique approach for predicting 
structural classes by using a random forest (RF) classifier.  

 

In molecular biology, cell biology, biomedicine, and drug 
creation, information about protein 3-dimensional (3D) 
structures is critical. Predicting protein folds is seen as a 
necessary first step in figuring out the three-dimensional 
(3D) structures of proteins. In structural bioinformatics, 
protein fold prediction is a basic challenge. In order to 
predict protein folds, several new taxonomic approaches 
have recently been devised. The overall accuracy of current 
taxonomic approaches is not sufficient, despite the fact that 
significant progress has been made. A new taxonomy 
technique termed PFPA, which incorporates an ensemble 
classifier and a novel feature set, was developed by L. Wei et 
al. [14] to solve this issue. In particular, a complete feature 
set is constructed by combining the sequential evolution 
information from PSI-BLAST profiles with the local and 
global secondary structure information from PSI-PRED 
profiles. PFPA outperforms current state-of-the-art predictors 
in experiments.  

Understanding the three-dimensional structure of a 
protein sequence is an essential and difficult issue in the 
biological sciences. An intermediate stage in determining a 
protein's three-dimensional structure is the discovery of 
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protein folds from its basic sequence. For example, a feature 
extraction approach may be used in conjunction with a good 
classifier to identify an unknown protein. Several feature 
extraction methods have been developed in the past, but they 
have only been able to identify a limited number of objects. 
It was found that the trigrams derived from Position Specific 
Scoring Matrices may be used by K. K. Paliwal et al. [15] to 
extract features. It has been shown on two benchmark 
datasets that the feature extraction method is successful.  

 

The sequences of gram-positive and gram-negative 
subcellular localizations were represented in this work by R. 
Sharma et al. [16] using structural and evolutionary 
characteristics. A normalising approach was presented in this 
study to create a normalised Position Specific Scoring Matrix 
(PSSM) from the original PSSM data. Using normalised 
PSSM feature vectors and a support vector machine (SVM) 
and naive Bayes classifier, this paper evaluated the proposed 
method's performance against previously published findings. 
This study also calculated and compared the characteristics 
of the original PSSM and the normalised PSSM. Gram-
positive and gram-negative subcellular localizations have 
been boosted in the archived findings for both benchmarks, 
we found that using SVM and concatenating features (amino 
acid composition, Dubchak (physicochemical-based 
features), auto-covariance normalised PSSM-based features, 
and bigram normalised PSSM-based features) improved 
localization accuracy while using nave Bayes classifiers with 
auto-covariance normalised PSSM-based features increased 
sensitivity.  

 

In terms of protein structure, disulfide linkage is crucial. 
When a significant number of proteins are sequenced but not 
functionally annotated, anticipating disulfide connections 
purely from protein sequence helps increase our knowledge 
of protein structure and function. Discriminative features are 
developed by mixing a novel feature derived from predicted 
protein 3D structural information with standard features in 
this work by D. -J. Yu et al. [17]. A random forest regression 
model is used to predict protein disulfide connections based 
on the collected characteristics. Cross-validation and 
independent validation studies on benchmark datasets 
compare the proposed technique with popular current 
predictors. Experiment findings show that the suggested 
technique is better than currently used predictors. The 
authors of this study feel that the suggested strategy is 
preferable because of both the new features' capacity to 
discriminate and the random forest's ability to simulate. 

 

The involvement of DNA-binding proteins in a variety of 
physiological activities, including gene expression and 
transcription, is crucial. Although ChIP-sequencing and other 
experimental approaches are costly and time-consuming, in 
silico methods, such as machine learning-based methods, are 
needed to discover these proteins. DNA-binding protein 
prediction accuracy has improved dramatically in recent 
years thanks to machine learning techniques. Protein 
sequence translation into an acceptable discrete model or 
vector is still a major challenge that must be addressed. X. Fu 
et al. [18] introduced a new feature creation approach based 

on a position-specific scoring matrix (PSSM) called K-
PSSM-Composition. Evolutionary information about 20 
amino acid residues and the local information of each 
specific sequence may be easily captured by these suggested 
characteristics. To train the support vector machine model 
for predicting DNA-binding proteins, this study does a 
recursive feature reduction. This study evaluates and 
compares our suggested predictor with existing advanced 
predictors using two standard benchmark datasets.  

