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Abstract 

Protein folding design and genomic data processing methods are more powerful tools to 

investigate the fundamental principle of IoT based healthcare. In previous researches, protein 

folding has the problem of finding the lowest energy conformation and size complexity. Along 

with this, there is a security problem in genome sequence and complications in storing genome 

data due to the unstructured format. To tackle these issues a novel Bilateral conception strategy 

has been proposed in this paper. Initially, the problems of finding the lowest energy 

conformation and size complexity have been solved by a novel Reconcile pirouette mechanism-

based quantum processor through decrease the quantum circuit from quadratic to quasi-linear. 

Then, the novel Adumbrating algorithm for secure commune based genomic data analysis deals 

with the security issue and provides the highest privacy for the genome data by using Single 

Nucleotide Polymorphisms. Finally, a novel Adroit Semantic web-based system is proposed for 

securely storing and retrieving genome data by Collateral Description frame format. Thus the 

novel bilateral conception strategy effectively solves the problem in protein folding and provides 

a high security and storage format for genome sequence. 

Keywords: Protein folding, Genome sequence, Genomic data analysis, Single Nucleotide 

Polymorphism (SNP). 

 

1 Introduction 

The protein structure gathers essential knowledge about its biological activity and its 

therapeutic potential [1]. Protein structure knowledge unlocks useful biological information, 

ranging from the ability to predict protein-protein interactions [2] to the discovery of new drugs 

[3] and catalysts [4] based on structure. Unfortunately, studies are difficult and take considerable 

time and energy to determine protein structure [5, 6]. The TrEMBL database [7] contained 176 

million protein sequences as of February 2020, while only 160,000 protein structures were 

deposited in the Protein Data Bank [8]. A reliable computational algorithm for the template-free 

prediction of the structure of a protein and its folding pathway from sequence data alone would 

allow millions of proteins to be annotated and could stimulate significant advances in biological 

science. However, a reliable and precise protein folding algorithm has remained elusive, despite 

steady advances in the past six decades [9-11]. There have been attempts to use quantum 

computing for protein structure prediction over the past decade. It is assumed that the biological 
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structure of a protein corresponds to the minimum of a free energy hypersurface, which is too 

large for any classical machine to investigate exhaustively for even tiny peptides [12]. 

 In that Adiabatic quantum computing (AQC), an approach to leveraging the physics of a 

controlled quantum system that is considered to be of potential use in optimization issues 

(whether classical or quantum in nature) [13], is a form of quantum computation that may be 

appropriate to support. In order historically, BioCreative challenges have aimed to bring forward 

group tasks that contribute to the creation of text-mining systems that can be of practical benefit 

to database curators and users of biology textual data. Project selection involved the recognition 

in biomedical literature of biologically related organisms, such as genes, proteins, animals, 

diseases, and chemicals, as well as their interactions. These tasks have investigated important 

factors in usability and understanding of duration workflows [14], have concentrated on 

developing text mining systems that meet the requirements of users, and encourage standard 

developments for use, reuse, and integration issues [15]. In addition, the development of 

knowledge extraction systems for specific and emerging research areas has been addressed by 

group challenges in biomedical natural language processing, such as BioNLP and BioASQ [16], 

in line with current requirements. 

Specifics on genetic mutations that decide the appropriateness of a cancer patient being 

given a certain drug/therapy can be included in the eligibility requirements of a clinical trial 

protocol. This knowledge on genetic mutations and the associated background has been 

considered an important source of evidence for compiling pharmacogenomics (PGx) [17]. 

Unfortunately, this data occurs in the eligibility requirement for the free-text format, which is 

difficult to parse using traditional text mining techniques. [18] Different methods have been 

explored in previous studies to capture and structure information in clinical trials, but most 

systems do not rely on capturing mutations specified in the eligibility criteria. A dictionary-

oriented approach [19] to the identification of genes, drugs, and diseases, for example, is based 

on the fields of condition, action, and research definition. Machine learning strategies are based 

on eligibility requirements to classify genes and their categorical status (mutated or not), but they 

do not identify greater structural variations or unique variants. To provide efficient filtering of 

trials and promote the search for trials, eTACTS3 mines frequently [20] occurring tags from the 

free-text eligibility criteria. Since this method only retains the commonly occurring tags for high-

level definitions, less repeated mention of mutations is likely to be overlooked. Other articles 

concentrate on collecting references to mutations from biomedical literature, but not from 

clinical research. 

Despite the fact that from the above-mentioned works of literature and existing works it 

is clearly indicated that there is no work that has focused the major significance on protein 

folding and genomic data analysis on the basis of finding the lowest energy conformation of 

folding protein secondary structure elements in three dimensions with compact size, reduction of 

data breaches in collaborative genomic information analysis, structured format of gene mutation 

annotations and simplest manner to search for relevant trials. Hence, to tackle those issues, this 

paper develops a new strategy in the promising field of IoT based healthcare.  
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The contribution of the novel Bilateral Conception Strategy is, 

 Solves the problem of finding a lattice protein's lowest energy conformation and 

reduce the size complexity. 

 Provides protection to genomic sequence via SNPs. 

 Provides a scalable framework for standard-based data representation, integration, 

and sharing also structured format for storing such data. 

 The performance of the proposed work has been analyzed through MATLAB. 

