An Orthogonal Left Centralizer and Reverse Left Centralizer on Semiprime Γ-Rings

Fawaz Ra'ad Jarullah ${ }^{1}$, Yilmaz Çeven ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Education, Al-Mustansirya University, Iraq fawazraad1982@gmail.com
${ }^{2}$ Suleyman Demirel University, Departments of Mathematics, Isparta, Turkey yilmazceven@sdu.edu.tr

Abstract

: Let M be a semiprime Γ-ring. In this paper we introduce the concept of orthogonal left centralizer and reverse left centralizer on a semiprime Γ - ring and we prove the following main result:

Let M be a 2-torsion free semiprime Γ - ring, t be a left centralizer and h be a reverse left centralizer of M, such that $x \alpha z \beta y=x \beta z \alpha y$, for all $x, y, z \in M, \alpha, \beta \in \Gamma$ and t, h are commuting. Then t and h are orthogonal if and only if $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{t}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$.

Key Words : semiprime Γ-ring, left centralizer, reverse left centralizer, orthogonal left centralizer and reverse left centralizer .

Mathematic Subject classification : 16N60, 16W25, 42C05, 33C45.

I-Introduction :

In 1964 [6] gave the notion of a Γ-ring. This concept is more general than the concept of a ring. In 1966 [2] generalized this concept . . The definition of prime ring and semiprime Γ-ring was introduced in [5]. The definition of 2 -torsion free Γ-ring was introduced in [7]. While [8] introduced the concept of left (resp. right) centralizer and Jordan left (resp. right) centralizer of Γ-rings. The concept of higher reverse left (resp. right) centralizer and a Jordan higher reverse left (resp. right) centralizer of Γ-ring was introduce by [4] and the one important question can be answered whether there is a relation between a concepts of a higher reverse left(resp. right) centralizer and a Jordan higher reverse left(resp. right) centralizer within certain conditions .

In this paper, we define and study the concept of orthogonal left centralizer and reverse left centralizer of semiprime Γ-ring and we prove some of lemmas and theorems about orthogonally one of these theorems is:

Let M be a 2-torsion free semiprime Γ - ring, t be a left centralizer and h be a reverse left centralizer of M , where t and h are commuting .Then the following conditions are equivalent :
(i) t and h are orthogonal
(ii) $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})=(0)$
(iii) $\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{y})=(0)$
(iv) $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{y})=(0)$.

In our work we need the following Lemmas :

Lemma(1.1): [1]

If M is a 2-torsion free semiprime Γ-ring and x , y be elements of M , then the following conditions are equivalent :
(i) $\mathrm{x} \Gamma \mathrm{m} \Gamma \mathrm{y}=(0)$, for all $\mathrm{m} \in \mathrm{M}$
(ii) $\mathrm{y} \Gamma \mathrm{m} \Gamma \mathrm{x}=(0)$, for all $\mathrm{m} \in \mathrm{M}$
(iii) $\mathrm{x} \Gamma \mathrm{m} \Gamma \mathrm{y}+\mathrm{y} \Gamma \mathrm{m} \Gamma \mathrm{x}=(0)$, for all $\mathrm{m} \in \mathrm{M}$

If one of these conditions is fulfilled ,then $\mathrm{x} \Gamma \mathrm{y}=\mathrm{y} \Gamma \mathrm{x}=0$.

Lemma(1.2): [3]

Let M be a 2-torsion free semiprime Γ-ring and x , y be elements of M if $\mathrm{x} \Gamma \mathrm{m} \Gamma \mathrm{y}+\mathrm{y} \Gamma \mathrm{m} \Gamma \mathrm{x}=(0)$, for all $\mathrm{m} \in \mathrm{M}$. Then $\mathrm{x} \Gamma \mathrm{m} \Gamma \mathrm{y}=\mathrm{y} \Gamma \mathrm{m} \Gamma \mathrm{x}=(0)$.

II . Orthogonal Reverse Left (resp.Right) Centralizer on Semiprime Γ-Rings :

In this section we will introduce the concept of orthogonal left centralizer and a reverse left centralizer on semiprime Γ-rings.

Definition (2.1):

Let t be a left centralizer and h be a reverse left centralizer of a Γ-ring M. Then t and h are called orthogonal if $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{h}(\mathrm{y})=(0)=\mathrm{h}(\mathrm{y}) \Gamma \mathrm{M} \Gamma \mathrm{t}(\mathrm{x})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$.