 

After the detailed analysis of the existing methods, the 
identified problems are discussed in the next section of this 
work. 

 

IV. PROBLEM FORMULATION 

In the recent time, the analysis for DNA to Amino Acid 
extraction have improved a lot. However, the persistent 
research problems are furnished here: 

 

A. Research Challenge 1: Higher Processing Complexity 

 

Firstly, the time complexity for processing a single DNA 
sequence is analyzed here.  

 

Assuming that the length of a DNA sequence is n, thus n 

can be calculated using a function for length extraction as,    

 

 { [ ]}n DSX i   (Eq.8) 

Further, in order to extraction the matching DNA 
sequence, each element in the DSX[i] will be compared with 
4 DNA base elements. Thus, the time complexity, T, will be 
calculated as,  

 

 4.T n   (Eq.9) 

Further converting the same matched DNA sequence to 
m-RNA, each base element will be again compared with 4 
elements each. Thus, the updated time complexity will be,  

 4*4.T n   (Eq.10) 

Or,  

 16.T n   (Eq.11) 

Or assuming k as constant, 

   

 
2.T k n   (Eq.12) 

 

Further, during the look process for finding the Amino 
Acid sequence, each element in t-RNA base will be 
compared with 20 known Amino bases. Thus, the updated 
complexity can be calculated as,  
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 16*20.T n   (Eq.13) 

Or,  

 320.T n   (Eq.14) 

 

Or,  

 log( ).
k

k
T k n   (Eq.15) 

 

Thus, it is natural to realize that, for a higher order of n, 
the total complexity can be significantly higher.  

The proposed solution to this problem, which is explain 
in the next section of this work, is to cluster the sequences in 
similar parts and further reduce by reduction of the length n.  

 

B. Research Challenge 2: Inconsistent Amino Acid 

Sequence  

 

Secondly, the due to the higher repetition of the 
sequences in the DNA, the final extracted Amino Acid 
sequences are also compromised.  

 

Assuming that, the primary DNA sequence is consisting 
of two independent sequences as, DSX[i] and DSX[j].  

 

 [ [ ], [ ]]DSX DSX i DSX j   (Eq.16) 

Here, both the sequences are nearly similar or actually 
similar as,  

 

 [ ] [ ]DSX i DSX j   (Eq.17) 

Now, due to the variation of the positions of DSX[i] and 
DSX[j], the extracted Amino Acid sequences can be 
different, which are presented as A[i] and A[j].  

 

 [ ] [ ]DSX i A i   (Eq.18) 

 

Or,  

 

 [ ] [ ]DSX j A j   (Eq.19) 

 

Hence, it is natural to realize that,   

 

 [ ] [ ]A i A j   (Eq.20) 

 

But, in the reality, the following relation should be 
established as,  

 

 [ ] [ ]A i A j   (Eq.21) 

This problem can also be solved by reducing the DNA 
sequences, which is furnished in the next section of this 
work, and by achieving the unique Amino Acid sequences.  

 

C. Research Challenge 3: Linear Search for Amino Acid 

Extraction Process 

 

Finally, the extraction of the Amino Acid sequences from 
the t-RNA sequences is the final step for further processing 
towards protein sequences.  

 

The lookup process is a linear search as explain using Eq. 
7. Thus, the linear search process can lead to a very higher 
time complexity.  

 

Thus, during this lookup process, the time complexity, 
T.LT, can be formulated as,  

 

 . ( . )T LT O n t   (Eq.22) 

Assuming that, t is the length of the look up.   

 

The solution to this problem, which is furnished in the 
next section of this work, is achieved using the indexed look 
up process.  

 

V. PROPOSED SOLUTIONS  

After the detailed analysis of the research problems, in 
this section of the work, the proposed solutions are furnished 
using mathematical models. 