The structure of the paper as follows: Sect.2 discusses the related researches with protein 

folding and genome sequence analysis. Sect.3 describes the proposed methodologies. Sect.4 

comprises the results and comparison of proposed methods. Sect.5 concludes this paper. 

 

2 Literature Survey: 

Cao et al [21]For decades, the topic of protein folding had been studied extensively, and 

hundreds of thousands of protein structures had been solved. Yet it is not fully known how 

proteins fold from a linear peptide chain to their special 3D structures. A "Confined Lowest 

Energy Fragment" (CLEF) hypothesis was suggested with key clues having emerged 

unexpectedly from the field of nanoscience. The CLEF hypothesis noted that a protein chain can 

be separated by a small number of main residues that shape key long-range interactions in 

CLEFs, the semi-independent folding units. Under the limitations of the main long-range 

interactions, the native structure of a CLEF is the lowest energy state, but the native structure of 

the whole protein does not need the lowest energy state, as indicated by Anfinsen's 

thermodynamic hypothesis. The CLEF hypothesis, essentially a two-step method, proposes a 

single CLEF mechanism for protein folding.In the first step, the positive enthalpy of CLEFs 

easily brought together certain residues for the main long-range interactions for native structures, 

forming intermediates corresponding to the so-called hydrophobic collapse. In the second step, to 

shape the native key long-range interactions, those collapsed key residues shuffle for the right 

combination. The CLEF hypothesis offered a simple solution to all paradoxes of protein folding 

and presented a "CLEF Age" or "Stone Age" for protein prebiotic growth. 

Li  et al [22] The consistency and reliability of health-related decisions taken by 

physicians in modern medicine had become an important feature of the accuracy of a prognostic 

prediction model. Unfortunately, adequate samples are often insufficient for individual entities. 

One mitigation is to spread data collection to several centers from a single organization to 

collectively increase the sample size. Confidential biomedical knowledge for research was 

shared, however, complicated problems were entailed. In multicenter privacy-preserving data 

mining scenarios, machine learning models such as random forests (RF), while they are widely 

used and achieved good performance for prognostic prediction; typically suffered worse 

performance compared to a centrally trained version. A multicenter random forest prognosis 

prediction model that allows federated clinical data mining from horizontally partitioned datasets 

is proposed in this report. 



Turkish Journal of Computer and Mathematics Education   Vol.12 No.07 (2021), 3433-3454 

 

 

3436 

 

 

 

Research Article  

Xiang et al [23] The feed conversion ratio (FCR) is a significant efficient feature that has 

a major effect on pig industry income. Elucidating the FCR's genetic mechanisms could 

promoted the effectiveness of improving FCR through artificial selection. In this paper, a 

genome-wide association study (GWAS) was combined with transcriptome analysis of Yorkshire 

pigs (YY) in different tissues to classify key genes and signaling pathways significantly 

associated with FCR.GWAS had observed a total of 61 important single nucleotide 

polymorphisms (SNPs) in YY. All of these SNPs are located on the porcine chromosome (SSC) 

5 and the quantitative trait locus (QTL) region for FCR was considered to be the protected 

region. Some genes distributed around these essential SNPs, including TPH2, FAR2, IRAK3, 

YARS2, GRIP1, FRS2, CNOT2, and TRHDE, had been considered as candidates for regulating 

FCR. TPH2 had the ability to control intestinal motility through a serotonergic synapse and an 

oxytocin signaling pathway, according to transcriptome research in the hypothalamus. 

Furthermore, GRIP1 is involved in a signaling pathway for glutamatergic and GABAergic, 

which controls FCR by influencing the appetite in pigs. In addition, through a thyroid hormone 

signaling pathway, GRIP1, FRS2, CNOT2, TRHDE controls the metabolism in different tissues. 

Trębacz et al [24] Stratifying cancer patients based on their levels of gene expression 

helps diagnosis, prediction of survival, and preparation of treatment to be enhanced. Such data, 

however, is extremely highly dimensional because it contained expression values for more than 

20000 genes per patient, and there is a low number of samples in the datasets. In order to deal 

with these settings, the paper proposed to integrate prior biological knowledge of ontological 

genes into the machine learning system for the task of classifying patients provided their data on 

gene expression. In order to guide a Graph Convolutional Network, the ontology embeddings 

were used where the semantic similarities were captured between the genes and thus sparsified 

the links of the network. The research demonstrated that this method offers an advantage of high-

dimensional low-sample data for predicting clinical targets. 

Quan et al [25]Genetics is ideally committed to the understanding and unveiling of 

pathogenesis and gene functions. The last decade had seen unprecedented progress in genetics, 

especially through Genome-Wide Association Studies (GWAS) and Phenome-Wide Association 

Studies in the genome-wide identification of disorder variants (PheWAS). Nevertheless, it is still 

a major challenge to use GWAS/PheWAS-derived data to elucidate pathogenesis. In this 

research, HotNet2, a genetic algorithm focused on heat diffusion systems, was used to measure 

the networks of disease genes obtained from GWAS and PheWAS, in an attempt to gain deeper 

insights at the molecular level into disease pathogenesis. At the level of biological networks, the 

system genetics algorithm HotNet2 can create genotype-phenotype ties effectively.HotNet2-

calculated disease-gene associations with greater biomedical importance compared to original 

GWAS/PheWAS outcomes, thereby providing improved interpretations of genome-wide variant 

pathogenesis, and also offering new insights into gene functions. 

