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Abstract: The developable surfaces are useful in modeling plywood sheet installation and plat-metal-based industries. For this 
reason, this paper introduces the construction of cubic, quartic, and quintic developable Hermite surfaces with their boundary 
curves placed in two parallel and oblique planes. The steps are as follows. First, it defines the developable piece in the form of 
algebraic equations. Second, the criteria equation of the developable surfaces is determined for modeling the patches. Finally, 
we introduce a method for constructing the developable Hermite pieces between both planes. As a result, the presented 
technique is handy and straightforward for designing these developable surface types. 
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1. Introduction 

Mathematical and numerical studies for designing developable surfaces have been introduced. From a given 

curve as a geodesic of the developable piece, Al-Ghefari and Abdel-Baky [5] presented a method for constructing 

a cone, cylinder, or tangent lines surface. Xu et al. [16] studied a novel calculation to design a minimal surface 

from a boundary curve of the surface by implementing quasi-harmonic Bézier approximation and quasi-harmonic 

mask methods. Also, Xu et al. [15] reported general framework for formulating IGA-suitable planar B-spline 

parameterizations from complex CAD boundaries. However, it requires many complex operations to obtain this 

surface type. Hu et al. [6] presented the generalized developable H-Bézier surfaces by applying control planes 

with generalized H-Bézier basis functions.  

In connection with the industrial application aspects of the surface, Aumann [1] introduced a developable 

Bézier patch using two boundary curves. In this case, the patch was placed in parallel planes, and the curves’ 

tangent vectors must be parallel. Frey and Bindschadler [4] continued Aumann’s work by generalizing the degree 

of both boundary curves. Implementing regularity conditions of Bézier developable surface, they could generate 

developable Bézier strip patches. Then, Elber [2] presented an approximation method called trimming surface for 

finding the developable surfaces. After that, Kusno [7] studied the construction of regular developable Bézier 

patches with the boundary curves from four, five, and six degrees. Using polynomial curve and tangent vectors 

criteria of surface’s boundary curves, he introduced the method to design the developable Hermite patches [8– 

10]. Recently, Fernández-Jambrina and Pérez-Arribas[3] discussed the developable patches construction bounded 

by two rational or NURBS curves. 

The developable surface is essential for designing the industrial objects constructed by plywood sheets and 

plat-metal, for example, aircraft, ship hull, and train industries [2, 4, 6, 13]. The modeling of each surface part of 

the objects, generally, must be bounded by two curves C1(𝑢) and C2(𝑢) laid in the different planes. For this reason, 

this paper that will be discussed here is to formulate the developable Hermite surfaces using theseboundary curves 

in two planes Γ1 and Γ2, respectively. In this case, we propose a new approach to design these surfaces employing 

somecontrol points, the tangent vectors, and the generatrix of bothboundary curves. 

 

2. Cubic, Quartic, and Quintic Hermite Curves 

Consider a cubic curve p3(𝑢) = a1𝑢
3 + b1𝑢

2 + c1𝑢 + d1 with the conditions at p3(0) = p0, p3(1) = p1, 𝐩3
𝑢 (0) =𝐩0

𝑢 , 

and at , 𝐩3
𝑢 (1) =𝐩1

𝑢with the parameter 𝑢 in interval 0 <𝑢< 1. It obtains four equations for computing the coefficient 

vectors a1, b1, c1, and d1, i.e., p0 = d1, p1 = a1 + b1 + c1 + d1, 𝐩3
𝑢 (0)= c1, and 𝐩3

𝑢 (1)= 3a1 + 2b1 + c1. The solution of 

the equation system is a1 = 2p0– 2p1 + 𝐩0
𝑢  + 𝐩1

𝑢  ; b1 = −3p0 + 3p1 − 2𝐩0
𝑢− 𝐩1

𝑢  ; c1 = 𝐩0
𝑢 ; d1 = p0. Then the cubic 

Hermite curve can, respectively, formulate in the algebraic and geometric presentation [12, 14] 

p3(𝑢) = (2p0−2p1+𝐩0
𝑢+𝐩1

𝑢 )𝑢3+(−3p𝑜+3p1−2𝐩0
𝑢−𝐩1

𝑢 )𝑢2+𝐩0
𝑢𝑢+p0    (2.1a)  
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or  

p3(𝑢) = 𝐻1(𝑢)p𝑜 + 𝐻2(𝑢)p1 + 𝐻3(𝑢)𝐩0
𝑢+ 𝐻4(𝑢)𝐩1

𝑢       (2.1b)  

with  

𝐻1(𝑢) = 2𝑢3
 − 3𝑢2

 + 1;  𝐻2(𝑢) = −2𝑢3
 + 3𝑢2

; 𝐻3(𝑢) = 𝑢3
 − 2𝑢2

 + 𝑢; 𝐻4(𝑢) = 𝑢3
 − 𝑢2

. 