Example (2.2):

Let M be a ring of all 2×2 matrices of integer numbers, such that

$$
\mathbf{M}=\left\{\left(\begin{array}{cc}
0 & 0 \\
\mathrm{x} & \mathrm{y}
\end{array}\right) ; \mathrm{x}, \mathrm{y} \in \mathrm{Z}\right\} \text { and } \Gamma=\left\{\left(\begin{array}{ll}
\mathbf{n} & 0 \\
0 & 0
\end{array}\right) ; \forall \mathbf{n} \in \mathbf{Z}\right\} \text {. Then } \mathrm{M} \text { is a } \Gamma \text {-ring }
$$

Let $\mathrm{t}: \mathrm{M} \rightarrow \mathrm{M}$ be an additive mapping of a Γ-ring M into itself, such that

$$
t\left(\begin{array}{ll}
0 & 0 \\
x & y
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
x & 0
\end{array}\right), \text { for all }\left(\begin{array}{ll}
0 & 0 \\
x & y
\end{array}\right) \in M
$$

$\mathrm{h}: \mathrm{M} \rightarrow \mathrm{M}$ be an additive mapping of a Γ-ring M into itself, such that

$$
h\left(\begin{array}{ll}
0 & 0 \\
x & y
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & y
\end{array}\right) \text {, for all }\left(\begin{array}{ll}
0 & 0 \\
x & y
\end{array}\right) \in M
$$

Then t is a left centralizer and h is a reverse left centralizer. Then t and h are orthogonal of M .

Example (2.3):

Let t is a left centralizer and h is a reverse left centralizer of a Γ-ring M, we put $\mathrm{M}^{*}=\mathrm{M} \oplus \mathrm{M}=\{(\mathrm{x}, \mathrm{y}) ; \mathrm{x}, \mathrm{y} \in \mathrm{M}\}$ and $\Gamma^{*}=\Gamma \oplus \Gamma=\{(\alpha, \beta) ; \alpha, \beta \in \Gamma\}$, we define t^{*} and h^{*} on M^{*} by $\mathrm{t}^{*}((\mathrm{x}, \mathrm{y}))=(\mathrm{t}(\mathrm{x}), 0)$ and $\mathrm{h}^{*}((\mathrm{x}, \mathrm{y}))=(0, \mathrm{~h}(\mathrm{y}))$, for all $(\mathrm{x}, \mathrm{y}) \in \mathrm{M}^{*}$.
Then t^{*} and h^{*} are orthogonal M^{*}.

Lemma (2.4):

Let M be a semiprime Γ - ring, suppose that t be a left centralizer and h be a reverse left centralizer of M, satisfy $t(x) \Gamma M \Gamma h(x)=(0)$, for all $x \in M$. Then $t(x) \Gamma M \Gamma h(y)=(0)$, for all $x, y \in M$.

Proof:

Suppose that $\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Replace x by $\mathrm{x}+\mathrm{y}$ in (1), we have that
$\mathrm{t}(\mathrm{x}+\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x}+\mathrm{y})=0$
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x})+\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})+\mathrm{t}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x})+\mathrm{t}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})=0$
Therefore, by our assumption and Lemma (1.1), we get
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Thus $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{h}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$

Lemma (2.5):

Let M be a 2-torsion free semiprime Γ - ring, t be a left centralizer and h be a reverse left centralizer of M, such that $x \alpha z \beta y=x \beta z \alpha y$, for all $x, y, z \in M, \alpha, \beta \in \Gamma$ and t, h are commuting. Then t and h are orthogonal if and only if $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{t}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$.

Proof:

Suppose that t and h are orthogonal

$$
\text { T.P. } \mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{~h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{t}(\mathrm{y})=0 \text {, for all } \mathrm{x}, \mathrm{y} \in \mathrm{M}
$$

Since t and h are orthogonal, we have that

$$
\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{~h}(\mathrm{y})=0=\mathrm{h}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{x}) \text {, for all } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M} \text { and } \alpha, \beta \in \Gamma
$$

By Lemma (1.1), we have that
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{y})=0=\mathrm{h}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$
Left multiply by $\mathrm{z} \beta$, we have that
$\mathrm{z} \beta \mathrm{t}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{y})+\mathrm{z} \beta \mathrm{h}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Since $x \alpha z \beta y=x \beta z \alpha y$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$ and t and h are commuting, we have that:
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Hence $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{t}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$
Conversely , it's clear by using Lemma (1.2)

Theorem (2.6):

Let M be a 2-torsion free semiprime Γ - ring, t be a left centralizer and h be a reverse left centralizer of M , where t and h are commuting. Then the following conditions are equivalent :
(i) t and h are orthogonal
(ii) $\mathrm{th}=0$
(iii) $\mathrm{ht}=0$
(iv) th $+\mathrm{ht}=0$

