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Abstract 

In this paper, a novel scheme, cubic Hyperbolic B-spline-based Differential Quadrature Method, 

is proposed for the solution of 1D non-linear viscous coupled Burgers' equation. The numerical 

approximation of this mentioned equation is obtained by using the Hyperbolic B-spline-based 

Differential quadrature method. Hyperbolic B-spline is used as a basis function in DQM in order 

to obtain weighting coefficients, then received a set of ODEs is solved by using Strong Stability 

Preserving Runge Kutta-43 scheme(SSP-RK43 scheme). The accuracy and effectiveness of this 

proposed scheme are tested by using three examples. The obtained results are matched with the 

previous results present in the literature of other methods as well as with the exact solutions by 

means of 𝐿2 and 𝐿∞Error norms mainly, in the form of tables and figures, the proposed scheme 

has produced better results. The analysis of the stability of this proposed scheme is also 

discussed by means of examples at different grid points, which indicated that the proposed 

scheme cubic Hyperbolic B-spline-based DQM is unconditionally stable. For the stability of the 

present scheme, the matrix stability analysis method is used. 

Keywords: Hyperbolic B-spline;DQM; SSP-RK43 scheme; 𝐿2  and 𝐿∞ Error norms;matrix 

stability analysis method. 

 

 

1. Introduction 

Coupled1D viscous Burgers' equation is one of the finest and the simplest models of 

sedimentation and evolution of the uplifted volume concentration, having two kinds of particles 

in fluid suspensions and colloids under the gravity effect. Coupled 1D Burgers' equation was 

derived by Esipov[1] in (1995) for the study of a model of Poly dispersive sedimentation. 

Governing equations of Coupled 1-D Burgers' equations are given as follows from [9]. 

𝑢𝑡 + 𝛿𝑢𝑥𝑥+ 𝜂𝑢𝑢𝑥+ 𝛼(𝑢𝑣)𝑥= 0               (1.1) 

𝑣𝑡 + 𝜇𝑣𝑥𝑥+ 𝜉𝑣𝑣𝑥 + 𝛽(𝑢𝑣)𝑥= 0   (1.2) 

Where initial conditions are given as follows 

{
𝑢(x, 0) =  𝑓1(x)

𝑣(x, 0) =  𝑓2(x)
                   where 𝑥 ∈ 𝐷(1.3) 

And Dirichlet Boundary conditions are given as follows, 

{
𝑢(x, t) =  𝑔1(x, t)

𝑣(x, t) = 𝑔2 (x, t)
                 where 𝑥 ∈ 𝐷, 𝑡 >  0 (1.4) 

𝐷 =  {𝑥: 𝑎 ≤ 𝑥 ≤ 𝑏}  is given computational domain. 𝛿, 𝜂, 𝜇 𝑎𝑛𝑑 𝜉  are the real constants, 

𝛼 𝑎𝑛𝑑 𝛽 are the arbitrary constants which depends upon the parameters given in system like 

Peclet number, the stokes velocity of particles because of gravity and Brownian diffusivity 

explained by Nee and Duan [46]. 
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𝑢(x, t)  and 𝑣(x, t)are known as the components of velocity, which are to be determined 𝑓1 , 

𝑓2, 𝑔1 and 𝑔2 are given functions.𝑢𝑡is given as unsteady term, 𝑢𝑢𝑥 is the non-linear convection 

term, 𝑢𝑥𝑥is given as diffusion term.  

𝑢𝑡=
𝜕𝑢

𝜕𝑡
, 𝑢𝑥 =  

𝜕𝑢

𝜕𝑥
, 𝑢𝑦 =  

𝜕𝑢

𝜕𝑦
, 𝑢𝑥𝑥 =

𝜕2𝑢

𝜕𝑥2
, 𝑢𝑦𝑦 =  

𝜕2𝑢

𝜕𝑦2
 

Coupled 1D Burgers' equation is a matter of worth from the numerical aspect because primarily 

analytical solutions are not obtainable for such equations. Kaya [2]obtained the exact solution of 

1D coupled Burgers' equation by the implementation of the Adomian Decomposition Method. 

Soliman [3]implemented a modified but extended form of the tanh function technique. Several 

researchers have contributed in order to find the numerical approximations of Coupled 1D 

Burgers equation. Esipov [1]gave numerical simulations as well as compared the data. The 

variational iteration method was used to solve the 1D Burgers' equation and coupled Burgers' 

equation by Abdou and Soliman[4]. The applied conjugate filter approach was applied by Wei 

and Gu [5]. Chebyshev spectral collocation method was used by Khater et al.[6]. Using the 

Adomian-Pade technique,Dehghan et al.[7]obtained numerical results of coupled viscous 

Burgers' equation. Fourier Pseudo-spectral method was applied by Rashid and Ismail[8]. In 

(2013), Srivastava et al. [9] employed a full implicit Finite Difference scheme to obtain a 1D 

coupled non-linear Burgers' equation. 1D coupled Burgers' equation is solved by implicit 

logarithmic FD method [I-LFDM] by Srivastava et al.[10]in this paper numerical method 

provided a system of non-linear difference equation which was linearized with the help of 

Newton's methodand obtained system was solved by employing Gauss Elimination Method 

along with Partial pivoting. Mittal and Jiwari [11]used the concept of Polynomial DQM to attain 

the solution of 1D non-linear Burgers' equation and 1D non-linear coupled Burgers' equation as 

well as 2D non-linear Burgers' equation and obtained system of ODE was solved by using RK 

fourth-order method. Srivastava et al. [12]employed an implicit FD technique to solve 1D 

coupled Burgers' equation for the uniform grid; in this paper,the Crank-Nicolson scheme formed 

a system of non-linear difference equation solved at every iteration. The obtained non-linear 

system was linearized by Newton's iteration method and obtained linear system was solved by 

Gauss Elimination Method. Lai and Ma [13] proposed a new Lattice Boltzman Model to solve 

the 1D non-linear viscous coupled Burgers' equation; in this paper, Chapman-Enskog expansion 

was employed. Mittal and Arora [14]solved 1D coupled viscous Burgers' equation by using the 

technique of cubic B-spline built Collocation method for uniform mesh point; in this paper, 

Crank-Nicolson scheme was implemented for time integration, and cubic B-spline scheme was 

implemented for space integration and stability was also discussed by using Von-Neumann 

method. Mokhtari et al.[15]employed the Generalized DQM to solve 1D Burgers' equation, 2-D 

Burgers' equation, as well as 1D, coupled Burgers' equation numerically. In this paper, 

Polynomial DQM is implemented, and obtained system of ODE is solved by using (TVD – RK 

method) Total variation diminishing Runge-Kutta method. Salih et al.[16] presented a cubic 

trigonometric B-spline technique to obtain the numerical approximation of 1D coupled viscous 

Burgers' equation; in this paper,FD scheme was used to discretize time derivative, and cubic 

trigonometric B-spline basis function was used as interpolation function in a spatial dimension. 