Using these calculation steps, we can formulate and evaluate the equation forms of the quartic and quintic 

Hermite curves from the following determinations.  

Let a quartic curve p4(𝑢) = a1𝑢
4 + b1𝑢

3 + c1𝑢
2 + d1𝑢 + e1. We pose to this curve at p4(0) = p0, p4(0.5) = p, p4(1) 

= p1, 𝐩4
𝑢 (0) = 𝐩0

𝑢  , and at 𝐩4
𝑢 (1) = 𝐩1

𝑢with 0 <𝑢< 1. It gives five equations with the solutions for the coefficient 

vectors  

a1 = −8p1 −8p0 + 16p+ 2𝐩1
𝑢  −2𝐩0

𝑢 ;   b1 = 14p1 + 18p0 −32p−3𝐩1
𝑢  + 5𝐩0

𝑢 ;  

c1 = −5p1 − 11p0 + 16p + 𝐩1
𝑢  − 4𝐩0

𝑢 ;   d1 = 𝐩0
𝑢  ;  e1 = p0.  

Therefore, the quartic Hermite curve in the algebraic formula of the canonical basis [𝑢4 , 𝑢3 , 𝑢2 , 𝑢, 1] is  

p4(𝑢) = (−8p1 − 8p0 + 16p + 2𝐩1
𝑢  − 2𝐩0

𝑢 )𝑢4+  

(14p1 + 18p0 − 32p − 3𝐩1
𝑢+ 5𝐩0

𝑢  )𝑢3+  

(−5p1 − 11p0 + 16p + 𝐩1
𝑢− 4𝐩0

𝑢 )𝑢2 + 𝐩0
𝑢𝑢 + p0. (2.2)  

The geometric form of the curve in the Hermite basis functions [𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5] is  

p4(𝑢) = 𝐻1(𝑢)p0 + 𝐻2(𝑢)p + 𝐻3(𝑢)p1 + 𝐻4(𝑢)𝐩0
𝑢+ 𝐻5(𝑢)𝐩1

𝑢      (2.3)  

with  

𝐻1(𝑢) = −8𝑢4 + 18𝑢3 − 11𝑢2 + 1;  𝐻2(𝑢) = 16𝑢4 − 32𝑢3 + 16𝑢2 ;  𝐻3(𝑢)= −8𝑢4 + 14𝑢3 − 5𝑢2;  

𝐻4(𝑢) = −2𝑢4 + 5𝑢3 − 4𝑢2 + 𝑢;   𝐻5(𝑢) = 2𝑢4 − 3𝑢3 + 𝑢2.  

Consider a quintic curve in the form p5(𝑢) = a1𝑢
5+b1𝑢

4+c1𝑢
3+d1𝑢

2+e1𝑢+f1. It is determined at p5(0) = P0, 

p5(0.5) = p, p5(1) = p1, 𝐩5
𝑢 (0) = 𝐩0

𝑢 , 𝐩5
𝑢 (0.5) = p𝑢, and at 𝐩5

𝑢 (1) = 𝐩1
𝑢 in interval 0<𝑢<1. It can find the coefficient 

vectors  

a1 = −24p1 + 24p0 + 16p𝑢 + 4𝐩0
𝑢  + 4𝐩1

𝑢 ;  

b1 = 52p1 − 68p0 + 16p − 40p𝑢 − 12𝐩0
𝑢  − 8𝐩1

𝑢 ;  

c1 = −34p1 + 66p0 − 32p+ 32p𝑢 + 13𝐩0
𝑢  + 5𝐩1

𝑢 ;  

d1 = 7p1 − 23p0 + 16p − 8p𝑢 − 6𝐩0
𝑢  − 1𝐩1

𝑢 ;  

e1 = 𝐩0
𝑢 ;  f1 = P0.  

Thus, the quintic Hermite curve in the algebraic formula is  

p5(𝑢) = (−24p1 + 24p0 + 16p𝑢 + 4𝐩0
𝑢  + 4𝐩1

𝑢  )𝑢5+  

(52p1 − 68p0 + 16p − 40p𝑢 − 12𝐩0
𝑢  − 8𝐩1

𝑢 )𝑢4+  

(−34p1 + 66p0 − 32p + 32p𝑢 + 13𝐩0
𝑢  + 5𝐩1

𝑢 )𝑢3+  

(7p1 − 23p0 + 16p − 8p𝑢– 6𝐩0
𝑢− 𝐩1

𝑢 )𝑢2 + (𝐩0
𝑢 ) 𝑢 + p0.  (2.4) 

Equations (2.1) up to (2.4) facilitate to design the curves. Arranging the position of these curves in space can 

use the control points p0, p, and p1 meanwhile, the shapes of the curves can be designed by the tangent vectors 𝐩0
𝑢  

, p𝑢 , and 𝐩1
𝑢  at these control points, respectively.  