In [21] conquer more intricacy for folding longer protein sequences [22] complicated size 

and difficulty to find the lowest energy conformation [23] exchanging genomic sequence 

information in a very abundant manner typically not feasible in genomic medicine remains a 
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difficult task. [24] it should evaluate the method on clinical targets derived from heterogeneous 

data sources [25] Systems lack the capability to provide sufficient mutation annotations, and it 

has to identify the disease networks more in line with biological realitythough there is enormous 

development is essential in the protein folding design and genomic data analysis in IoT based 

healthcare field.  

 

3 Bilateral Conception strategy 

 As genome sequencing technologies and protein folding is a most essential biological 

process in the health care field. Over the past thirty years, lattice models have been used 

extensively to explore the concepts of protein folding and design. From a large number of 

potential conformations, these models can be used to evaluate the conformation of the lowest 

energy fold. However, prior researches has conquer more intricacy for folding longer protein 

sequences due to the complicated size and difficulty to find the lowest energy conformation of 

the relative location and orientation of protein secondary structure elements in three dimensions. 

In addition, one of the most competent technology as genome sequencing/ gene data processing, 

existing collaborative genomic data analysis processes enable all people concerned to share 

individual patient data and conduct all analysis locally or use a trusted server to hold all data for 

analysis on a single site (e.g. the Cancer Genome Collaboratory). Since both methods include 

exchanging genomic sequence information in a very abundant manner, which is typically not 

feasible due to data breaches, in that collaborative data analysis in genomic medicine remains a 

controversial topic. Along with this, research on genetic mutations and the associated 

background has been considered an important source of evidence for compiling 

pharmacogenomics (PGx). Unfortunately, this data occurs in a compliance requirement for the 

free-text format, which is difficult to parse using traditional text mining techniques. Thus, most 

of the systems lack the capability to provide sufficient mutation annotations for clinical trials, 

which makes it hard to capture and store due to unstructured format. Consequently, it difficult to 

search for relevant trials based on patients’ mutation information. From the aforementioned 

concerns, this paper creates a novel strategy to tackle these issues in an emerging field of 

healthcare. 

 Fig.1 shows the block diagram of the proposed methodology. This paper proposed the 

novel Bilateral Conception strategy to efficiently tackles the above-mentioned issues with 

efficiently accomplished the immaculate outcomes of protein folding design and genomic data 

analysis. Initially, the work introduces the Reconcile pirouette mechanism-based quantum 

processor for the problem of finding a lattice protein's lowest energy conformation. Thus it 

performs through decreases in the quantum circuit from quadratic to quasi-linear function. 

Furthermore, in order to obtain findings with greater correlation to the real atomistic 3D structure 

of the protein, the paper generalizes to three spatial dimensions and a heuristic strategy for 

breaking large problem instances into smaller subproblems of protein structure, thus it reduced 

the size complexity. Subsequently, the work incorporates the Adumbrating algorithm for secure 

commune based genomic data analysis for collaborative or remote genomic computation in an 
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efficient and effective protected manner. That accomplished via recognizing the top small value 

of Single Nucleotide Polymorphisms (SNPs), which can be predetermined or can be defined 

during query processing. That small value is identified amongst a user-specified subset of SNPs 

across case/control samples.  

 
Fig. 1 Block diagram of proposed work 

At last, to enlighten the captures and manages gene mutation evidence and related contextual 

information in a well-structured format, the work includes the new Adroit Semantic Web-based 

system. That comprises the exegetics and semantic web module, which provides a scalable 

framework for standard-based data representation, integration and sharing then it stores the 

extracted annotations in a structured representation using Collateral Description Framework. 

Subsequently, the proposed bilateral conception strategy overwhelmed the most significant 

issues in protein folding and genomic data processing in an acrobatic and cost-effective manner, 

which perceptibly helps the majority of amyloidogenic diseases. 

3.1 Reconcile Pirouette Mechanism-Based Quantum Processor 

 Prior researches have conquered more intricacy for folding longer protein sequences due 

to the complicated size and difficulty to find the lowest energy conformation of the relative 

location and orientation of protein secondary structure elements in three dimensions. So, the 

novel Reconcile pirouette mechanism-based quantum processor is proposed to deal with these 

issues by decreasing the quantum circuit from quadratic to quasi-linear. For this, the injective 

   

Bilateral Conception strategy 

Reconcile pirouette mechanism 

based quantum processor 

Adumbrating algorithm for secure 

genomic data analysis Adroit Semantic 

Web-based 

system for gene 

mutation search 
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mapping is constructed between the set of all possible lattice protein folds and the set of binary 

strings, represented by a sequence of qubits in the machine. Thus the solution string can decode 

into lattice protein fold uniquely. Then it constructs the energy landscape for the Ising system 

such that the valid, lowest energy conformation of the lattice protein corresponds to the ground 

state of the system. For this purpose, this work uses pseudo-boolean expressions that are 

subsequently reduced to 2-local interactions implementable on the device. 