The stability ofthe method was checked by the implementation of the Vonn-Neumann method. 

Raslan et al.[17]gave a numerical technique to approximate the solution of 1D coupled Burgers' 

equation numerically by implementing the quantic B-spline built Collocation method. The 

stability of the method was also checked by the Vonn-Neumann method. Liu et al.[18], 

(2018),employed the Collocation method based upon the Barycentric interpolation function to 
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approximate the solution of coupled 1D viscous Burgers' equation numerically. Coupled viscous 

Burgers' equation was solved by Li et al.[19]by implementing the technique a New Lattice 

Boltzmann model. Bhatt and Khaliq[20]gave the method of compact schemes with fourth-order 

to get the numerical approximation of coupled Burgers' equation.   

 

The basic notion of DQM is taken by the idea of integral quadrature, and DQM was firstly 

familiarized by Bellman et al. in 1972 [21]. After that, the above-mentioned method of finding 

weighting coefficients was enhanced by Quan and Chang in 1989 [22, 23]. A significant 

headway to find the weighing coefficients were given by Shu and Richards in 1990 [24]. The 

above-mentioned methods to determine weighting coefficients are generalized under the 

exploration of higher-order approximation by Shu in 1991 [25]. So far, different test functions, 

like Lagrange polynomials, Legendre polynomial, and B-spline basis functions, have been used 

to generate different types of DQMs. A comparison was made between DQM and Harmonic 

DQM for buckling analysis of thin isotropic plates and elastic columns by Civalik [26] in 2004. 

A Quintic B-spline-based DQM to solve the fourth-order differential equation was given by 

Zhong [27] in 2004. In comparison, Zhong and Lan [28] proposed spline-based DQM to solve 

the non-linear initial value problems. Exponential modified cubic B-spline functions are used as 

test functions in DQM by Tamsir et al. [29]. DQM based on Sinc functions is used by Korkmaz 

and Dag [30]. Korkmaz and Dag used Polynomial DQM to solve non-linear Burger's Equation 

[31]. Quartic B-spline-based DQM is introduced to get the weighting coefficients by Korkmaz et 

al. [32]. Arora and Singh [33] represented modified cubic B-spline-based DQM (MCB-DQM ) to 

obtain a numerical solution of Burgers' equation. Arora and Joshi [34] solved one and two-

dimensional non-linear Burger's equation by using modified trigonometric cubic B-spline-based 

DQM. Whereas Mittal and Dahiya [35] used modified cubic-based B-spline as a basis function 

in DQM to obtain the numerical solution of 3-dimensional hyperbolic equations in 2017. Mittal 

and Jiwari [36] used Polynomial DQM to get the numerical solution of the non-linear Burger 

type equation in 2012. Jiwari et al. [37] used weighted average DQM for the solution of time-

dependent Burger's equation with given initial and boundary conditions. In comparison, Shukla 

et al.[38] proposed an Exponential modified cubic B-spline-based DQM (Expo-MCB-DQM) for 

the solution of a 3-dimensional non-linear wave equation. A numerical method based upon 

polynomial DQM to find the numerical solution of the sine-Gordon equation is presented by 

Jiwari et al. [39]. A numerical study using DQM of a 2-dimensional reaction-diffusion 

brusselator system is also given by Mittal and Jiwari [40]. DQM has been implemented to solve 

a different variety of 1D and 2D partial differential equations in the problem areas of physics, 

chemistry, and engineering like [41], [42], [43], [44], [45]. 

 

Hyperbolic B-spline. In previous years, various new splines have been defined and used in the 

concept of geometrical modeling in "CAGD". For instance, non-uniform algebraic trigonometric 

(NUAT) B-spline used in [47], an orthogonal basis similar to Legendre basis are used in concept 

of algebraic-trigonometric polynomial space by Huang, and Wang [48], an orthogonal basis for 

"NUAT" spline space in [49],2𝜋  periodic trigonometric was used by Nouisser et al. [50], 

normalized spherical B-spline was used by Maes and Bultheel [51]. In the present section, we 

will introduce the formula of "Hyperbolic B-spline" [54]𝐻𝐵𝑖
𝑘of order 𝑘, which is associated with 

the partition 𝑋defined by, 
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𝐻𝐵𝑖
1(𝑥) = {

1      ,         𝑤ℎ𝑒𝑛 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   

(1.5) 

 

and for 𝑘 > 1,  

𝐻𝐵𝑖
𝑘(𝑥) = 

𝑠(𝑥− 𝑥𝑖)

𝑠(𝑥𝑘+𝑖−1 – 𝑥𝑖)
𝐻𝐵𝑖

𝑘−1(𝑥)  + 
𝑠(𝑥𝑖+𝑘−𝑥)

𝑠(𝑥𝑖+𝑘− 𝑥𝑖+1)
𝐻𝐵𝑖+1

𝑘−1(𝑥)(1.6) 

where 𝑠(𝑥)  =  𝑠𝑖𝑛ℎ(𝑥), {sine hyperbolic function of 𝑥} 

Above both equations satisfy the given properties, 

(P1): For k ≥ 2, 𝐻𝐵𝑖
𝑘 ∈ 𝐶𝑘−2(𝑥) 

(P2): 𝐻𝐵𝑖
𝑘(𝑥) is a piecewise hyperbolic function. 