Figure (1a) presents the quartic curve with the control points p0 =< −20, 40, 5 >, p =< −20, 20, 40 >, p1 =< 

−20, −50, 25 >, and the tangent vectors 𝐩0
𝑢  =< 40, 0, 80 >, and 𝐩1

𝑢  =< 10, −60, 80 >. On another side, Figure (1b) 

illustrates the quintic curve by using the control points and the tangent vectors data of the quartic curve, and the 

tangent vector p𝑢 =< 60, 5, 60 >. It shows that this tangent vector p𝑢changes the shape of the curve in the middle 

part. The next section, we will introduce the construction of developable Hermite surfaces bounded with these 

formulated curves laid in the planes. 
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(a)                                                 (b) 

Figure 1: Quartic (a) and quintic (b) Hermite curves 

 

3. Construction of Developable Surfaces between Two Parallel Planes 

This section presents the following topics. It starts with the definition of a developable surface in algebraic 

equations. Then, it determines equation criteria to design the developable surfaces numerically. After that, we 

introduce the methods for constructing cubic, quartic, and quintic developable Hermite surfaces bounded by two 

parallel planes. 

The developable surface definition in mathematical equations is expressed as follows [7, 11].  

Definition 3.1. A regular ruled surface R(𝑢,𝑣) is a surface constructed by a one parameter of lines R(𝑢,𝑣) = p(𝑢) + 

v. g(𝑢) with p(𝑢) and g(𝑢) of class 𝐶𝑛 and [(p′(𝑢) + v.g′(𝑢)) ∧g(𝑢)] ≠0.  

 

Definition 3.2. The ruled surface R(𝑢,𝑣) = p(𝑢) + v.g is developable, if the tangent plane along each generatrix is 

constant that is the vectors [g′(𝑢),p′(𝑢), g] are coplanar.  

 

Definition 3.2 means that the ruled surface R(𝑢,𝑣) is developable if the vector g′(𝑢) can be presented in linear 

combination of the vectors p′(𝑢) and g(𝑢) such that g′(𝑢) = 𝛼(𝑢) p′(𝑢) + 𝛽(𝑢) g(𝑢) with 𝛼(𝑢) and 𝛽(𝑢) of real 

scalars. In this case, the curves p(𝑢) is called the directrix curve and g(𝑢) is the generatrix (ruling) lines.  

Consider the generatrix lines g(𝑢) determined from two boundary curves p(𝑢) and q(𝑢) of the ruled surface 

R(𝑢,𝑣), that is g(𝑢) = q(𝑢) − p(𝑢). Consequently, this developable criteria of the surface R(𝑢,𝑣) must beg′(𝑢) = 

[𝛼(𝑢) + 1] p′(𝑢) + 𝛽(𝑢) g(𝑢) or  

 

q′(𝑢) = 𝜌(𝑢) p′(𝑢) + 𝛽(𝑢) g(𝑢)         (3.1)  

with 𝜌(𝑢) and 𝛽(𝑢) of real scalars.  

In general, Equation 3.1 defines the developable surfaces of the cylinder, cone, or tangent lines surface types. 

Employing the tangent vector criteria q′(𝑢) = 𝜌(𝑢) p′(𝑢) of Equation (3.1), Frey and Bindschadler [4] designed the 

developable Bézier surfaces with the boundary curves in parallel planes. Then, Kusno [8] use these criteria with 

𝜌(𝑢) real constant, linear, and quadratic for modeling the developable Bézier, and on the other hand, 𝜌(𝑢) real 

constant for modeling a cylinder and cone Hermite surfaces [8, 10]. Unfortunately, this tangent vector criteria of 

these curves can make some difficulties in positioning endpoints and center control points of both boundary 

curves.  

To control the position and shapes of a developable surface bounded by two parallel and oblique planes, we 

introduce the new developable criteria from Equation (3.1). These criteria can facilitate to arrange the boundary 

curves’ tangent vectors and the surface’s generatrix with both boundary curves placed in the different planes, that 

is  

q′(𝑢) = 𝑘p′(𝑢) − g(𝑢)          (3.2)  

 

with 𝑘 constant. If the generatrix lines g(𝑢) of developable surface are defined from the summit point Oof the cone 

developable surface with the position vectoro relative to the boundary curves p(𝑢) and q(𝑢), then we can 

determine g(𝑢) = [q(𝑢)−o]−𝑘 [p(𝑢)−o]. Therefore, it can state this developable criteria (3.2) in the form  

 

[(q(𝑢) − o) + q′(𝑢)] = 𝑘 [(p(𝑢) − o) + p′(𝑢)]        (3.3a) 

or  

[(q(𝑢) + q′(𝑢)] = 𝑘 [p(𝑢) + p′(𝑢)] + (1 − 𝑘) o.       (3.3b)  

Equation (3.3a) shows that the vectors𝐨𝐪      and q′(𝑢) are orderly the multiplication of the vectors 𝐨𝐩      and p′(𝑢). If the 

value 𝑘 is in interval 0 <𝑘< 1 the curve q(𝑢) will lay between the summit point O and the curve p(𝑢). When 𝑘 = 1, 
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both curves p(𝑢) and q(𝑢) will be identical. If 𝑘> 1, then the curve p(𝑢) will be placed betweenthe summit pointO 

and the curve q(𝑢).  