 The most compact way and globally defined directions called turns are used to encode the 

lattice proteins on the cubic lattice. Fig.2 shows a binary mapping that encodes each of the six 

spatial directions on a cubic lattice as 3 qubits, which requires a total of Ω(l)qubits. This 

proposed work requires only 3𝐿 − 8 ∈ 𝑂(𝑙) qubits to encode the protein length of l. In previous 

researches, the k-body Hamiltonian can be reduced to a 2-body Hamiltonian with an equivalent 

ground state by introducing ancillaqubits as resource-efficient gadgets.But this proposed work is 

more efficient for encoding small problem instances.The turn circuit encoded Hamiltonian 

consists of two main terms, 

 𝐻(𝑞) = 𝐻𝑜𝑣𝑙𝑎𝑝(𝑞) + 𝐻𝑝𝑎𝑖𝑟(𝑞)      …. (1) 

 
Fig.2 Binary mapping in cube lattice 

For reducing the size complexity, the sum strings are constructed. By constructing some 

strings for every pair of amino acids, the position of every amino acid on the lattice can be 

traced,which will enable us to test for possible overlaps or interactions of residues. Half-adder 

circuits are used to construct the sum strings. The basic half adder circuit is shown in fig.3. but 

this proposed work constructs the better designed larger half adder that reduces the number of 

terms in the Hamiltonian. Since a binary representation of n bits uses at most (log2N) bits, it 

follows that [N-(log2N)] bits are not required to represent the sum string. So that, the half adder 

at the upper right section of the circuit can be removed once their whole information is 

propagated to the lower section in fig.4. By not adding these empty bits using superfluous half-

adders can avoid inflation of the overall Hamiltonian which would be due to each half-adder 

introducing new high-order terms. Thus the half adder results in the sum string S. 
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Fig.3 Half-adder circuit 

 
Fig.4Circuit diagram for proposed work. In this circuit, the red-colored half-adders are 

superfluous and can be omitted which reduces the number of half adders from quadratic to 

quasilinear which reduces the circuit complexity. 

From the above, a significant quadratic to quasilinear improvement in circuit complexity 

for sum strings is obtained. Now, this paper presents the analysis of the reduction in circuit 

complexity. The total number of half-adders HAtotal(N) in the sum string circuit of n bits is, 𝐻𝐴𝑡𝑜𝑡𝑎𝑙 = 1 + 2 + ⋯+ 𝑁 = 𝑁(𝑁+1)2       …. (2) 
The circuit complexity in terms of a number of half-adders involved is then O(N

2
). 

However, since the sum of n bits only needs [log2(N+ 1)] output bits, the number of bits Nredun 

not containing any information output is,  

 𝑁𝑟𝑒𝑑𝑢𝑛 = 𝑁 − log2(𝑁 + 1)       …. (3) 
The number of associated half-adders that cannot propagate any information to output 

bits is equal to HAtotal(Nredun), by isomorphism to the sum string circuit of Nredun binary variables. 

The necessary number of half-adders HAimproin the improved circuit for the addition of n binary 

variables is then, 

 𝐻𝐴𝑖𝑚𝑝𝑟𝑜𝑣(𝑁) = 𝐻𝐴(𝑁) − 𝐻𝐴𝑡𝑜𝑡𝑎𝑙(𝑁𝑟𝑒𝑑𝑢𝑛)     …. (4) 

      =  𝑁2+𝑁2 − 𝑁𝑟𝑒𝑑𝑢𝑛2 +𝑁𝑟𝑒𝑑𝑢𝑛2  
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           = 𝑁2+𝑁2 − (𝑁−[ log2(𝑁+1)])2+𝑁−[log2(𝑁+1)]2  

 𝐻𝐴𝑖𝑚𝑝𝑟𝑜𝑣(𝑁) =  2𝑁 [log2(𝑁+1)]−[log2(𝑁+1)]2+ [log2(𝑁+1)]2     …. (5) 
   

It follows that HAimprov(N) ∈ O(N log N). Thus the proposed mechanism provides a 

significant decrease in the circuit complexity, from quadratic to quasilinear. As a result, the size 

complexity in the protein fold has been highly reduced. Then, the privacy issues in the genome 

sequence are discussed in the forthcoming section. 

 

3.2 Adumbrating Algorithm for Secure Commune Based Genomic Data Analysis 

 In the view of sharing genomic sequence data, existing approaches enable all people 

concerned to share individual patient data and conduct all analysis locally which is typically not 

feasible due to privacy issues, and collaborative data analysis remains to be a rarity in genomic 

medicine. To make this an efficient and protective manner, this paper introduces Adumbrating 

algorithm for Secure Commune (ASC) based genomic data analysis for collaborative or remote 

genomic computation which uses Intel’s Software Guard Extensions(SGX) architecture. An 

SGX consists of one or more data owners, the untrusted cloud service provider (CSP), and a 

secure enclave or commune. First, the data owner establishes a secure channel with the enclave 

hosted by an untrusted CSP through the remote attestation process. Then, the data owner can 

securely upload data to the CSP. In SGX, all decrypted secrets can only be accessed by the 

authorized codes which also lie inside the enclave. Therefore, code and data cannot be accessed 

or modified by any software outside the secure enclave. 