 

Firstly, the reduction of the DNA sequences is carried 
out. Assuming that, the complete DNA sequence, DSX[i], is 
divided in to P[] sets of parts with length k each. As,  

 

  ATGATGATGGTTTCTAAGTAAGTAGTCTTCT A....>DSX i   

 (Eq.23) 

 

Thus, dividing the same DNA sequence into P[] sets as,  

 
[] {ATGA,TGAT,GGTT,TCTA,AGTA,AGTA,GTCT,TCTA,GGTT,CAGT,GGTT,ATGA......}P 

  (Eq.24) 

 



 

1247 

 

Further, by applying the K-Means clustering algorithm 
on P[] with x-number of clusters into K[] set as,  

 

[] {(TCTA), (AGTA), (GTCT), (CAGT), 

(ATGA), (TGAT), (GGTT)}

K 
 

 (Eq.25) 

 

Here, after the clustering process, only the unique 
sequences are kept and the naturally the length is shortened. 
Now, in the light of the Eq. 15, assuming that the new time 
complexity is T1, then T1 can be calculated as,  

 

 1 log( ).
k

k
T k Y   (Eq.26) 

Where, Y is the new length.  

As Y<<n, thus, T1<<T.  

 

Secondly, the finalization of the extraction of the Amino 
Acids are carried out.  

 

As the extraction of the Amino Acid is solely relying on 
the DNA sequence, thus the new Amino Acid sequence, 
A1[], can be formulated as,  

 

 [] 1[]K A   (Eq.27) 

Now, in the view of the Eq. 21, only one static sequence 
of Amino Acids is extracted thus,  

   

 1[] [ ] [ ]A A i A j    (Eq.28) 

 

Finally, the index-based lookup for the Amino Acids is 
formulated here. Assuming that, the standard lookup table 
LT[] is now reconstructed using the index, I[], as, D.LT[] ,  

 

   

 . [] { [], []}D LT LT I   (Eq.29) 

  

Thus, in the view of the Eq. 22, the new time complexity, 
T.D_LT can be formulated as,  

 

 . _ ( . )
t

T D LT O Y
m

   (Eq.30) 

Here, Y is the length of the new sequence and m is the 
number of iterations due to the indexing process. Thus, it is 
natural to state that,  

 

 . _ .T D LT T LT   (Eq.31) 

This reduces the overall time complexity.  

 

Further, based on the proposed mathematical model 

solutions, in the next section of the work, the proposed 

algorithms are furnished.   
 

VI. PROPOSED ALGORITHMS AND FRAMEWORK 

 

After the satisfactory confirmation using the 
mathematical model in the previous section of this work, in 
this section the proposed algorithms and the framework is 
furnished.  

 

Firstly, the Sequence Reduction using K-Means 
Clustering with Sequence Benchmarking (SR-KMeans-SB) 
Algorithm is furnished and discussed.  

 

Algorithm - I: Sequence Reduction using K-Means 
Clustering with Sequence Benchmarking (SR-KMeans-SB) 
Algorithm 

Input:  

DSX[] as DNA Sequence 

Output:  

K[] set of unique sequences 

Process:  

Step - 1. Assume K[] as emptry set 

Step - 2. Accept the DNA sequence as DSX[] 

Step - 3. For each element in DSX[i] 

a. count++ 

b. If count == 4 

c. Then,  

i. DSXX[] = DSX[start..count] 

ii. Count = 0 

d. Else, Continue  

Step - 4. For each elements set of 4 in DSXX[] as DSXX[j] 

a. If DSXX[j] Des not Belong to K[] 

b. Then, Add DSXX[j] to K[] 

c. Else, Continue 

Step - 5. Return K[] 

Outcomes: This algorithm will: 

 U
niquely identify the DNA sequences. 

 Re
duce the length without losing vital information for 
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further Amino Acid translations. 

 

Primers can be created manually to search for 
microsatellite markers in specific genomic areas, such as an 
intron. This includes looking for microsatellite repeats in the 
genome's DNA sequence, which can be done manually or 
automatically using programmed like repeat masker. The 
flanking sequences can be utilized to construct 
oligonucleotide primers that will amplify a specific 
microsatellite repeat in a PCR reaction once the possibly 
useful microsatellites have been identified. 

 

Secondly, the Extraction of Amino Acid Information 
using Indexed LookUp (EA-AI-IL) Algorithm is furnished 
and discussed.  