Let the curves p(𝑢) and q(𝑢) respectively placed in the parallel planes Γ1//Γ2 with the summit point O of the 

cone developable surface positioned outer the planes. Using these data, Equation (3.3), and Maple software, we 

can introduce a new approach of the construction method for designing cubic, quartic, and quintic Hermite 

developable surfaces  

 

D(𝑢,𝑣) = p(𝑢) + v.g = (1− 𝑣) p(𝑢) + 𝑣q(𝑢)        (3.4)  

 

as explainedin the following sections. 

 

3.1 Cubic Developable Hermite Surfaces 

Two cubic Hermite curves p3(𝑢) and q3(𝑢) in the parallel plane Γ1//Γ2 are presented in the polynomial formula 

and their first derivations, respectively, as follows  

 

p3(𝑢) = a1𝑢
3 + b1𝑢

2 + c1𝑢 + d1;  𝐩3
′ (𝑢) = 3a1𝑢

2 + 2b1𝑢 + c1,  

q3(𝑢) = a2𝑢
3 + b2𝑢

2  + c2𝑢 + d2; 𝐪3
′ (𝑢) = 3a2𝑢

2 + 2b2𝑢 + c2.  

 

Substituting these equations to Equation (3.3b) of developable surface criteria find  

 

a2𝑢
3 + (b2+3a2)𝑢

2 + (c2+2b2)𝑢 + (d2+c2) = 𝑘[a1𝑢
3 + (b1+3a1)𝑢

2 + (c1+2b1)𝑢 + (d1+c1)] + (1−𝑘) o.  

 

It obtains four equations relating to this developable surface criteria, i.e., a2 = 𝑘.a1; b2+3a2 = 𝑘.(b1+3a1); c2+2b2 = 

𝑘.(c1+2b1); d2+c2 = 𝑘.(d1+c1)+ (1−𝑘) o. When we replace these coefficient vectors a1, b1, c1, d1, and a2, b2, c2, d2 

in the form of control points and tangent vectors values shown in Equation (2.1a), it gives the equations 

 

2q0−2q1 +𝐪0
𝑢  + 𝐪1

𝑢= 𝑘.(2p0−2p1 + 𝐩0
𝑢  + 𝐩1

𝑢 ) 

3q0−3q1 + 𝐪0
𝑢+ 2𝐪1

𝑢  = 𝑘.(3p0−3p1 + 𝐩0
𝑢+ 2𝐩1

𝑢 ) 

− 6q0+6q1−3𝐪0
𝑢−2𝐪1

𝑢= 𝑘.(– 6p0+ 6p1−3𝐩0
𝑢− 2𝐩1

𝑢 ) 

q0 + 𝐪0
𝑢  = 𝑘.(p0 + 𝐩0

𝑢 ) + (1−𝑘)o. 

 

If in these equations, we determine some values for the summit point o, the control points q0, q1, and the tangent 

vectors 𝐪0
𝑢  and 𝐪1

𝑢 , then it gets the equation system in matrix form equations as follows 

 

 

2𝑘
3𝑘

−6𝑘
0 

−𝑘
−𝑘
3𝑘
−𝑘

 −𝑘
 −2𝑘
   2𝑘
  0

  −2𝑘
  −3𝑘
    6𝑘
   −𝑘

 ×  

𝐩1

𝐩0
𝑢

𝐩1
𝑢

𝐩0

 =   

 

 

2𝐪1 − 2𝐪0 − 𝐪0
𝑢 − 𝐪1

𝑢

3𝐪1 − 3𝐪0 − 𝐪0
𝑢 − 2𝐪1

𝑢

−6𝐪1 + 6𝐪0 + 3𝐪0
𝑢 + 2𝐪1

𝑢

(1 − 𝑘)𝐨 − 𝐪0 − 𝐪0
𝑢  

    (3.5)  

 

A4×4              ×B4×1 = C4×1.  