 Block diagram for ASC based genomic data analysis illustrated in fig.5. ASC based 

genomic data analysis involves individual genomic data in the form of VCF files from one or 

more parties who would like to perform statistical tests on the entire data set.Each VCF file is 

marked as either case or control and is individually filtered, compressed, and encrypted, and is 

uploaded to an untrusted CSP. The specific analysis/querying offered by ASC to the users is, 

given a user-specified set of SNPs (which can be the entire set of SNPs in the human genome or 

a subset) and an integer k. ASC first processing the entire data set to establish a sketch within the 

enclave. On a given query, ASC identifies a super-set of potentially significant SNPs and re-

accesses the relevant portions of the VCF files to identify the most significant k SNPs. For each 

SNP, a VCF file includes “ID”, “TYPE”, “CHROM”, “POS”, “REF”, “ALT”, “QUAL”, and 

“FILTER” columns.Each VCF file needs to be encrypted, sent over some channel, loaded into 

the SGX enclave, decrypted, and finally processed, reducing the size of the data can improve the 

overall performance significantly. 
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Fig. 5Block diagram for ASC based genome data analysis 

 

3.2.1 Identifying top Single Nucleotide Polymorphism (SNP) 

 Once the compression of genomic data has been performed, the parties can exchange data 

and messages required for the actual computation. The tasks are divided between the server 

which refers to the cloud service provider (CSP) equipped with Intel SGX supported hardware, 

and the client which refers to individual users (e.g. genome centers) that want to perform their 

collaborative analysis in a privacy-preserving and secure manner. In Intel SGX, the server begins 

by creating and initializing an SGX enclave and waits for service requests from the clients.Then, 

a client needs to initiate the remote attestation protocol to establish that the server is indeed 

recognized by Intel and is going to perform the desired computation.the server allocates 

sufficient resources to performs the computation.In this process, the majority of the SGX enclave 

memory is used to keep either the basic data structures in the form of hash tables maintaining 

allele counts or space-efficient data structures that are employed when the SGX memory cannot 

store all SNP IDs.Even though it offers a limited memory, Intel SGX secure enclave can still 

handle genomic data analysis on a limited scale (e.g. GWAS on a single human chromosome) 

through the use of standard (non-sketching) data structures.  
As the server receives the compressed and encrypted data from the clients, the data 

structures residing in the SGX enclave are updated.Once all incoming data has been processed, 

the standard χ2
 statistic can be computed for each SNP entry within the hash table to determine 

the top-k SNPs with respect χ2
 to the statistic. For the case that the SNP IDs and their 

corresponding allele counts exceed the memory limit, ASC identifies some l SNPs (l > k) which 
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include the top-k SNPs with high probability and processes the data in another pass to filter out 

all but the most significant k SNPs. Finally, the results are sent back to the clients.  

 

3.2.2 Computing top-k SNPs with respect to χ2
 statistics 

 Maintaining all SNPs in the human genome and their respective allelic counts exceeds 

the memory limit of the secure enclave. In other words, the working memory of the SGX enclave 

has n'= O(n) words (i.e. O (n (log m + log n)) bits). A straightforward solution, in this case, is to 

partition the n dimensions (SNP IDs) from the input vj's into 
nn′

 blocks, and process each block 

(of n' dimensions) independently in the enclave memory. For a fixed k, the overall top-k 

dimensions (based on the standard χ2
 statistic) can then be obtained by sorting the top-k 

dimensions of all blocks.  

 The alternative solution is also implemented by ASC, which allows users to specify the 

value of k as well as a subset of SNPs of interest (among which the top-k dimensions need to be 

determined), even after all input data is processed. This solution maintains a summary of the 

potentially important dimensions and allows the user to identify the top-k dimensions with 

respect to the χ2
 values with high probability. ASC processes the input vectors vj in a single pass: 

for each (vj[i], sign(j)) it updates the appropriate entries of the sketch in an on-line fashion. The 

sketch basically maintains appropriate counts for l candidate dimensions (for a sufficiently large 

l > k) which include all top-k dimensions (with respect to the χ2 statistic) with high probability. 
Once the sketch is complete ASC accesses the relevant vectors vj in a second pass to filter out 

the false positives among these candidates and identify only the most significant k dimensions. 

 Thus the effective protection is accomplished by recognizing the top small value (k) of 

SNP which is identified only amongst a user-specified subset of SNPs across case/control 

samples. After implementing the security of genomic data, the storage and the fast searching of 

data are implemented in the next section. 

 

3.3 Adroit Semantic Web-Based System 

 Along with the privacy of genomic data, research on genetic mutations and the associated 

background has been considered an important source of evidence for compiling 

pharmacogenomics (PGx). Unfortunately, this data occurs in a compliance requirement for the 

free-text format, which is difficult to parse using traditional text mining techniques. Thus, most 

of the systems cannot provide sufficient mutation annotations for clinical trials, which makes it 

hard to capture and store due to the unstructured format. Consequently, it difficult to search for 

relevant trials based on patients’ mutation information.  To deal with these issues, this paper 

focuses on data integrity verification in the medical environment with clients’ privacy protection 

using a novel Adroit semantic web-based system. 

  This proposed system having four phases,  

(i) In the system setup phase, the Key Generation Center (KGC) sets the system 

public parameters and a master secret key.  
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(ii) In the registration phase, the KGC generates privacy keys for users and secret 

keys for auditing in the registration phase. 

(iii) In the storage phase, users upload and update files to the cloud along with file 

warrants, authenticators, and tags.  

(iv) In the integrity verification phase, Third Party Auditor (TPA) is entrusted by the 

data owner to verify corresponding data integrity. 