Proof: (i) \Leftrightarrow (ii)
Suppose that t and h are orthogonal
T.P. th $=0$

Since t and h are orthogonal, we have that
$\mathrm{h}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Replace x by $\mathrm{h}(\mathrm{y})$, we have that
$\mathrm{h}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{tt}(\mathrm{h}(\mathrm{y}))=0$
$\mathrm{t}(\mathrm{h}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{h}(\mathrm{y})))=0$
$\mathrm{t}(\mathrm{h}(\mathrm{y})) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{h}(\mathrm{y}))=0$, for all $\mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Since M is a semiprime Γ - ring, we have that
$\mathrm{t}(\mathrm{h}(\mathrm{y}))=0$, for all $\mathrm{y} \in \mathrm{M} \Rightarrow \mathrm{th}=0$
Conversely, suppose that th $=0$
T.P. t and h are orthogonal
$h(t(x \beta y))=0$
$\mathrm{h}(\mathrm{t}(\mathrm{x}) \beta \mathrm{y})=0$
$h(y) \beta t(x)=0$
Since t and h are commuting, we have that
$\mathrm{t}(\mathrm{x}) \beta \mathrm{h}(\mathrm{y})=0$
Replace x by $\mathrm{x} \alpha \mathrm{z}$, we have that
$\mathrm{t}(\mathrm{x} \alpha \mathrm{z}) \beta \mathrm{h}(\mathrm{y})=0$
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Since t and h are commuting, we have that
$\mathrm{h}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$

Hence t and h are orthogonal .

Proof : (i) \Leftrightarrow (iii)

By the same way in (i) \Leftrightarrow (ii) , we get (i) \Leftrightarrow (iii).

Proof: (i) \Leftrightarrow (iv)

Suppose that t and h are orthogonal
T.P. th $+\mathrm{ht}=0$

By (ii) and (iii), we get the require result.
Conversely , suppose that $\mathrm{th}+\mathrm{ht}=0$
T.P. t and h are orthogonal
$(\mathrm{th}+\mathrm{ht})(\mathrm{y} \beta \mathrm{x})=0$
$\mathrm{t}(\mathrm{h}(\mathrm{y} \beta \mathrm{x}))+\mathrm{h}(\mathrm{t}(\mathrm{y} \beta \mathrm{x}))=0$
$\mathrm{t}(\mathrm{h}(\mathrm{x}) \beta \mathrm{y})+\mathrm{h}(\mathrm{t}(\mathrm{y}) \beta \mathrm{x})=0$
$\mathrm{t}(\mathrm{h}(\mathrm{x})) \beta \mathrm{y}+\mathrm{h}(\mathrm{x}) \beta \mathrm{t}(\mathrm{y})=0$
Replace $\mathrm{t}(\mathrm{h}(\mathrm{x}))$ by $\mathrm{t}(\mathrm{x})$, we have that
$\mathrm{t}(\mathrm{x}) \beta \mathrm{y}+\mathrm{h}(\mathrm{x}) \beta \mathrm{t}(\mathrm{y})=0$
Replace β y by $\beta \mathrm{h}(\mathrm{y})$, we have that
$\mathrm{t}(\mathrm{x}) \beta \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \beta \mathrm{t}(\mathrm{y})=0$
Left multiply by $z \alpha$, we have that
$\mathrm{z} \alpha \mathrm{t}(\mathrm{x}) \beta \mathrm{h}(\mathrm{y})+\mathrm{z} \alpha \mathrm{h}(\mathrm{x}) \beta \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Since t and h are commuting, we have that
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
That is $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{t}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$
By Lemma (2.5), we get the require result .

Theorem(2.7):

Let M be a 2 -torsion free semiprime Γ - ring, t be a left centralizer and h be a reverse left centralizer of M , where t and h are commuting .Then the following conditions are equivalent :
(i) t and h are orthogonal
(ii) $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})=(0)$
(iii) $\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{y})=(0)$
(iv) $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{y})=(0)$

Proof: (i) \Leftrightarrow (ii)

Suppose that t and h are orthogonal
T.P. $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$

Since t and h are orthogonal, we have that
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
By Lemma (1.1), we have that
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{y})=0$
Thus, $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$
Conversely, suppose that $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$
T.P t and h are orthogonal
$\mathrm{t}(\mathrm{x}) \beta \mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\beta \in \Gamma$
Replace x by $\mathrm{x} \alpha \mathrm{z}$, we have that
$\mathrm{t}(\mathrm{x} \alpha \mathrm{z}) \beta \mathrm{h}(\mathrm{y})=0$
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Since t and h are commuting, we have that

$$
\begin{equation*}
\mathrm{h}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{x})=0 \text {, for all } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M} \text { and } \alpha, \beta \in \Gamma \tag{2}
\end{equation*}
$$

Hence t and h are orthogonal .

Proof: (i) \Leftrightarrow (iii)

By the same way in (i) \Leftrightarrow (ii) , we get (i) \Leftrightarrow (iii).