 

This equation system (3.5) has a unique solution if the determinant value of the coefficient matrix A is 

different from zero. Due to 𝑑𝑒𝑡(A) = 𝑘4 and the defined developable surfaces are positioned in the same side to the 

summit point O, we elect the value 𝑘> 0 and 𝑘 ≠ 1. It obtains the solutions 

 

 𝐩1 = [𝐪1 + (𝑘−1)o]/𝑘; 𝐩0
𝑢  = 𝐪0

𝑢 /𝑘; 𝐩1
𝑢  = 𝐪1

𝑢 /𝑘; 𝐩0 = [𝐪0 + (𝑘−1)o]/𝑘.  

 

It can conclude that using two cubic Hermite curves p3(𝑢) and q3(𝑢) in the parallel planes Γ1//Γ2, 

correspondingly, can be designed a cubic developable Hermite surface D3(𝑢, 𝑣) = (1 − 𝑣) p3(𝑢) + 𝑣q3(𝑢) through 

the steps:  

1. Substitute p3(𝑢), p′(𝑢), q3(𝑢), q′(𝑢) in the developable surface criteria of Equation (3.3);  

2. Determine the values for the summit point O, the control points and the tangent vectors q0, q1, 𝐪0
𝑢 , 𝐪1

𝑢  in the 

polynomial coefficient equations of the step result (1);  

3. Determine the value 𝑘>0 and 𝑘≠1, after that, calculate Equation (3.5) to find the control points p0, p1and the 

tangent vectors 𝐩0
𝑢 , 𝐩1

𝑢 .  

If in step (2), we respectively give some tension values 𝑘1 and 𝑘2 to the tangent vectors 𝐪0
𝑢  and 𝐪1

𝑢 , i.e., 𝐪0
𝑢∗ = 𝑘1𝐪0

𝑢  

and 𝐪1
𝑢∗= 𝑘2𝐪1

𝑢 , then in step (3), it finds the values 𝐩0
𝑢  = [𝑘1𝐪0

𝑢 ]/𝑘 and 𝐩1
𝑢  = [𝑘2𝐪1

𝑢 ]/𝑘.  
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When the vector position o for the summit point O, the control points q0, q1, and the tangent vectors 𝐪0
𝑢 , 𝐪1

𝑢  are 

o =< 170, 0, 45 >, q0 =< −20, 60, 45 >, q1 =< −20, −50, 45 >, 𝐪0
𝑢  =< 0, −30, 60 >, and 𝐪1

𝑢  =< 0, −50, −60) >, 

meanwhile, the value 𝑘 is elected 𝑘 = 2, it can find p1 =< 75, −25, 45 >, 𝐩0
𝑢  =< 0, −15, 30 >, 𝐩1

𝑢  =< 0, −25, −30 >, 

and p0 =< 75, 30, 45 >. The cubic developable Hermite surface presents in Figure (2a). If we determine 𝑘 = 3/2, 

then the surface’s width (generatrix measure) changes as shown in Figure (2b). On the other hand, when we 

replace o =< 125, 30, 45 >, q1 =< −20, −65, 40 >, 𝐪0
𝑢  =< 0, −30, −80 >, and 𝑘 = 3/2, it finds the developable 

surface presented in Figure (2c). From these data, if we respectively gives the tension values 𝑘1 = 3/2 and 𝑘2 = 3/4 

to the tangent vectors 𝐪0
𝑢  and 𝐪1

𝑢 , i.e., 𝐪0
𝑢∗ = 3/2𝐪0

𝑢  and 𝐪1
𝑢∗ = 3/4𝐪1

𝑢 , then the shape of the developable surface 

modify as shown in Figure (2d). The surface modeling results in Figure (2a) and Figure (2b) show that the 

determination of the point O and the parameter 𝑘 can arrange the position ofcontrol points p0, p1, and the measure 

of generatrix g between the parallel planes Γ1//Γ2. Then, the choices of different tangent vectors 𝐪0
𝑢  and 𝐪1

𝑢  will 

produce various shapes of the surfaces as presented in Figure (2a) and Figure (2c). In addition, giving tensions to 

the tangent vectors 𝐪0
𝑢  and 𝐪1

𝑢 will effect the surface tangent form, sharply or weakly, in area near the control 

points q0 and q1 (Figure (2d). 

 
(a)                    (b) 

 
(c) (d) 

Figure 2: Cubic developable Hermite surfaces 

 

3.2 Quartic Developable Hermite Surfaces 

Consider the quartic Hermite curves p4(𝑢) = a1𝑢
4 +b1𝑢

3 +c1𝑢
2 +d1𝑢 +𝑒1 and q4(𝑢) = a2𝑢

4+b2𝑢
3+c2𝑢

2+d2𝑢+𝑒2 in 

the parallel plane Γ1//Γ2, correspondingly, to construct the quartic developable Hermite surface D(𝑢,𝑣) = (1−𝑣) 

p4(𝑢) + 𝑣q4(𝑢). Computing 𝐩4
′ (𝑢), and 𝐪4

′ (𝑢), substituting these results to the developable surface criteria in 

Equation (3.3), and determining control points and the tangent vectors q0, q1, 𝐪0
𝑢 , 𝐪1