(P3): 𝐻𝐵𝑖
𝑘(𝑥) ≥ 0 

(P4): Support of 𝐻𝐵𝑖
𝑘(𝑥) = [𝑥𝑖 , 𝑥𝑖+𝑘] 

(P5): 𝐻𝐵𝑖
𝑘 ∈ ⎾𝑘 

Where, 

⎾𝑘  =

{
 
 

 
 𝑠𝑝𝑎𝑛 {{sinh(2𝑙𝑥) , cosh(2𝑙𝑥)}𝑙=1

[
𝑘−1

2
]
 ∪ {1}} ,   𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑜𝑑𝑑

𝑠𝑝𝑎𝑛 {{sinh((2𝑙 − 1)𝑥) , cosh((2𝑙 − 1)𝑥)}
𝑙=1

[
𝑘

2
]
} ,   𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

(1.7) 

which is known as the space of the hyperbolic polynomial of order k.  

 

The main idea of this paper is to propose a new technique, modified cubic Hyperbolic B-spline 

DQM, to get the numerical approximation of one-dimensional coupled non-linear Burgers' 

equation. In the present method, a modified cubic Hyperbolic B-spline has been implemented as 

the test function in DQM to obtain the values of weighting coefficients. By which the non-linear 

Burgers' equation will get transformed into the system of the first-order ODE. Later on, the 

obtained system of equations will get solved by employing the four stages and order 3 SSP-

RK43 method. The efficiency and compatibility of this projected method will be confirmed by 

taking some test problems. Error analysis will be done with the help of discrete and root mean 

square norms. With the help of threeexamples, the applicability and exactness will be checked. 

In Section 2, a new technique of DQM is developed by using a modified Hyperbolic B-spline. In 

Section 2.2, a detailed discussion is given to determine weighting coefficients at different grid 

points. In Section 3,  a detailed discussion is given with the help of examples. With the help of 

these examples, a comparison is given for the numerical and exact solutions, shown by different 

tables and figures. In Section 4, a stability analysis of the projected scheme is presented for 

examples for various grid points. In Section 5, a brief description of the effectiveness of the 

proposed scheme is given in conclusion.           

 

2. Proposed methodology 

We have taken into account the 1D non-linear coupled viscous Burgers' equation. Let us consider 

here that the number of grid points taken is 𝑛in the domain [𝑎, 𝑏], and grid points are as follows, 

𝑎 =  𝑥1 < 𝑥2 < 𝑥3 < ……… .< 𝑥𝑛  =  𝑏 . These grid points are having uniform distribution, 

and taken step size is ℎ = 𝑥𝑖+1-𝑥𝑖 , in the 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  

The 𝑟𝑡ℎapproximation of 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡)is given as follows: 

𝑢𝑥
(𝑟)(𝑥𝑖) = ∑ 𝑎𝑖𝑗

(𝑟) 𝑢(𝑥𝑗)
𝑛
𝑗=1 (2.1) 
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𝑣𝑥
(𝑟)(𝑥𝑖) = ∑ 𝑎𝑖𝑗

(𝑟) 𝑣(𝑥𝑗)
𝑛
𝑗=1 (2.2) 

 

By using 𝑟 = 1 in equation (2.1) and (2.2), we will get an approximation of the derivative of the 

first order  

𝑢𝑥
(1)(𝑥𝑖) = ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1    (2.3) 

𝑣𝑥
(1)(𝑥𝑖) = ∑ 𝑎𝑖𝑗

(1) 𝑣(𝑥𝑗)
𝑛
𝑗=1    (2.4) 

 

By using 𝑟 =  2 in equation (2.3) and (2.4), we will get the approximation of derivative of 

second-order  

𝑢𝑥
(2)(𝑥𝑖) =  ∑ 𝑎𝑖𝑗

(2) 𝑢(𝑥𝑗)
𝑛
𝑗=1 (2.5) 

𝑣𝑥
(2)(𝑥𝑖) =  ∑ 𝑎𝑖𝑗

(2) 𝑣(𝑥𝑗)
𝑛
𝑗=1    (2.6) 

 

Where,𝑢𝑥
(1)(𝑥𝑖), 𝑣𝑥

(1)(𝑥𝑖)are the first-order partial derivative of 𝑢  and 𝑣  at 𝑥𝑖  respectively and 

𝑢𝑥
(2)(𝑥𝑖) and 𝑣𝑥

(2)(𝑥𝑖)  are the second-order partial derivative of 𝑢  and 𝑣  at grid point 𝑥𝑖 . 

𝑢(𝑥𝑗) 𝑎𝑛𝑑 𝑣(𝑥𝑗) are functional values of u and v at specified grid points. 

 

2.1. Cubic Hyperbolic B-spline 

Let us consider that 𝐻𝐵𝑖
𝑘 is the "Hyperbolic B-spline" having order k with the given node points 

𝑥𝑖 which are in uniform distribution at 𝑎 =  𝑥1 < 𝑥2 < 𝑥3 < ……… .< 𝑥𝑛  =  𝑏. So the "cubic 

Hyperbolic B-spline" will form a basis for all functions of the domain  [𝑎, 𝑏] . The cubic 

Hyperbolic B-spline of order four can be defined as the follows: 

 𝐻𝐵𝑖
4(𝑥) = 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 [

[sinh (𝑥−𝑥𝑖)]
3

sinh(𝑥𝑖+3−𝑥𝑖) sinh(𝑥𝑖+2−𝑥𝑖) sinh(𝑥𝑖+1−𝑥𝑖)
] ,      𝒙 ∈ [𝒙𝒊, 𝒙𝒊+𝟏]

[
 
 
 
 
 

[sinh(𝑥−𝑥𝑖)]
2[sinh(𝑥𝑖+2−𝑥)]

sinh(𝑥𝑖+3−𝑥𝑖) sinh(𝑥𝑖+2−𝑥𝑖) sinh(𝑥𝑖+1−𝑥𝑖)
+

sinh(𝑥−𝑥𝑖) sinh(𝑥𝑖+3−𝑥)sinh(𝑥−𝑥𝑖+1)

sinh(𝑥𝑖+3−𝑥𝑖) sinh(𝑥𝑖+3−𝑥𝑖+1) sinh(𝑥𝑖+2−𝑥𝑖+1)
+

sinh(𝑥𝑖+4−𝑥)[sinh(𝑥−𝑥𝑖+1)]
2

sinh(𝑥𝑖+4−𝑥𝑖+1) sinh(𝑥𝑖+3−𝑥𝑖+1) sinh(𝑥𝑖+2−𝑥𝑖+1)]
 
 
 
 
 