 

(i) System setup phase: 

 A system taking a security parameter К as input, the KGC randomly selects two 

multiplicative cyclic groups G and GTwith prime order q, where g is a generator of G.After that, 

the KGC picks an integera∈R 𝑍𝑞∗ at random and computes g
1
=g

a
where g ∈ G. Next, 

v0,v1,…vl,u1,…us∈R G is uniformly chosen at random. Thus, the system public parameter 

PP=(g,g1,g2,v0,v1,…vl,u1,…us∈R G,H1,H2,H3,H4), where, H1,…H4 are the hash functions. Finally, 

the master secret key mskis set as msk=𝑔2𝑎with g2∈ G and keeps the mskin secret by the KGC. 

 

(ii) Registration phase: 

 The KGC runs the KeyGenalgorithm to yield a shared secret key for users with the 

mskand public parameter PP. The registration procedure consists of two phases:  

(a) PrivacyKeyGen 

(b) SecretKeyGen  

(a) PrivacyKeyGen: 

 First, the KGC generates and distributes the corresponding private key for every user who 

may be a patient or a consultant in an e-healthy system. In detail, the KGC computes Qibased on 

the user’s identity as Qi=H1(IDi). Then, KGC calculates the user private key is: 

  𝑑𝑖 = 𝑔2𝑎. 𝐻1(𝐼𝐷𝑖)       …. (6) 
For example, KGC independently yields a private key dAfor patient A, and a private key 

dBfor the attending physician B. Then, the KGC sends dito IDi. After receiving the di, the user 

validates IDiby calculating:  

 𝑒(𝑑𝑖, 𝑔) = 𝑒(𝑔2, 𝑔1). 𝑒(𝐻1(𝐼𝐷𝑖), 𝑔)     …. (7) 
 If the above equation is true, the user IDiadopts the private key di; otherwise, the KGC 

fails to generate a valid private key.  

(b)SecretKeyGen: 

 To protect the identity of patient A, patient A randomly chooses a number 𝑟𝐴 ∈𝑅 𝑍𝑞∗ , 
generate the pseudonym 𝑃𝐴 = 𝑟𝐴. 𝑄𝐴,and sends it instead of his or her actual identity to B. Then, 

A and B can calculate a session key KAB, and this algorithm produces a secret key KAB for 

auditing. The specific algorithm is as follows: 

  𝐾𝐴𝐵 = 𝑒(𝑑𝐴, 𝑄𝐵) = 𝑒(𝑃𝐴, 𝑑𝐵)      …. (8) 
  𝐾𝐴𝐵 =  𝑔2𝑎. 𝐻2(𝐾𝐴𝐵)       …. (9) 
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(iii) Storage Phase: 

 The storage procedure contains the following three phases:  

(a) WarrantGen 

(b) AuthenticatorGen 

(c) TagGen 

(a) WarrantGen: 

 When the user uploads or updates new medical data, the corresponding file 

information will be updated. For confirming some additional information about the source, 

type, and consistency of the files outsourced to the cloud, the user generates a warrant Λ 
which includes the pseudonym of A, the identity hash value Qi of attending physician B, and 

medical file information such as file type filetype, version number VN, Time Stamp TN, etc. 

For example, Λ= PA║QB ║VN ║TN ║filetype. Here, the N denotes the index of different 

medical files. Then, the following is calculated: 

  Λ⃗⃗ = (𝜁1, … , 𝜁𝑙) ⟵ 𝐻3(Λ)      …. (10) 
The patient A picks a random number 𝑡Λ ∈𝑅 𝑍𝑞∗ ,and generates an authorization: 

  𝛿Λ = (𝐾𝐴𝐵. (𝑣0. ∏ 𝑣𝑗𝜁𝑗𝑙𝑗=1 )𝑡Λ , 𝑔𝑡Λ)     …. (11) 
Finally, patient A sends the warrant pair(Λ, 𝛿Λ) = (Λ, (𝛼, 𝛽)) to attending physician B. Then, the 

attending physician B validates the warrant pair by calculating: 

  𝑒(𝛼, 𝑔) = 𝑒(𝑔2, 𝑔1). 𝑒(𝐻2(𝐾𝐴𝐵), 𝑔). 𝑒(𝑣0 ∏ 𝑣𝑗𝜁𝑗𝑙𝑗=1 , 𝛽)  …. (12) 
If the above equation is true, the attending physician B accepts the authorization δΛ; otherwise, 

patient A fails to generate a valid warrant. 

(b)AuthenticatorGen: 

 Given a medical file F to be outsourced, the user first splits F into n blocks, and each 

contains s sectors: 𝐹 → {𝜒𝑖,𝑗}𝑛×𝑠, where 𝜒𝑖,𝑗 ∈𝑅 𝑍𝑞∗. For each file F, choose a random number 𝑡𝜗 ∈𝑅 𝑍𝑞∗ , and for the i-th block, yield a block authenticator as follows: 

  𝜎𝑖 = 𝐾𝐴𝐵. (𝐻4(Λ ∥ FID ∥ i).∏ 𝑢𝑗𝜒𝑖,𝑗)𝑡𝜗𝑠𝑗=1     …. (13) 
(c)TagGen: 

 A random name FID is chosen for a file from 𝑍𝑞∗ , and s random elements 𝑢1, … , 𝑢𝑠 ∈ 𝐺. 
Set 𝜏0 = Λ ∥ 𝐹𝐼𝐷 ∥ 𝑛 ∥ 𝑢1 ∥ ⋯ ∥ 𝑢𝑠 ∥ 𝑔𝑡Λ ∥ 𝑔𝑡𝜗 . Then, the user generates file tag τ based on 

τ0and KABto guarantee the integrity of each distinct file information.  