𝑢 , p0, and pin these polynomial 

coefficient equations, it finds the equation system in matrix form equations 

 

 

 
 

  16
32

 −80
32
0

     8𝑘
  18𝑘
−37𝑘
 10𝑘

0

  2𝑘
3𝑘

−11𝑘
7𝑘
−𝑘

 −2𝑘
−5𝑘
    8𝑘
−2𝑘

0

 0
0
0
0

𝑘 − 1  

 
 

×

 

 
 

𝐪
𝐩1

𝐩0
𝑢

𝐩1
𝑢

𝐨  

 
 

= 

 

 
 

−8𝑘𝐩0 + 16𝑘𝐩 + 8𝐪1 + 8𝐪0 − 2𝐪1
𝑢 + 2𝐪0

𝑢

−14𝐩0 + 32𝑘𝐩 +  18𝐪1 + 14𝐪0 − 5𝐪1
𝑢 + 3𝐪0

𝑢

43𝑘𝐩0 − 80𝑘𝐩 − 37𝐪1 − 43𝐪0 + 8𝐪1
𝑢 − 11𝐪0

𝑢

−22𝑘𝐩0 + 32𝑘𝐩 + 10𝐪1 + 22𝐪0 − 2𝐪1
𝑢 + 7𝐪0

𝑢

𝑘𝐩0 − 𝐪0 − 𝐪1
𝑢  

 
 

(3.6) 

A5×5   ×B5×1 =C5×1. 

     

The determinant value of the coefficient matrix A is 𝑑𝑒𝑡(A) = −2176𝑘5+ 4336𝑘4− 2160𝑘3 = −16𝑘3(136𝑘 − 

135)(𝑘 − 1). If we choice 𝑘> 0, 𝑘≠ 1 and 𝑘≠(135/136), then it obtains the solutions 

q = −𝑘𝐩0+𝐪0+𝑘𝐩;𝐩1 = (𝑘𝐩0+ 𝐪1−𝐪0)/𝑘;𝐩0
𝑢  = (𝐪0

𝑢 )/𝑘;𝐩1
𝑢  = 𝐪1

𝑢 /𝑘;o = (𝑘𝐩0−𝐪0)/(𝑘−1).  

Let 𝑘 = 2, 𝐩0 =< 40, 40, 45 >, 𝐩 =< 40, 12.5, 60 >, 𝐪0=< −20, 60, 45 >, 𝐪1 =< −20, −50, 45 >, 𝐪0
𝑢  =< 0, −30, 

60 >, and 𝐪1
𝑢  =< 0, −50, −60 >. From Equation (3.6), it obtains the solution q =<−20, 5, 75 >, 𝐩1 =< 40, −15, 45 >, 

𝐩0
𝑢  =< 0, −15, 30 >, 𝐩1

𝑢  =< 0, −25, −30 >, and o =< 100, 20, 45 >. Implementing this data constructs the quartic 

developable Hermite surface in Figure (3a). When we replace p =< 40, 19, 55 >, the surface modify as shown in 

Figure (3b). 
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(a)                                                (b) 

Figure 3: Quartic developable Hermite surfaces 

 

The advantage of this quartic developable Hermite surface over the cubic developable Hermite surface is that 

we can move the intermediate control point p or q for changing the shape of the middle part of the developable 

surface (Figure (3b)). 

 

3.3 Quintic Developable Hermite Surfaces 

Let two quintic Hermite curves p5(𝑢) = a1𝑢
5 + b1𝑢

4 + c1𝑢
3 + d1𝑢

2 + 𝑒1𝑢 + 𝑓1 and q5(𝑢) = a2𝑢
5 + b2𝑢

4 + c2𝑢
3 + 

d2𝑢
2 + 𝑒2𝑢 + 𝑓2 in the parallel plane Γ1//Γ2, consecutively, to design the quintic developable Hermite surface 

D(𝑢,𝑣) = (1−𝑣) p5(𝑢) + 𝑣q5(𝑢). Calculating 𝐩5
′ (𝑢), and 𝐪5

′ (𝑢), substituting these results to the developable surface 

criteria in Equation (3.3), and posing control points and the tangent vectors p0, p, 𝐪0
𝑢 , q1, q0, 𝐪1

𝑢 , and puin these 

polynomial coefficient equations, it gets the equation system in matrix form equations 

 

A6×6 ×B6×1 =C6×1.       (3.7)  

with  

A = 

 

  
 

−4𝑘
−8𝑘
35𝑘

−33𝑘
11𝑘
−𝑘

16
40

−128
88

−16
0

−4𝑘
−12𝑘
27𝑘

−14𝑘
2𝑘
0

0 
16
32

−80
32
0

24𝑘
68𝑘

−174𝑘
95𝑘

−14𝑘
0

0
0
0
0
0

𝑘 − 1  

  
 