, 𝒙 ∈ [𝒙𝒊+𝟏, 𝒙𝒊+𝟐]

[
 
 
 
 
 

sinh(𝑥−𝑥𝑖)[sinh(𝑥𝑖+3−𝑥)]
2

sinh(𝑥𝑖+3−𝑥𝑖) sinh(𝑥𝑖+3−𝑥𝑖+1) sinh(𝑥𝑖+3−𝑥𝑖+2)
       +  

sinh(𝑥𝑖+4−𝑥)sinh(𝑥−𝑥𝑖+1) sinh(𝑥𝑖+3−𝑥)

sinh(𝑥𝑖+4−𝑥𝑖+1) sinh(𝑥𝑖+3−𝑥𝑖+1) sinh(𝑥𝑖+3−𝑥𝑖+2)
  + 

[sinh (𝑥𝑖+4−𝑥)]
2sinh (𝑥−𝑥𝑖+2)

sinh (𝑥𝑖+4−𝑥𝑖+1)sinh (𝑥𝑖+4−𝑥𝑖+2)sinh (𝑥𝑖+3−𝑥𝑖+2) ]
 
 
 
 
 

, 𝒙 ∈ [𝒙𝒊+𝟐, 𝒙𝒊+𝟑]

[
[sinh (𝑥𝑖+4−𝑥)]

3

sinh(𝑥𝑖+4−𝑥𝑖+1) sinh(𝑥𝑖+4−𝑥𝑖+2) sinh(𝑥𝑖+4−𝑥𝑖+3)
]  ,   𝒙     ∈[𝒙𝒊+𝟑,𝒙𝒊+𝟒]

0 ,                                                                                          𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

(2.7) 
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Values ofHyperbolic B-spline of order four i.e. 𝑯𝑩𝒊,𝟒 (x)  and𝑯𝑩𝒊,𝟒 ′(x)  at different node 

points 

 𝒙𝒊−𝟐 𝒙𝒊−𝟏 𝒙𝒊 𝒙𝒊+𝟏 𝒙𝒊+𝟐 

𝑯𝑩𝒊,𝟒(𝒙) 0 A 𝐵 𝐶 0 

𝑯𝑩𝒊,𝟒
′  (𝒙) 0 𝐷 0 𝐹 0 

 

Where, 

𝐴 =
[sinh(ℎ)]2

sinh(2ℎ)sinh (3ℎ)
, 𝐵 = 

2 sinh (ℎ)

sinh (3ℎ)
, 𝐶 = 

[sinh(ℎ)]2

sinh(2ℎ)sinh (3ℎ)
 

𝐷 = 
3

2 sinh (3ℎ)
, 𝐸 = 0, 𝐹 = 

−3

2 sinh (3ℎ)
 

 

Where,{𝐻𝐵0(𝑥), 𝐻𝐵1(𝑥), ………… . , 𝐻𝐵𝑁(𝑥), 𝐻𝐵𝑁+1(𝑥)} forms a basis over given domain. In 

order to improve the results, modified cubic Hyperbolic B-spline can be implemented by using 

equation (2.7) in the way so that the obtained matrix system will become diagonally dominant 

[33]. Where, by using following set of equations improvised values can be obtained.  
∅1(𝑥) =  𝐻𝐵1(𝑥)  +  2 𝐻𝐵0(𝑥)

∅2(𝑥) =  𝐻𝐵2(𝑥) − 𝐻𝐵0(𝑥)

∅𝑗(𝑥) =  𝐻𝐵𝑗(𝑥),   (𝑗 = 3, 4, 5, …… . . , 𝑁 − 2)

∅𝑁−1(𝑥) =  𝐻𝐵𝑁−1(𝑥) − 𝐻𝐵𝑁+1(𝑥)

∅𝑁(𝑥) =  𝐻𝐵𝑁(𝑥) + 2 𝐻𝐵𝑁+1(𝑥)

(2.8) 

2.2. Determination of weighting coefficients 

From equation (2.3) and (2.4), we have the formula to approximate first-order derivative i.e. 

given as follows, 

∅𝑘
(1)(𝑥𝑖) = ∑ 𝑎𝑖𝑗

(1)∅𝑘(𝑥𝑗)
𝑛
𝑗=1 (2.9) 

At grid point 𝒙𝟏:By applying the formulas (2.7) and (2.8) in the equation (2.9) we will get the 

following set of equations, for different values of 𝑘, 

For k=1:∅1
′ (𝑥1) = ∑ 𝑎1𝑗

(1)∅1(𝑥𝑗)
𝑛
𝑗=1 = 𝑎11

(1)[ 𝐵 + 2𝐶]  + 𝑎12
(1)[𝐶] 

For k=2:∅2
′ (𝑥1) = ∑ 𝑎1𝑗

(1)∅2(𝑥𝑗)
𝑛
𝑗=1  = 𝑎11

(1)[ 𝐴 − 𝐶]  + 𝑎12
(1)[𝐵] + 𝑎13

(1)[𝐶] 

For k=3: ∅3
′ (𝑥1) = ∑ 𝑎1𝑗

(1)∅3(𝑥𝑗)
𝑛
𝑗=1  = 𝑎12

(1)[ 𝐴]  +  𝑎13
(1)[𝐵] + 𝑎14

(1)[𝐶] 

For k=4: ∅4
′ (𝑥1) = ∑ 𝑎1𝑗

(1)∅4(𝑥𝑗)
𝑛
𝑗=1  =  𝑎13

(1)[ 𝐴] + 𝑎14
(1)[𝐵] + 𝑎15

(1)[𝐶] 

………………………………………………… 

………………………………………………… 

………………………………………………… 

 



Turkish Journal of Computer and Mathematics Education   Vol.13 No.02 (2022), 875-904 

 

 

881 

 

 
 

Research Article   
 

 

For k=n-2: ∅𝑛−2
′ (𝑥1) = ∑ 𝑎1𝑗

(1)∅𝑛−2(𝑥𝑗)
𝑛
𝑗=1 = 𝑎1,𝑛−3

(1) [ 𝐴] + 𝑎1,𝑛−2
(1) [𝐵] + 𝑎1,𝑛−1

(1) [𝐶] 