Proof: (i) \Leftrightarrow (iv)

Suppose that t and h are orthogonal
T.P. $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{y})=(0)$

By (ii) and (iii), we get the require result .
Conversely, suppose that $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{y})=(0)$
T.P t and h are orthogonal

By our assumption, we have that
$\mathrm{t}(\mathrm{x}) \beta \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \beta \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$
Left multiply by z α, we have that
$\mathrm{z} \alpha \mathrm{t}(\mathrm{x}) \beta \mathrm{h}(\mathrm{y})+\mathrm{z} \alpha \mathrm{h}(\mathrm{x}) \beta \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
Since t and h are commuting, we have that
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{t}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
$\mathrm{t}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{h}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{t}(\mathrm{y})=(0)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$
By Lemma (2.5), we get the require result .

Corollary (2.8):

Let M be a 2-torsion free semiprime Γ - ring, t be a left centralizer and h be a reverse left centralizer of M , where t and h are commuting. Then the following conditions are equivalent, for all $x \in M$:
(i) t and h are orthogonal
(ii) $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{x})=0$
(iii) $\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{x})=0$
(iv) $\mathrm{t}(\mathrm{x}) \Gamma \mathrm{h}(\mathrm{x})+\mathrm{h}(\mathrm{x}) \Gamma \mathrm{t}(\mathrm{x})=0$

Proof:

Obvious

Lemma(2.9):

Let M be a completely prime Γ - ring, t and h are orthogonal left centralizer and reverse left centralizer resp. of M. Then either $t=0$ or $h=0$.

Proof:

Suppose that t and h are orthogonal
T.P. $\mathrm{t}=0$ or $\mathrm{h}=0$
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
By Lemma (1.1), we have that
$\mathrm{t}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$
Since M is a completely prime Γ - ring, we get either
$\mathrm{t}(\mathrm{x})=0$ or $\mathrm{h}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$
$\mathrm{t}=0$ or $\mathrm{h}=0$

Theorem(2.10):

Let M be a 2-torsion free semiprime Γ - ring , t be a left centralizer and h be a reverse left centralizer of M , suppose that $\mathrm{t}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{x})=\mathrm{h}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$.

Then $\mathrm{t}+\mathrm{h}$ and $\mathrm{t}-\mathrm{h}$ are orthogonal .

Proof:

$((\mathrm{t}+\mathrm{h}) \alpha(\mathrm{t}-\mathrm{h})+(\mathrm{t}-\mathrm{h}) \alpha(\mathrm{t}+\mathrm{h}))(\mathrm{x})$
$=\mathrm{t}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{x})-\mathrm{t}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{x})+\mathrm{h}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{x})-\mathrm{h}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{x})+\mathrm{t}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{x})+\mathrm{t}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{x})-$ $\mathrm{h}(\mathrm{x}) \alpha \mathrm{t}(\mathrm{x})-\mathrm{h}(\mathrm{x}) \alpha \mathrm{h}(\mathrm{x})$
$=0$
Therefore, $((\mathrm{t}+\mathrm{h}) \alpha(\mathrm{t}-\mathrm{h})+(\mathrm{t}-\mathrm{h}) \alpha(\mathrm{t}+\mathrm{h}))(\mathrm{x})=0$, for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$
By Corollary (2.8) (iv) \Rightarrow (i), we get the require result .

References:

[1] M.Ashraf, and M. R. Jamal,"Orthogonal Derivations in Г-Rings" Advanced in Algebra, 3(1), 2010 ,pp. 1-6.
[2] W . E Barnes "On The Г-Rings of Nobusawa", Pac. J. Math, 8(3) ,1966, pp. 411-422.
[3] S.Chakraborty and A.C. Paul, "On Jordan K-Derivations of 2-Torsion Free Prime Γ_{N}-rings", Punjab University J. of Math. ,Vol.40, 2008 , PP.97-101.
[4] F.R Jarullah and S.M Salih," A Jordan Higher Reverse Left (resp. right) Centralizer on Prime Г-Rings", Iraqi Journal of Science, 61(9),2020, PP. 2341-2349.
[5] A.H. Majeed and S.A. Hamil," $\boldsymbol{\gamma}$ - Orthogonal for K- Derivations and K- Reverse Derivations", Journal of physics,1530,2020 p.p.1-6 .
[6] N. Nobusawa," On a Generalization of the Ring Theory",Osaka Journal Math., 1,1964, p.p.81-89.
[7] M.A. Ozturk , H. Durna and T.Acet,"A note on Derivations on Prime Gamma Rings with Characteristic $2^{\prime \prime}$, Bulletin of the International Mathematical Virtual Institute ,10(2), 2020, p.p.201-212.
[8] R.C.Shaheen,"On Centralizers on Some Gamma Ring",Journal of Al-qadisiyah for Pure Science ,12(2), pp.219-229, 2007.

