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Abstract 

Spectral methods in which they are based on matrix eigenvectors are widely 

used in network data analysis, especially for community detection. These 

classical approaches are based on graph associated matrix (adjacency matrix) 

and related matrices, nevertheless go wrong with sparse networks, which they 

have a lot of interest in practice. The spectrum of the non-backtracking 

matrix, an alternate matrix representation of a network that shows a behavior 

in the sparse limit, has recently been presented as a solution to this problem. 

However, the use of this matrix was limited for a specified number of 

communities. We are presenting a matrix for the graph and showing that it 

can be using for different number of communities. 
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1 Introduction 

Statistical network data analysis is now a well-studied area of statistics and machine 

learning. Network datasets can be found in a variety of disciplines. Many examples of 

networks are in real-life data such as bioscience, protein-protein interaction (3), epidemi- 

ological networks (10); citation and collaboration networks (15); social media networks 

such as LinkedIn, Twitter, or Facebook (8); in which the network is a set of social 

actors, such as individuals or organizations, linked together by connections representing social 

interactions. The analysis of networks, based mainly on graph theory and aims to study 

various aspects of these networks. Developing statistical procedures for network data analysis 

as well as establishing the theoretical features of statistical methods are two ac- tive areas 

of research. In this research, we focus on identifying the number of communities in networks 

with arbitrary sparsity levels and networks with community structure. 
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The topic of ”community detection,” as it is commonly known, has seen a renaissance 

of interest over the last two decades. A frequent issue specification is to divide N nodes of a 

network into K communities with different edge densities inside and across communities, 

with K predetermined. The literature on estimating the number of communities (K) 

has recently become active. While the initial  focus in  the  literature  for estimating K 

was on developing algorithms and drawing support from domain-specific intuition and 

empirical studies using the Stochastic Block Model (SBM), which was first proposed in 

1977 by Holland (5), the current focus is on using this Model (SBM) to estimate K. Many 

application later appear such as bayesian perspective (11) discussed priors for number 

of communities under the SBM and designed an Markov Chain Monte Carlo algorithm, 

Kemp et al. (12) presented a nonparametric Bayesian approach for detecting concept 

systems. 

The rapid development of ”community discovery” approaches for solving the core 

problem of discovering modules inside an arbitrary network has been fueled by this diverse 

set of applications. 

In recent years, methods based on the spectrum of a specific class of matrices have gained 

popularity as non-parametric alternatives that are more computationally efficient and 

applicable to a larger range of situations. 

Spectral approaches based on the eigenvalues and eigenvectors of some matrix rep- 

resentation of the network are particularly common. These combine speed of execution 

with a wealth of information about the network that goes beyond the modular structure, 

such as the relative roles of each node and the characterization of the network’s dynamical 

properties. Spectral methods for the analysis of large graphs and networks have become a 

cornerstone in the study of empirical network data since their inception in the 1970s (16). 

The structure of the network of interest is represented using one of various matrix 

forms, such as the adjacency matrix or the graph Laplacian, and the eigenvalues and 

eigenvectors are examined for information on the network topology. Experiments indicate 

(and some model networks can verify) that the eigenvalue spectrum consists of a dense 

”spectral band” of tightly spaced eigenvalues, similar to an allowable energy band in 

condensed matter, plus a number of outlying eigenvalues separated from the band by a 

considerable band gap. 

For a some real networks, spectral methods can fail. The eigenvalues are separated into 

two classes, with the great majority ”the bulk” following a well-defined distribution and 

the outliers of this distribution providing information about the community’s structure. 

Unfortunately, there are many real-world networks that are sparse. 

Krzakala et al. (6) who propose focusing on the eigenvalues and eigenvectors of a d- 

ifferent matrix representation of network structure, which they call the non-backtracking 
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matrix, also known as the Hashimoto edge matrix by previous authors (4; 1), have pro- 

posed an interesting solution to these problems. 

The non-backtracking was used to estimate the number of communities in a networks. 

Newman (9) has proposed a solution method based on this matrix to detect communities 

for sparse networks, this kind of graphs have an interesting application. However, his 

proposed methods can works only for networks with two communities using modularity. 

After that, a paper proposed by Singh and Humphries (14) in which they generalize for 

more than two communities. The authors proposed Reluctant backtracking and it gives 

better estimation than the flow operator proposed earlier. 

In this paper, we propose a matrix that can work better than the non-backtracking 

matrix. The proposed matrix can estimate the number of communities in a sparse net- 

works. 

We start our paper by giving background and notation about graphs, used model and 

matrices. In second section, we present our main result. As last point, we give numerical 

results for our findings. 

 

2 Preliminaries 

 

 Notation 

With a long history, graphs are the tools that can represent a set of data visually, solve 

scientific problems and explain more about the real world. Any network graph is 

presented by points that called “nodes”, and relations between these nodes, which are 

“edges”. 

A graph G = (V, E), is composed by a set V = {1, ..., n} of nodes and a set E of edges 

with {i, j} ∈ E if it has an edge between i and j. Mathematically, the graph is represented 

by an adjacency matrix, with elements aij equal to 1 when there is an edge from vertex i 

to j, and 0 when there is no edge. 

 

aij = 
1   if(vi, vj) ∈ E 

0 otherwise 

 

 Stochastic Block Model 

With a long history, the stochastic block model was created for detecting communities. 

For the SBM model, we denote a set of integers {1, · · · , n} with a binary symmetric matrix A 

(the adjacency matrix), and we set a number of blocks K. We denote a label vector Z  

= (Zi)i∈[n] such that Zi = k if the nodes are k-labeled with a vector of block proportion α 

= (α1, · · · , αK). The variables Aij are independent Bernoulli variables. We note the 
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probability between two communities k and q is denoted by pkq. Then we obtain the 

matrix of probabilities P = (pkq)k,q ∈ [K]. Finally the model will be denoted G(n, p, α). 