For k=n-1: ∅𝑛−1
′ (𝑥1) = ∑ 𝑎1𝑗

(1)∅𝑛−1(𝑥𝑗)
𝑛
𝑗=1 = 𝑎1,𝑛−2

(1) [𝐴] + 𝑎1,𝑛−1
(1) [𝐵] + 𝑎1,𝑛

(1)[𝐶 − 𝐴] 

For k=n: ∅𝑛
′ (𝑥1) = ∑ 𝑎1𝑗

(1)∅𝑛(𝑥𝑗)
𝑛
𝑗=1 = 𝑎1,𝑛−1

(1) [𝐴] + 𝑎1,𝑛
(1)[𝐵 + 2𝐴] 

 

From the above set of the equation at grid point 𝑥1 and for the values of 𝑘 =  1, 2, 3, …… . , 𝑛, we 

will obtain the following tridiagonal system of algebraic equations: 

A    �⃗�(1)[𝑖]    =   �⃗⃗�[𝑖], where 𝑖 =  1, 2, ,3, …… . . , 𝑛 

 

 

A = 

(

 
 
 
 

𝐵 + 2𝐶
𝐴 − 𝐶

𝐶
𝐵
𝐴

𝐶
𝐵 𝐶

⋯

⋮ ⋱ ⋮

⋯
𝐴 𝐵

𝐴
𝐶
𝐵
𝐴

0
𝐶 − 𝐴
𝐵 + 2𝐴)

 
 
 
 

 

�⃗�(1)[1] = 

(

 
 
 
 
 
 
 

𝑎1,1
(1)

𝑎1,2
(1)

𝑎1,3
(1)

..

..

𝑎1,𝑁−1
(1)

𝑎1,𝑁
(1)

)

 
 
 
 
 
 
 

and�⃗⃗�[1] =  

(

 
 
 
 
 

∅1
′ (𝑥1)

∅2
′ (𝑥1)

∅3
′ (𝑥1)
..
..

∅𝑛−1
′ (𝑥1)

∅𝑛
′ (𝑥1) )

 
 
 
 
 

 = 

(

 
 
 
 
 

2𝐹
𝐷 − 𝐹
0
..
..
.
0 )

 
 
 
 
 

 

At grid point 𝒙𝟐:By applying the formulas (2.7) and (2.8) in the equation (2.9), we will get the 

following set of equations, for different values of 𝑘, we will get the following tridiagonal system 

of equations, 

�⃗�(1)[2] = 

(

 
 
 
 
 
 
 

𝑎21
(1)

𝑎22
(1)

𝑎23
(1)

..

..

𝑎2𝑁−1
(1)

𝑎2𝑁
(1)

)

 
 
 
 
 
 
 

and�⃗⃗�[2] =  

(

 
 
 
 
 

∅1
′ (𝑥2)

∅2
′ (𝑥2)

∅3
′ (𝑥2)
..
..

∅𝑛−1
′ (𝑥2)

∅𝑛
′ (𝑥2) )

 
 
 
 
 

 =

(

 
 
 
 
 

𝐹
0
𝐷
0
0
..
.
0)

 
 
 
 
 

 

At grid point 𝒙𝟑:By applying the formulas (2.7) and (2.8) in the equation (2.9), we will get the 

following set of equations, for different values of 𝑘, we will get the following tridiagonal system 

of equations, 
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�⃗�(1)[3] = 

(

 
 
 
 
 
 
 

𝑎31
(1)

𝑎32
(1)

𝑎33
(1)

..

..

𝑎3𝑁−1
(1)

𝑎3𝑁
(1)

)

 
 
 
 
 
 
 

and�⃗⃗�[3] =  

(

 
 
 
 
 

∅1
′ (𝑥3)

∅2
′ (𝑥3)

∅3
′ (𝑥3)
..
..

∅𝑛−1
′ (𝑥3)

∅𝑛
′ (𝑥3) )

 
 
 
 
 

 = 

(

 
 
 
 
 

0
𝐹
0
𝐷
0
..
.
0)

 
 
 
 
 

 

………………………………………………… 

………………………………………………… 

………………………………………………… 

For grid point 𝒙𝒏−𝟏:By applying the formulas (2.7) and (2.8) in the equation (2.9), we will get 

the following set of equations, for different values of 𝑘, we will get following the tridiagonal 

structure of equations, 

 

�⃗�(1)[𝑛 − 1] = 

(

 
 
 
 
 
 
 

𝑎𝑛−1,1
(1)

𝑎𝑛−1,2
(1)

𝑎𝑛−1,3
(1)

..

..

𝑎𝑛−1,𝑁−1
(1)

𝑎𝑛−1,𝑁
(1)

)

 
 
 
 
 
 
 

and�⃗⃗�[𝑛 − 1] =  

(

 
 
 
 
 

∅1
′ (𝑥𝑛−1)

∅2
′ (𝑥𝑛−1)

∅3
′ (𝑥𝑛−1)
..
..

∅𝑛−1
′ (𝑥𝑛−1)

∅𝑛
′ (𝑥𝑛−1) )

 
 
 
 
 

 =  

(

 
 
 
 
 

0
0.
..
.
𝐹
0
𝐷)

 
 
 
 
 

 

At grid point 𝒙𝒏:By applying the formulas (2.7) and (2.8) in the equation (2.9), we will get the 

following set of equations, for different values of 𝑘, we will get the following tridiagonal system 

of equations, 

 

�⃗�(1)[𝑛] = 

(

 
 
 
 
 
 
 

𝑎𝑛,1
(1)

𝑎𝑛,2
(1)

𝑎𝑛,3
(1)

..

..

𝑎𝑛,𝑛−1
(1)

𝑎𝑛,𝑛
(1)

)

 
 
 
 
 
 
 

and�⃗⃗�[𝑛] =  

(

 
 
 
 
 

∅1
′ (𝑥𝑛)

∅2
′ (𝑥𝑛)

∅3
′ (𝑥𝑛)
..
..