;    B =  

 

 
 
 

𝐩0
𝑢

𝐪𝑢

𝐩1
𝑢

𝐪
𝐩1

𝐨  

 
 
 

; 

 

C = 

 

 
 
 
 

24𝑘𝐩0  +  24𝐪1  −  24𝐪0  −  4𝐪0
𝑢  −  4𝐪1

𝑢  +  16𝑘𝐩𝑢

52𝑘𝐩0  +  16𝑘𝐩 +  68𝐪1  −  52𝐪0  −  8𝐪0
𝑢  −  12𝐪1

𝑢  +  40𝑘𝐩𝑢

−206𝑘𝐩0  +  32𝑘𝐩 −  174𝐪1  +  206𝐪0  +  35𝐪0
𝑢  +  27𝐪1

𝑢  −  128𝑘𝐩𝑢

175𝑘𝐩0  −  80𝑘𝐩 +  95𝐪1  −  175𝐪0  −  33𝐪0
𝑢  −  14𝐪1

𝑢 +  88𝑘 𝐩𝑢

−46𝑘 𝐩0  +  32𝑘𝐩 −  14𝐪1  +  46𝐪0  +  11𝐪0
𝑢  +  2𝐪1

𝑢  −  16𝑘𝐩𝑢

𝑘𝐩0  −  𝐪0  −  𝐪0
𝑢  

 
 
 
 

. 

The matrix A has 𝑑𝑒𝑡(A) = 256𝑘3 (𝑘 − 1). If we determine 𝑘> 0 and 𝑘 ≠ 1, then it finds the solutions 

 

𝐩0
𝑢  = (𝐪0

𝑢 )/𝑘;    𝐪𝑢= 𝑘𝐩𝑢 ;   𝐩1
𝑢= 𝐪1

𝑢 /𝑘;  

𝐪 = −𝑘𝐩0 + 𝐪0 + 𝑘𝐩;  𝐩1 = (𝑘𝐩0 + 𝐪1 − 𝐪0)/𝑘;  𝐨 = (𝑘𝐩0 − 𝐪0)/(𝑘 − 1).  

 

The validation of the method presents as follows. Let the data 𝑘 = 2, 𝐩0 =< 40, 40, 45 >, 𝐩 =< 40, 12.5, 40 

>, 𝐪0
𝑢 =< 0, −60, 90 >, 𝐪1 =< −20, −50, 45 >, 𝐪0 =< −20, 60, 45 >, 𝐪1

𝑢  =< 0, −50, −30 >, and 𝐩𝑢  =< 0, −25, 35 >. 

Equation (3.6) gives the solution 𝐩0
𝑢  =< 0, −30, 45 >, 𝐪𝑢  =< 0, −50, 70 >, 𝐩1

𝑢  =< 0, −25, −15 >, 𝐪 =< −20, 5, 35 >, 

𝐩1 =< 40, −15, 45 >, and o =< 100, 20, 45 >. The constructed developable surface is presented in Figure (4a). If 

we change 𝐩𝑢=< 0, −25, −35 >, the surface shape modify as shown in Figure (4b). Moreover, when the tangent 

vector is replaced 𝐪1
𝑢  =< 0, −30, −50 >, it finds Figure (4c). Figure (4d) shows that the tangent planes a long the 

generatrix of the developable surfaces of Figure (4b) are constant. The advantage of these developable surfaces 

rather than cubic and quartic developable Hermite surface is that the choice of vector tangent 𝐩𝑢  can modify 

straightforward the surface shape in the middle part of the surface (Figure (4b) and (4c)).  
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(a)      (b) 

 
(b)                                     (d) 

Figure 4: Quintic developable Hermite surfaces 

 

4. Construction of Developable Surfaces between Two Oblique Planes 

Consider a quintic developable Hermite surface of cone surface type D5(𝑢,𝑣) = (1−𝑣) p5(𝑢) + 𝑣q5(𝑢), as shown 

in Figure (5a), with p5(𝑢) and q5(𝑢) in the planes Γ1//Γ2, respectively, and the summit of this cone surface at the 

point O. A plane Γ3 contains the control point q0 of the curve q5(𝑢) in the form 

 

Γ3(𝑢,𝑣) = q0 + 𝑢a + 𝑣d         (4.1)  

and Γ3 is in oblique position to the plane Γ1 and Γ2, i.e., Γ3∦Γ1 and Γ3∦Γ2. This section discusses the 

transformation of the curve q5(𝑢) in Γ2 to the curve image r5(𝑢) in Γ3 relative to the summit point O of the cone 

surface D5(𝑢,𝑣) such that p5(𝑢), q5(𝑢), and r5(𝑢) construct the developable surface. In other words, we have to find 

the control points and the tangent vectors r0, r, r1, 𝐫0
𝑢 , r𝑢 , and 𝐫1

𝑢 in Γ3 as the projection images of the q0, q, q1, 

𝐪0
𝑢 , q𝑢, and 𝐪1

𝑢  in Γ2, correspondingly, for designing the curve r5(𝑢). The method is as follows. 