 

Algorithm - II: Extraction of Amino Acid Information 
using Indexed LookUp (EA-AI-IL) Algorithm 

Input:  

K[] set of DNA unique sequences  

AA[] as set of Amino Acids 

Output:  

A[] as set of Amino Acids 

Process:  

Step - 1. Build the set of Amino Acids as AA[] 

Step - 2. Sort the elements as AA[] 

Step - 3. Set the order of AA[] into index I[]  

Step - 4. Read the DNA sequence as K[]  

Step - 5. For each element in K[] with multiple of 3 
elements as K[i] 

a. If K[i] matches with AA[] / I[]  

b. Then, A[] = AA[] 

c. Else If K[i] matches with {AA[] / I[]} to the 
left 

d. Then, AA[] = Move to the left and start from 
5.A 

e. Else If K[i] matches with {AA[] / I[]} to the 
right  

f. Then, AA[] = Move to the right and start 
from 5.A 

Step - 6. Return A[] 

Outcomes: This algorithm will: 

 Reduce the time complexity to find the Amino Acid 
sequences. 

 Reduce the chance of repetitive Amino Acid 
sequences. 

 

 

All of the genetic information is included in both strands 
of double-stranded DNA. When the two strands split, this 
information is re-created in the process. More than 98 
percent of DNA in humans is non-coding, which means that 
these regions do not serve as templates for protein sequences. 
They are antiparallel because the two strands of DNA are 
running in opposing directions. One of four different 
nucleobases is attached to each sugar in the genome (or 
bases). Genetic information is encoded in the DNA sequence 
of these four nucleobases. A process known as transcription 
uses DNA strands as templates to make RNA strands, with 
the exception of thymine (T), for which RNA replaces uracil 
(U). A process called translation is used to determine the 
sequence of amino acids in proteins. 

 

Finally, the framework is furnished.  

 

Fig. 1. Proposed Amino ACID Extraction Framework 

Further the proposed framework is tested on 
benchmarked dataset and the results are furnished in the next 
section of the work. 

 

VII. RESULTS AND DISCUSSIONS   

The obtained results are highly satisfactory and are 
discussed in this section of the work.  

Firstly, the dataset characteristics are explained. The 
proposed algorithms and the framework are tested on PRGdb 
4.0 dataset [19] and the initial characteristics are furnished 
here [Table – 1]. 

TABLE I.  DATASET CHARACTERISTICS ANALYSIS  

Characteristics Values 

Number of Records 1700 

Number of DataSet Items 1700 

Number of Unique Species 41 
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Characteristics Values 

Number of RNA Sequences 47 

 

The dataset is uniquely distributed proportion of 
possibilities with 1700 unique plant DNA sequences and 
additionally 47 RNA sequences, which makes the dataset to 
be utilized for further cross verification on the obtained 
results.  

The proposed algorithms are deployed on the 1700 
records, but here only 5 samples are showcased for the 
representation purposes.  

Secondly, the DNA to DNA Pair sequence identification 
is carried out and the sample 5 sequences are furnished.   

 

TABLE II.  DNA TO DNA PAIR EXTRACTION ANALYSIS  

Dataset 
Item ID  

DNA Sequence  
Reduced DNA 

Sequence  
Time (sec) 