∅𝑛−1
′ (𝑥𝑛)

∅𝑛
′ (𝑥𝑛) )

 
 
 
 
 

 =  

(

 
 
 
 
 

0
0.
..
.
0

𝐹 − 𝐷
2𝐷 )

 
 
 
 
 

 

Similarly, in order to find the weighting coefficients of order 𝑛  where 𝑛 ≥ 2 , is given as 

following from [37], given as follows, 

𝑎𝑖𝑗
(𝑟)
= 𝑟 [𝑎𝑖𝑗

(1)𝑎𝑖𝑖
(𝑟−1) − 

𝑎𝑖𝑗
(𝑟−1)

𝑥𝑖−𝑥𝑗
],   for 𝑖 ≠ 𝑗 

𝑎𝑖𝑖
(𝑟)

  = - ∑ 𝑎𝑖𝑗
(𝑟)𝑁

𝑗=1,𝑗≠𝑖    ,   for 𝑖 = 𝑗 
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So, with the help of the above-mentioned equations 2𝑛𝑑 and higher-order weighting coefficients 

can be easily obtained.               

 

2.3. Implementation of method modified cubic Hyperbolic B-spline DQM 

 

Since considered 1-D coupled non-linear Burgers' equation is given as follows: 

𝑢𝑡 + 𝛿𝑢𝑥𝑥+ 𝜂𝑢𝑢𝑥+ 𝛼(𝑢𝑣)𝑥= 0 

𝑣𝑡 + 𝜇𝑣𝑥𝑥+ 𝜉𝑣𝑣𝑥 + 𝛽(𝑢𝑣)𝑥= 0 

 

So firstly, the spatial derivatives of first and second-order given in equations (1.1) and (1.2) will 

be discretized by implementing the proposed scheme i.e., modified cubic Hyperbolic B-spline 

DQM. After this implementation, a system of ordinary differential equations (non-linear) will be 

obtained as follows: 
𝑑𝑢

𝑑𝑡
 =- 𝛿 ∑ 𝑎𝑖𝑗

(2) 𝑢(𝑥𝑗)
𝑛
𝑗=1  – 𝜂𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1  

- 𝛼[𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗
(1) 𝑣(𝑥𝑗)

𝑛
𝑗=1 + 𝑣(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1 ]  (2.10) 

 
𝑑𝑣

𝑑𝑡
 =- 𝜇 ∑ 𝑎𝑖𝑗

(2) 𝑣(𝑥𝑗)
𝑛
𝑗=1  – 𝜉𝑣(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑣(𝑥𝑗)
𝑛
𝑗=1  

-  𝛽 [𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗
(1) 𝑣(𝑥𝑗)

𝑛
𝑗=1 + 𝑣(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1 ]               (2.11) 

 

This resulting system of ODEs will be solved by the SSP-RK43 scheme [55],and two types of 

errors have been discussed in the paper, the errors between exact solutions and the approximate 

solutions, given by norms, 

𝐿2 = (ℎ ∑ |𝑈𝑗
𝑒𝑥𝑎𝑐 − 𝑈𝑗

𝑁|
2𝑁

𝑗=1 )
1

2 

𝐿∞ =  max
𝑗
|𝑈𝑗

𝑒𝑥𝑎𝑐 − 𝑈𝑗
𝑁| 

 

3.Numerical Experiments and Discussion 

In this section, three examples are discussed for checking the effectiveness and accuracy of the 

proposed scheme. In Example 1, a graphical representation of the numerical solution of both u 

and v components is given with mentioned parameters at different time levels. In Example 1, no 

exact solution is given;the only discussion about the numerical solution is presented. In example 

2, 𝐿2and 𝐿∞ errors are calculated for different grid points in order to check the accuracy of the 

present method, comparison with the previous scheme is also presented as well as this example is 

discussed by means of tables and graphs. In Example 3, a comparison with previous schemes is 

also presented given in the form of tables and figures.     

 

Example1.Considered coupled 1-D non-linear Burgers' equation given as follows [9,10].  

𝑢𝑡 + 𝛿𝑢𝑥𝑥+ 𝜂𝑢𝑢𝑥+ 𝛼(𝑢𝑣)𝑥= 0 

𝑣𝑡 + 𝜇𝑣𝑥𝑥+  𝜉𝑣𝑣𝑥 + 𝛽(𝑢𝑣)𝑥= 0 

By setting 𝛿 = -1 and  𝜇 = -1 in above equations, the following set of equations will be obtained  

 𝑢𝑡 - 𝑢𝑥𝑥+ 𝜂𝑢𝑢𝑥+ 𝛼(𝑢𝑣)𝑥= 0      (3.1) 

𝑣𝑡 - 𝑣𝑥𝑥+  𝜉𝑣𝑣𝑥 + 𝛽(𝑢𝑣)𝑥= 0(3.2) 

Where,𝜂, 𝜉, 𝛼, 𝛽 all can be selected arbitrarily, initial conditions are given as following from 

[14], 
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𝑢(𝑥, 0) ={
sin(2𝜋𝑥) ,    𝑥 𝜖 [0, 0.5]
0,                 𝑥 𝜖 (0.5, 1]

(3.3) 

 

     𝑣(𝑥, 0) = {
0,                    𝑥 𝜖 [0, 0.5]

− sin(2𝜋𝑥) , 𝑥 𝜖 (0.5, 1] 
(3.4) 

Boundary conditions are all zero. 

In Figure 1, Numerical solutions of u and v components are shown at different 𝑡 = 0.1, 0.2, 0.3, 

0.4 for 𝑁 = 20, 𝜂 = 1, 𝜉 = 5, 𝛼 = 10, 𝛽 = 10 𝑎𝑡 ∆𝑡 = 0.001.In Figure 2, graphical representation 

of numerical solutions of both u and v components is given at 𝑡 = 0.1, 0.2, 0.3 and 0.4 for the 

parameters 𝑁  = 20, 𝜂 = 10, 𝜉 = 10, 𝛼  = 100, 𝛽 = 100  and ∆𝑡  = 0.001.In Figure 3, graphical 

representation of numerical solutions of both u and v components is given at 𝑡 = 0.1, 0.2, 0.3 and 

0.4 for the parameters 𝑁 = 20, 𝜂 = 100, 𝜉 = 100, 𝛼 = 100, 𝛽 = 100 and ∆𝑡 = 0.001.In Figure 4, 

graphical representation of numerical solutions of u component in different forms like, mesh and 

surface is given for the mentioned parameters in figure.In Figure 5, graphical representation of 

numerical solutions of 𝑣 component in different forms like, mesh and surface is given for the 

mentioned parameters in figure.In Figure 6, graphical representation of numerical solutions of 

both 𝑢 and 𝑣 components is given at 𝑡 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively, for the parameters 

𝑁  = 100, 𝜂 = 100, 𝜉 = 100, 𝛼  = 100, 𝛽 = 100  and ∆𝑡  = 0.001.In Figure 7, graphical 

representation of numerical solutions of both 𝑢 and 𝑣 components is given at 𝑡 = 0.1, 0.2, 0.3, 

0.4 and 0.5 respectively, for the parameters 𝑁 = 100, 𝜂 = 10, 𝜉 = 10, 𝛼 = 100, 𝛽 = 100 and ∆𝑡 
= 0.001. 