 

 Non-backtracking  matrix 

Let m be the number of edges in an undirected network, and 2m = 
Σn 

Aij be the 

number of edges in a directed network. We express the edge between nodes i and j by two 

directed edges, one from i to j and the other from j to i to generate the non-backtracking 

matrix. 

The 2m × 2m matrix, indexed by these directed edges, is defined by 

B̃  = 
1    if  j = k  and  i /= l 

0 otherwise 

 

The spectrum of the non-backtracking matrix was given in (6), (1) by 

 

B = 
0n D − In 

−In A 

 

Where 0n is the n × n matrix of all zeros, In is the n × n identity matrix, and D is n 

× n diagonal matrix with degrees di on the diagonal. The non-backtracking matrix’s 

informative eigenvalues are real-valued and isolated from the bulk of the radius under the 

SBM.  The  first  K  greatest  eigenvalues  in  magnitude  of  

B̃ 

in a network of K groups (or 

clusters) are real-valued and well separated from the bulk, which is contained in a circle of 

radius ||B̃||1/2. 

 

3 Main results 

In our proposed method, we take a matrix similar to the spectrum of the non- 

backtraking matrix, called the informative matrix given by 

 

0n (D − In)
2
 

−In H 

 

where H is the modified bethe-hessian matrix proposed by laala (7) when the author replace 

the adjacency matrix by using the laplacian. For the purpose to estimate the number of 

cluster in a network, especially sparse networks we need to create our infor- mative matrix. 

The informative matrix with the elements can estimate the number of cluster with a small 

average degree. The principal component analysis tend alwas to ex- tract principal 

elements. We note that we used the principal component matrix for our 

  

! 

F = 

! 
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matrix to take first principals from the adjacency. It is shown that, for some reason, the 

non-backtracking matrix and even the bethe-hessian matrix do not perform well in some 

condition. In the paper of Laala, when the author add parameters to the bethe hessian and 

taking the laplacian instead of the adjacency because as we know that it give infor- 

mation about network. We used that equation in the informative matrix with specified 

number of α, the parameter in which control the results. 

As mentionned earlier, spectral methods can perform well. Our proposed matrix can 

work same role as the spectrum of non-backtracking matrix, but for sparse network when 

the last can’t estimate. Our main result is based on the eigenvalues of the informative 

matrix, when we find that can gives better results by applying PCA for the matrix. The 

number of communities is calculated by counting the number of eigenvalues separated 

from the bulk. 

 

4 Numerical results 

We compare the empirical accuracy of estimating the number of communities by using the 

proposed matrix in this section. Using stochastic block model, we generate a network with 

a number of communities equal to K by noting a label vector c ∈ {1, · · · , K}n, so that 

ci = K if nπK−1 + 1 ≤ i ≤ nπK, with π0 = 0. We present communities with different sizes 

(different number of nodes in each cluster that we call unbalanced network). The proportion 

of nodes in each community π is given by π1r/K, πK = (2 − r)/K, and πi = 1/K for 2 

≤ i ≤ K − 1, where r is the ration of community size in which vary in the range [0.2, 

1]. As the ration r increases, the community size become more similar, and become equal 

whe it is equal to 1. We note a matrix Z with dimension n × K that encode the label c. This 

matrix is given by ZiK = 1ci=k, it represent each node with a row of K element. Note 

by P , the matrix with diagonal element that control the edge densities within communities 

and and other that control out-in probabilities. We compare this method by different 

approaches to estimate the number of communities in network. For different values of 

number of communities, we generate with a network of 500 nodes under stochastic block 

model with a small average degree, a sparse network. We repeat the operation more than 

100 times and we record the results. 

Figures , show the result of estimating the number of communities by the informative 

matrix with red line, however the accurancy for the non-backtraking is zero among the 

plot, which means for different community size. 

In figure , we generate the network under degree stochastic block model (DCSBM), with 

a smaller average degree, and we ramark that can also perform. 
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Figure 1: Estimate number of communities (for 4 communities) under SBM 

 

5 Real-world network application 

PolBooks network data is a network with 105 nodes. Nodes represent books about 

US politics published around the 2004 presidential election and sold by Amazon.com, an 

online bookstore. Edges represent frequent book co-purchases by the same buyers, as 

indicated by Amazon’s customers who bought this book also bought these other books 

feature. 

The second is Karate, the Zachary karate club network is well-known and widely 

used. Wayne Zachary collected data from members of a university karate club in 1977. 

Each node represents a club member, and each edge represents a tie between two club 

members. The network is undirected. Finding the two groups of persons into whom the karete 

club separated after an argument between two teachers is a frequently discussed problem 

utilizing this information. 
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Figure 2: Estimate number of communities (for 5 communities) under SBM 

 

6 Discussion 

In this paper, we contribute results of estimating the number of community detection 

for sparse networks with low average degree under stochastic block model and for one case in 

degree corrected block model (DCSBM). To the best of our knowledge, this is the first 

study using the called informative matrix which is derivative from the non-backtracking 

matrix and which estimate better the number of communities. We note that the non- 

backtracking matrix used to estimate the number K in general but when the average 

degree is small it underestimate K. We support our results with numerical studies for 

synthetic networks, and for real network too. 

In this paper, we only give for network under stochastic block model the estimation 

for the number of cluster. An important future work will be about a high accuracy rate, 

and studies under Degree corrected stochastic block model. 
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Figure 3: Estimate number of communities (for 4 communities) under DCSBM 
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