PRGDB1

35 

ATGATGATGGTT

TCTAGAAAAGT

AGTCTCTTCACT

TCAGTTTTTCAC

TCTTTTCTACCT

CTTTACAGTT 

ATG,GTT,TCT,A

GA,AAA,GTA,G

TC,TCA,CTT,CA

G,TTT,TTC,ACT,

TAC,CTC,ACA 

0.019 

PRGDB1

36 

CATTTGCTTCGA

CTGAGGAGGCA

ACTGCCCTCTTG

AAATGGAAAGC

AACTTTCAAGA

ACCAGAATAAT

T 

CAT,TTG,CTT,C

GA,CTG,AGG,C

AA,CCC,TCT,TG

A,AAT,GGA,AA

G,TCA,AGA,AC

C,ATA,ATT 

0.013 

PRGDB1

49 

CTTTTTGGCTTC

ATGGATTCCAA

GTTCTAATGCAT

GCAAGGACTGG

TATGGAGTTGTA

TGCTTTAATGG 

CTT,TTT,GGC,T

TC,ATG,GAT,TC

C,AAG,TAA,TG

C,CAA,GGA,CT

G,GTA,TGG,AG

T,TGT 

0.015 

PRGDB2

59 

AGGGTAAACAC

GTTGAATATTAC

AAATGCTAGTGT

CATTGGTACACT

CTATGCTTTTCC

ATTTTCATCC 

AGG,GTA,AAC,

ACG,TTG,AAT,

ATT,ACA,GCT,

AGT,GTC,GGT,

CTC,TAT,TTT,C

CA,TCA,TCC 

0.013 

PRGDB4

59 
TCCCTTCTCT

TGAAAATCT

TGATCTTAG

CAAGAACAA

TATCTATGG

TACCATTCC

ACCTGAGAT

TGGTA 

TCC,CTT,CTC,T

TG,AAA,ATC,TT

A,GCA,AGA,AC

A,ATA,TCT,ATG

,GTA,CCA,TTC,

CAC,CTG 

0.011 

 

Here during the sample analysis of 5 elements, the 
average time is 0.0142 sec and for the complete dataset the 
reduction time is 0.0156 sec. The results are visualized 

graphically here [Fig – 2].  

 

Fig. 2. DNA Seqeunce Reduction Time Compelxity Analysis 

 

Further, the Amino ACIDs are extracted from the 
original DNA sequence and from the reduced DNA 
sequence. The comparisons are furnished here [Table – 3].  

  

TABLE III.  ACTUAL AMINO ACID AND REDUCED AMINO ACID 

EXTRACTION COMPARISONS  

Dataset 

Item ID  

Original Extracted 

Amino ACID 

Sequence  

Extracted Amino ACID 

Sequence from 

Reduced DNA 

Accuracy 

(%) 

PRGDB1

35 

Tyrosine, Stop, 

Lysine, Cysteine, 

Glutamine, Serine, 

Valine, Tyrosine, 

Glutamic acid, 

Phenylalanine, 

Histidine, 

Methionine 

Tyrosine, Stop, 

Lysine, Cysteine, 

Glutamine, 

Serine, Valine, 

Tyrosine, 

Glutamic acid, 

Phenylalanine, 

Histidine, 

Methionine 

99 

PRGDB1

36 

Leucine, 

Asparagine, 

Aspartic acid, 

Tryptophan, Stop, 

Serine, Valine, 

Proline, Glycine, 

Tyrosine,Valine, 

Threonine, 

Glutamic acid, 

Alanine, 

Phenylalanine 

Leucine, 

Asparagine, 

Aspartic acid, 

Tryptophan, Stop, 

Serine, Valine, 

Proline, Glycine, 

Tyrosine,Valine, 

Threonine, 

Glutamic acid, 

Alanine, 

Phenylalanine 

96 

PRGDB1

49 

Glutamic acid, 

Leucine, Aspartic 

acid, Lysine, 

Proline, Valine, 

Serine, Tyrosine, 

Isoleucine, 

Threonine, 

Glutamic acid, 

Arginine, 

Phenylalanine, 

Histidine 

Glutamic acid, 

Leucine, Aspartic 

acid, Lysine, 

Proline, Valine, 

Serine, Tyrosine, 

Isoleucine, 

Threonine, 

Glutamic acid, 

Arginine, 

98 
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Dataset 
Item ID  

Original Extracted 
Amino ACID 

Sequence  

Extracted Amino ACID 
Sequence from 

Reduced DNA 

Accuracy 
(%) 

Phenylalanine, 

Histidine 
PRGDB2

59 

Leucine, 

Asparagine,Serine, 

Stop, Cysteine, 

Lysine, Glutamine, 

Serine, Proline, 

Glycine, Isoleucine, 

Glutamic acid, 

Arginine, Histidine 

Leucine, 

Asparagine,Serine

, Stop, Cysteine, 

Lysine, 

Glutamine, 

Serine, Proline, 

Glycine, 

Isoleucine, 

Glutamic acid, 

Arginine, 

Histidine 

89 

PRGDB4

59 
Asparagine, 

Aspartic acid, 

Stop, Cysteine, 

Lysine, Serine, 

Valine, 

Tyrosine, 

Glycine,Arginin

e, Glutamic 

acid, Arginine, 

Phenylalanine, 

Histidine 

Asparagine, 

Aspartic acid, 

Stop, Cysteine, 

Lysine, Serine, 

Valine, Tyrosine, 

Glycine,Arginine, 

Glutamic acid, 

Arginine, 

Phenylalanine, 

Histidine 

97 

 