 

 

 
FIGURE 1. 
Graphical representation of Numerical solution of u(x, t) and v(x, t) for N = 20, 𝜼 =   𝟏, 𝝃 =       𝟓, 𝜶 = 𝟏𝟎, 𝜷 =
𝟏𝟎, ∆t = 0.001 at time levels t = 0.1, 0.2, 0.3 and 0.4 respectively 
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FIGURE 2. 
Graphical representation of Numerical solution of u(x, t) and v(x, t) for N = 20, 𝜼 = 𝟏𝟎, 𝝃 = 𝟏𝟎,𝜶 = 𝟏𝟎𝟎,𝜷 =
𝟏𝟎𝟎, ∆t = 0.001 at time levels t = 0.1, 0.2, 0.3 and 0.4respectively 

 

 

 
FIGURE 3. 
Graphical representation of Numerical solution of u(x, t) and v(x, t) for N = 20,𝜼 = 𝟏𝟎𝟎 , 𝝃 = 𝟏𝟎𝟎,𝜶 =
𝟏𝟎𝟎, 𝜷 = 𝟏𝟎𝟎, ∆t = 0.001 at time levels t = 0.1, 0.2, 0.3and 0.4 respectively 
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FIGURE 4. 
Graphical representation of Numerical solution of u(x, t) for 𝜼 = 𝟏𝟎, 𝝃 = 𝟏𝟎, 𝜶 = 𝟏𝟎, 𝜷 = 𝟏𝟎, ∆t = 0.001 at time 

levels t = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively 

 

 
FIGURE 5. 
Graphical representation of Numerical solution of v(x, t) for𝜼 = 𝟏𝟎, 𝝃 =  𝟏𝟎, 𝜶 = 𝟏𝟎, 𝜷 = 𝟏𝟎, ∆t = 0.001 at time 

levels t = 0.1, 0.2, 0.3, 0.4and 0.5 respectively 
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FIGURE 6. 
Graphical representation of Numerical solution of u(x, t) and v(x, t) for𝜼 = 𝟏𝟎𝟎, 𝝃 = 𝟏𝟎𝟎, 𝜶 = 𝟏𝟎𝟎, 𝜷 = 𝟏𝟎𝟎, ∆t 

= 0.001 at time levels t = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively 

 

 
FIGURE 7. 
Graphical representation of Numerical solution of u(x, t) and v(x, t) for 𝜼 = 𝟏𝟎, 𝝃 = 𝟏𝟎, 𝜶 = 𝟏𝟎𝟎, 𝜷 = 𝟏𝟎𝟎, ∆t = 

0.001 at time levels t = 0.1, 0.2, 0.3,0.4 and 0.5 respectively 

 

Example 2.By setting the parameters 𝛿 = −1, 𝜇 =  −1 is equations (1.1) and (1.2), following 

coupled equation will be formed given as follows, 

 

𝑢𝑡 = 𝑢𝑥𝑥- 𝜂𝑢𝑢𝑥- 𝛼(𝑢𝑣)𝑥(3.5) 

𝑣𝑡 = 𝑣𝑥𝑥 - 𝜉𝑣𝑣𝑥 - 𝛽(𝑢𝑣)𝑥   (3.6) 

 

Exact solution was given by Kaya[2] for equations (3.5) and (3.6) is given as follows, 

𝑢(𝑥, 𝑡) = 𝑎0 - 2A 
(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh [𝐴(𝑥 − 2𝐴𝑡)](3.7) 

𝑣(𝑥, 𝑡) =𝑎0
2 𝛽−1

2 𝛼−1
 - 2A 

(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh[𝐴(𝑥 − 2𝐴𝑡)](3.8) 



Turkish Journal of Computer and Mathematics Education   Vol.13 No.02 (2022), 875-904 

 

 

888 

 

 
 

Research Article   
 

 

Where,𝐴 = 𝑎0
(4 𝛼 𝛽−1)

(2 𝛼−1)
,  

Domain of computation is given as 𝑥 ∈ [−10, 10], 𝑡 >  0 

 

Initial Condition: 

                                       𝑢(𝑥, 0) = 𝑎0- 2𝐴
(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh [𝐴𝑥](3.9) 

 

                        𝑣(𝑥, 0) = 𝑎0
2 𝛽−1

2 𝛼−1
 - 2𝐴

(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh [𝐴𝑥](3.10) 

 

Boundary Conditions: 

            𝑢(−10, 𝑡) =𝑎0 - 2𝐴
(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh [𝐴(−10 − 2𝐴𝑡)](3.11) 

     𝑢(10, 𝑡) =𝑎0 - 2𝐴
(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh [𝐴(10 − 2𝐴𝑡)](3.12) 

𝑣(−10, 𝑡) =𝑎0
(2 𝛽−1)

(2 𝛼−1)
 - 2𝐴

(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh[𝐴(−10 − 2𝐴𝑡)](3.13) 

                   𝑣(10, 𝑡) =𝑎0
(2 𝛽−1)

(2 𝛼−1)
 - 2𝐴

(2 𝛼−1)

(4 𝛼 𝛽−1)
tanh [𝐴(10 − 2𝐴𝑡)](3.14) 

 

In following Table 1, 𝐿2 and 𝐿∞ errors are presented for various grid points.In Table 1, it has 

been observed that on an increasing number of grid points and with the mentioned parameters in 

this Table 1, 𝐿2 𝑎𝑛𝑑 𝐿∞ error norms for both u and v components got reduced.In following Table 

2, 𝐿2  and 𝐿∞  errors are presented for a different number of grid points. In Table 2, for the 

mentioned parameters in the table, on the increasing number of grid points, 𝐿2  and 𝐿∞  error 

norms got reduced for both u and v components. In Table 3, a comparison of errors is given. In 

Table 3, a comparison with Raslan et al. [17] is given, obtained results in the present scheme for 

the mentioned parameters in the table are in good agreement with the compared results. In Table 

4, a comparison of errors for the u-component has been made with Raslan et al. [17], Khater et 

al. [6], and Rashid and Ismail [8]. In Table 4, results obtained by the present method are in good 

compatibility on making a comparison with previous ones. In Table 5, a comparison of errors for 

v-component has been made with Raslan et al. [17], Khater et al. [6], and Rashid and Ismail [8]. 