  𝜏 = 𝜏0 ∥ 𝑆. 𝑆𝑖𝑔𝑛(𝜏0)𝐾𝐴𝐵      …. (14) 
Hereafter, the user sends the file tag τ to the TPA. Besides, 𝐾𝑃 = 𝑒(𝐻2(𝐾𝐴𝐵), 𝑔)can be pre-

computed and sent to TPA. Besides, the processed fileF
*that comprises F, FID, Λ, δΛ, and σiis 

uploaded to the CS and can be stored in the collateral description structure and removed from 

the user’s local side.  

(iv) Integrity Verification Phase: 

 The integrity verification can be done through the auditing process which contains the 

following three phases:  
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(a) Challenge 

(b) Response 

(c) Verification 

(a) Challenge: 

 First, the TPA confirms whether the file tag τ of outsourced file can pass the verification 
by retrieving τ from the CS and performing 𝑆. 𝑉𝑟𝑓(𝜏0, 𝐾𝐴𝐵). If the file tag τ of outsourced file 

cannot pass the verification, then the auditing task will not be executed, and the protocol aborts; 

otherwise, the TPA will analyze τ0to acquire the total number n of outsourced file blocks. The 

TPA picks a random nonempty subset 𝐼 ⊆ [1, 𝑛] and a number of values si∈𝑅 𝑍𝑞∗ at random, for 

each 𝑖 ∈ 𝐼. Then, the TPA distributes the challenge set 𝐶 = {(𝑖, 𝑠𝑖)𝑖∈𝐼}and corresponding file 

identifier FID to the CS. After that, the TPA can compute 𝑊𝑃for the final verification as  

 𝑊𝑃 = 𝑒(𝐻4(Λ ∥ 𝐹𝐼𝐷 ∥ 𝑖), 𝑔𝑡𝜗)∑ 𝑠𝑖𝑖∈𝐼      …. (15) 
(b) Response: 

 CS locates to the corresponding file F
*
in the collateral description structure upon 

receiving a challenge C and its file identifier FID from the TPA. Then, the CS computes χj and σ 
as: 𝜒𝑗 = ∑ 𝑠𝑖𝑖∈𝐼 . 𝜒𝑖,𝑗𝑚𝑜𝑑𝑞, 𝑗 ∈ [1, 𝑛]     …..(16)        𝜎 = ∏ 𝜎𝑖𝑠𝑖𝑖∈𝐼         …. (17) 

After that, the CS sends to the TPA a proof P that consists of 𝜒𝑖, … , 𝜒𝑠, 𝜎 and 

corresponding authorization δΛ. 

(c) Verification: 

 Once receiving the proof P, with public system parameter PP and file tag τ, the TPA 

first verifies the validity of δΛby demonstrating the equation (12), and then, verifies aggregate 

block authenticator σ as follows: 

  𝑒(𝜎, 𝑔) = 𝑒(𝑔2, 𝑔1)∑ 𝑠𝑖𝑖∈𝐼 . 𝐾𝑃∑ 𝑠𝑖𝑖∈𝐼 .𝑊𝑃. 𝑒(∏ 𝑢𝑗𝜒𝑗𝑠𝑗=1 , 𝑔𝑡𝜗)  …. (18) 
If the above equation is true, the challenged outsourced file in the cloud is verified as 

intact; otherwise, the challenged file is corrupted. In the above auditing process, TPA can also 

audit the details of the challenged file warrant. That is, the proof P, which will be fed back by 

CS, should contain more file details. 

 Thus the novel Adroit semantic web-based system compromising the issues as storing 

and verifying the genome annotations in a highly protective manner. 

 As a result of the novel Bilateral conception strategy, the novel Reconcile pirouette 

mechanism-based quantum processor, highly reduces the size complexity of protein folding. 

Then, the novel Adumbrating algorithm for secure commune-based genomic data analysis 

provides an effective security system for the genomic data. Furthermore, the novel Adroit 

semantic web-based system provides the well-structured format called collateral description 

framework for storing the genome data as well as this also provides the secured uploading of 

data in a web-based system. 

4 Results and Discussion 
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 This section provides a comprehensive description of the implementation result, 

performance analysis, and the comparison strategies of this proposed work. 

4.1 Experimental Setup 

 This work has been implemented in MATLAB/SIMULINK in the working platform of 

MATLAB with the following system specification and the simulation results are discussed below 

 Platform: MATLAB 2018b 

 OS: Windows 8 

 Processor: Intel Core i5 

 RAM: 8GB RAM 

4.2 Evaluation Metrics 

 The performance of the Bilateral conception strategy has been evaluated with the metrics 

such as accuracy, precision, and recall. Thus this section shows the performance analysis of the 

Bilateral conception strategy along with its evaluation metrics. 

4.2.1 Accuracy 

Accuracy is the ratio of the number of correct predictions of protein folding to the total 

samples. This proposed method attains a higher accuracy for a lower threshold value. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐴𝑙𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑠      …. (19) 

4.2.2 Precision 

 Precision evaluates the fraction of correctly predicted instances or samples among the 

ones predicted as positives. Thus, the formula to calculate the precision is given by: 

  = 
+

    

 …. (20) 
4.2.3 Recall 

 The recall is defined as the ratio of pertinent data that are recovered successfully. 