During the sample accuracy analysis, the framework 
demonstrated nearly 95.8% accuracy and for the complete 
dataset with 1700 records, the accuracy is 98.8%. The result 
is also visualized graphically here [Fig – 3]. 

 

 

Fig. 3. AMINO ACID Extraction Accuracy Comparison 

 

Further, the final time complexity of the process is 
analyzed here [Table – 4].  

TABLE IV.  TIME COMPLEXITY ANALYSIS  

Dataset 

Item ID  

Amino Acid 
Exaction Time from 

Original Sequence 

(Sec) 

Amino Acid Exaction 
Time from Reduced 

Sequence (Sec) 

PRGDB1

35 
0.991 0.124 

PRGDB1

36 
0.98 0.089 

PRGDB1

49 
0.953 0.087 

PRGDB2

59 
0.961 0.137 

PRGDB4

59 
0.792 0.099 

 

Hence, the improvement in the time complexity is clearly 
visible. The analysis is also visualized graphically here [Fig 
– 4]. 

 

Fig. 4. Total Processing Time Comparison  

 

Henceforth, with the clear understanding of the 
improvements by the proposed system, the work is compared 
with the parallel benchmark works in the next section of the 
work.  

VIII. COMPARATIVE ANALYSIS   

The outcomes from the proposed algorithms in the 
framework are compared with the parallel research outcome 
in order to analyse the improvements [Table – 5]. 

TABLE V.  COMPARATIVE ANALYSIS  

Author, Year 
Framework 
Complexity  

Mean Time (sec) Accuracy (%) 

J. -Q. Li et 

al [11], 

2017 

O(n
3
) 0.997 94 

S. Mondal 

et al. [1], 

2018 

O(n
3
) 0.758 96 

X. Jing et 

al. [9], 

O(n
3
) 0.339 97 
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Author, Year 
Framework 
Complexity  

Mean Time (sec) Accuracy (%) 

2020 

A. Ranjan 

et al. [12], 

2020 

O(n
3
) 0.389 97 

Proposed 

Framework 

O(log n
2
) 0.107 98.8 

 

Henceforth, with the clear understanding of the 
improvements over the parallel research outcomes, in the 
next section of this work, the research conclusion is 
furnished.   

IX. CONCLUSION AND FUTURE SCOPE  

As realized from the parallel research outcomes, during 
the research surveys, many research efforts have been made 
in recent years to develop numerous computerised 
algorithms that may be used to determine the amino acid 
sequence and, in some cases, protein sequences, that are 
responsible for the transmission of plant and agricultural 
diseases. However, owing to the increased complexity of 
DNA structure, as well as the more difficult procedure for 
DNA to Amino Acid extraction, the results of these current 
studies have been disappointing. As a result, in order to 
address the major obstacle of increased time complexity of 
DNA processing techniques, this study provides two 
algorithms that use machine learning to minimise the length 
of DNA sequences without sacrificing essential information. 
First and foremost, the use of the clustering approach, in 
Sequence Reduction using K-Means Clustering with 
Sequence Benchmarking (SR-KMeans-SB) Algorithm, to 
minimise the size guarantees that the least amount of 
information is lost and that the processing time is optimised. 
Second, using the Extraction of Amino Acid Information 
using Indexed LookUp (EA-AI-IL) Algorithm, the look-up-
based indexed Amino Acid extraction procedure provides 
improved accuracy of the extraction while also completing 
the extraction in the shortest amount of time. The suggested 
framework achieved approximately 98 percent accuracy in a 
time frame of 0.107 seconds, representing a 5 percent gain in 
accuracy and a 10 percent improvement in time complexity 
over the previous framework. 
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