We determine the control point r0 = q0. The projection of tangent vector 𝐪0
𝑢  in Γ2 to 𝐫0

𝑢  in Γ3 can be calculated 

using these ways. If the vector o+𝑤[(q0- o) +𝐪0
𝑢 ] and the plane Γ3(𝑢,𝑣) = q0 + 𝑢a + 𝑣d intersect at a point with 

position vectorI1, then it findsI1 = o+𝑤[(q0-o)+𝐪0
𝑢 ]= q0+𝑢a+𝑣dand 𝑤 = [(q0- o).(a∧d)]/[((q0-o)+𝐪0

𝑢 ).(a∧d)]. We 

get 

𝐫0
𝑢  = [

(𝐪0−𝐨).(𝐚∧𝐝)

((𝐪0−𝐨)+𝐪0
𝑢 ).(𝐚∧𝐝) 

] (𝐪0 − 𝐨) + 𝐪0
𝑢  −  𝐪0 − 𝐨 .      (4.2)  

 

The projection q in Γ2 to r in Γ3 is r = 𝐨 +𝑠 𝐪 − 𝐨  = q0 + 𝑢a + 𝑣dand 𝑠 = [(q0-o).(a∧d)]/[(q-o).(a∧d)]. 

Therefore, the control point value r is  

r = o +[
(𝐪0−𝐨).(𝐚∧𝐝)

(𝐪−𝐨).(𝐚∧𝐝) 
] (q- o).         (4.3)  

Applying this method of computation, it can be found r𝑢, r1, and 𝐫1
𝑢  in the form  

 

r𝑢 = 𝑡[ 𝐪 − 𝐨 +q𝑢] −  𝐫 − 𝐨 ;  r1 = 𝐨 + 𝑛 (𝐪1 − 𝐨); 𝐫1
𝑢  = 𝑚[(𝐪1 − 𝐨) + 𝐪1

𝑢 ] − (𝐫1 − 𝐨). (4.4)  

 

with 𝑡 = [
(𝐪0−𝐨).(𝐚∧𝐝)

((𝐪−𝐨)+𝐪𝑢 ).(𝐚∧𝐝) 
], 𝑛 = [

(𝐪0−𝐨).(𝐚∧𝐝)

(𝐪1−𝐨).(𝐚∧𝐝) 
], 𝑚 = [

(𝐪0−𝐨).(𝐚∧𝐝)

((𝐪1−𝐨)+𝐪1
𝑢 ).(𝐚∧𝐝) 

].  

 

Using quintic developable Hermite surface data of Figure (4a) in section 3.3, it has 𝐨 =< 100, 20, 45 >,𝐪0 

=<−20, 60, 45>, 𝐪0
𝑢  =<0, −60, 90>, 𝐪 =<−20, 5, 35>, q𝑢 =<0, −50, 70>, q1 =<−20, −50, 45>, 𝐪1

𝑢  =<0, −50, −30>. 

The data projection results in the planeΓ3(𝑢,𝑣) =<−20, 60, 45> + 𝑢. <−30, −200, 0> + 𝑣. <0, 0, 200>find r0 

=<−20, 60, 45>,𝐫0
𝑢  =<−7.6, −50.6, 63.8>,r =<−28.4, 3.9, 34.3>,r𝑢 =<−10.6, −70.8, 91, 8>,r1 =<−38, −60.5, 

45>,𝐫1
𝑢  =<−10.2, −67.7, −74.1>. It constructs the quintic developable Hermite surface presented in Figure (5a). If 

Γ3(𝑢,𝑣) =<−20, 60, 45> + 𝑢. <−60, −200, 0> + 𝑣. <0, 0, 200> gives the quintic developable Hermite surface in 

Figure (5b). 
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(a)                                                              (b) 

Figure 5: Developable surface between two oblique planes 

5.Conclusion 

It has formulated the mathematics equations of the developable surface criteria that can be used to model the 

cubic, quartic, and quinticdevelopable Hermite surfaces. Using some control points, the tangent vectors and the 

generatrix of boundary curves of the surface, this formulacan design the desired forms of the surfaces. Therefore, 

it is expected that the construction of any developable Hermite surfaceswill be more effective and satisfied.  

The construction methods of the developable surface laid between two parallel and oblique planeshave been 

presented. In the future works, we need to develop theconstruction of these developable surfaces with their 

boundary curves laid in the space. 
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