  =  
 +

     

 …. (21) 
4.3 Performance Evaluation 

 Inthis section, the performance of the proposed system has been analyzed graphically 

with the metrics. Fig.6 and table 1 illustrate that the variations in accuracy of the finding of 

lattice proteins with a threshold value. 
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  Fig. 6 Accuracy for various Threshold 

Table 1 Accuracy for various threshold  

 

 

  

 

 

Table 2 comprises the computation overhead of the proposed Adroit 

semantic web-based system. Primarily, the following notations are 

defined to represent the various operations in the specific algorithms of each phase. The symbols 

M, E, and H denote a multiplication operation, an exponentiation operation, and a hashing 

operation in G, respectively. In this paper, H1, H2, and H3 are not distinguished and all can be 

expressed as H. Similarly, the symbols Mt and Ethave respectively expressed as a multiplication 

operation and an exponentiation operation in GT. Aq and Mq are indicated as one addition 

operation and one multiplication operation inZq, respectively. And P represents a bilinear pairing 

evaluation operation. 

 

 

 

 

Table 2 Computation overhead of Adroit semantic web-based system 

Phases KGC 

User 

(physician) 

User 

(patient) TPA CS 

Setup 2E / / / / 

KeyGen(a) M + H 2P + H + Mt 2P + H + Mt / / 

KeyGen(b) / P + H + M 

P + 2P + Mq 

+M / / 

Extract(a) / 

3P + 2H + 2Mt 

+ lM 

2E + H + 

(l+1)M / / 

Extract(b) / 

E + H + (s 

+1)M / / / 

Audit(b) / / / / 

n/I/Mq+n(/I/-

1)Aq + 

(/I/M+/I/E 

Audit(c) / / / 

(s+1)E + H +(I-

1)A + 3P +3Et 

+(s+1)M + Mt / 

  

Threshold Accuracy(%) 

2 98.46 

3 98.34 

4 97.64 

5 97.54 

6 96.57 



Turkish Journal of Computer and Mathematics Education   Vol.12 No.07 (2021), 3433-3454 

 

 

3449 

 

 

 

Research Article  

4.4 Comparison Strategies  

 In this section, the proposed methodology for genome analysis has been compared with 

the previously existing methods such as Bi-directional Best Hit (BBH) technique and DISPattern 

algorithm with two different genomes are NC_000962 and NC_002929.  

 Table 3 and Fig.7 illustrates that the Recall and Precision of BBH and DISPattern for the 

genomes NC_000962 and NC_002929 are compared with our proposed method. From the graph, 

one can say clearly that the recall and the precision of the proposed method have been highly 

enhanced. Fig.8 compares the number of the genome in the proposed method with the different 

genome sequences. It is clear that the genomes in the proposed method are highly reduced. 

 Fig.9,10 compares the number of errors in the proposed method with the existing 

techniques such as BBH and DISPattern for two different genomes NC_000962 and NC_002929 

respectively. 

  

 
Fig.7 Comparison of recall and prediction of BBH and DISPattern with the proposed method 

 

 

Table 3 Comparison with BBH and DISPattern 

Genome NC_000962 NC_002929 Proposed 

No. of genes 2756 2723 2712 

Recall of BBH 86.80% 89.40% 96.32 

Recall of DISPattern 93.50% 91.00% 97.23 

Precision of BBH 86.80% 89.40% 98.36 

Precision of DISPattern 93.50% 91.00% 96.15 

No. of errors by BBH 186 106 95 
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No. of errors by 

DISPattern 66 61 33 

 

 
Fig. 8 Comparison of the number of genomes 

 
Fig.9 Comparison with BBH for no. of errors  
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Fig.10 Comparison with DISPattern for no. of errors  

  

 Table 4 compares the characteristics of the proposed adroit semantic web-based system 

with the existing researches. From the table, one can easily identify that our proposed method 

has been complete all the major characteristics. 

 

Table 4 Characteristic comparison of the proposed method with existing methods. 

Schemes 

Public 

verifiability 

Certificate 

management 

simplification 

Privacy 

protection 

Dynamic 

operations 

Worku et al. √ × √ √ 

Garg et al. √ × × √ 

Daniel et al. √ × √ × 

Zhao et al. × √ × × 

Jiang et al. √ × √ √ 

Proposed √ √ √ √ 

     

 

 Thus, the performance of the proposed methods has been verified and effectively 

compared with the existing techniques. As a result, the proposed methods have been performed 

well than the existing techniques. 

 

5 Conclusion 

 As genome sequencing technologies and protein folding is a most essential biological 

process in the health care field. This paper provides the solution for the issues in those 
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technologies. The novel Reconcile pirouette mechanism-based quantum processor solves the 

problem of finding a lattice protein's lowest energy conformation by decrease the quantum 

circuit from quadratic to quasi-linear, thus it reduces the size complexity. Then the novel 

Adumbrating algorithm for secure commune-based genomic data analysis solves the issues such 

as data breaches and collaborative data analysis by introducing small value in SNP, thus provides 

the highest privacy for genome data. Finally, the novel Adroit semantic web-based system solves 

the issues in searching genome data by introducing collateral description frame format, thus the 

data stored in the structured format and provides ease of search. As a result, the proposed work 

effectively solves the major issues in protein folding and genome sequences.  
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