In Table 5, on making this comparison with previous results, it can be observed that the proposed 

scheme is producing acceptable results. In Table 6, a comparison of errors for the u-component 

has been made with Raslan et al. [17], Mittal and Jiwari [11], and Mittal and Arora [14]. In Table 

7, a comparison of errors for v-component has been made with Raslan et al. [17], Mittal and 

Jiwari [11], and Mittal and Arora [14]. In Figures 8, 9, 10,11, 12, and 13, Graphical 

representations of exact and numerical solutions are given for u, and v components are given for 

mentioned parameters.  In Figure 8,comparison between exact and numerical solutions of 𝑢 and 

𝑣 components is given for ∆𝑡 = 0.001, 𝛼 = 0.1, 𝛽 = 0.3, 𝑁 = 10, 𝑎0 = 0.05 at time level 𝑡 = 0.5.  

In Figure 9 comparison between exact and numerical solutions of 𝑢 and 𝑣 components is given 

for ∆𝑡 = 0.001, 𝛼 = 0.3, 𝛽 = 0.3, 𝑎0= 0.05 𝑁 = 10, 𝑎0  = 0.05 at time level 𝑡 = 0.5. In Figure 10 

comparison between exact and numerical solutions of 𝑢 and 𝑣  components is given for ∆𝑡 =
0.001, 𝛼 = 0.1, 𝛽 = 0.3, 𝑁 = 20, 𝑎0 = 0.05 at time level 𝑡 = 1. In Figure 11 comparison between 

exact and numerical solutions of u and v components is given for ∆𝑡 = 0.001, 𝛼 = 0.3, 𝛽 = 0.3, 

𝑁 = 20, 𝑎0 = 0.05 at time level 𝑡 = 1. In Figure 12 both 𝑢 and 𝑣 components are compared for 

exact and numerical solutions for the parameters ∆𝑡 = 0.001, 𝛼 = 0.1, 𝛽 = 0.3, 𝑎0 = 0.05, 𝑁 = 
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20 at the time levels 𝑡 = 0.5, 1, 1.5, 2, 2.5. In Figure 13 both 𝑢 and 𝑣 components are compared 

for exact and numerical solutions for the parameters ∆𝑡 = 0.001, 𝛼 = 0.1, 𝛽 = 0.5, 𝑎0 = 0.05, 𝑁 

= 30 at the time levels 𝑡 = 0.5, 1, 1.5, 2, 2.5. From all of these figures, it is quite obvious that the 

results produced by the present scheme are in a good match with an exact solution. 

 
TABLE 1. 
𝑳𝟐 and 𝑳∞ errors for u component and v component for ∆t = 0.001, 𝒂𝟎  = 0.05, 𝜶 = 0.1,  𝜷= 0.5 at time level t = 

0.5 for different grid points  
u-component v-component 

Number of grid points 𝑳𝟐 

Error Norm 

𝑳∞ 

Error Norm 

𝑳𝟐 

Error Norm 

𝑳∞ 

Error Norm 

20 3.5244E-4 1.7189E-4 5.9022E-5 3.4779E-5 

30 3.5972E-4 1.7127E-4 5.9590E-5 4.1158E-5 

50 3.4735E-4 1.3212E-4 5.5250E-5 3.3702E-5 

100 3.3457E-4 8.5068E-5 5.3022E-5 2.0973E-5 

120 3.3258E-4 8.5077E-5 5.3037E-5 2.1048E-5 

150 3.3069E-4 8.5084E-5 5.3206E-5 2.1121E-5 

180 3.2950E-4 8.5086E-5 5.3411E-5 2.1178E-5 

200 3.2892E-4 8.5087E-5 5.3542E-5 2.1205E-5 

220 3.2847E-4 8.5087E-5 5.3664E-5 2.1229E-5 

250 3.2793E-4 8.5087E-5 5.3829E-5 2.1260E-5 

 
TABLE 2. 
𝑳𝟐 and 𝑳∞errors for u component and v component for ∆t = 0.001, 𝒂𝟎 = 0.005, 𝜶= 0.1, 𝜷= 0.5 at time level t = 0.5 

for different grid points  
u-component v-component 

Number of grid points 𝑳𝟐 

Error Norm 

𝑳∞ 

Error Norm 

𝑳𝟐 

Error Norm 

𝑳∞ 

Error Norm 

20 2.0508E-6 1.7716E-6 6.3472E-7 6.0000E-7 

30 1.9368E-6 1.8783E-6 5.8195E-7 6.3358E-7 

50 1.5344E-6 1.4926E-6 4.2106E-7 5.0148E-7 

100 1.1437E-6 8.8060E-7 2.4396E-7 2.9510E-7 

120 1.0828E-6 7.5180E-7 2.1082E-7 2.5182E-7 

150 1.0266E-6 6.7947E-7 1.7692E-7 2.061E-7 

180 9.9248E-7 6.8067E-7 1.5400E-7 1.7430E-7 

200 9.7668E-7 6.8108E-7 1.4249E-7 1.5800E-7 

220 9.6445E-7 6.8163E-7 1.3307E-7 1.4447E-7 

250 9.5067E-7 6.8163E-7 1.2178E-7 1.2801E-7 

 
TABLE 3. 
Comparison of 𝑳𝟐 and 𝑳∞errors for∆t = 0.01, 𝜼 = 2,  ξ = 2, α = 0.1 and β = 0.3 at time level t = 1 for different grid 

points  
Raslan et al.  

[17] 

Raslan et al. 

[17] 

Present Method Present Method 



Turkish Journal of Computer and Mathematics Education   Vol.13 No.02 (2022), 875-904 

 

 

890 

 

 
 

Research Article   
 

 

 
u-component v-component u-component v-component 

N 𝑳𝟐 

Error 

Norm 

𝑳∞ 

Error 

Norm 

𝑳𝟐 

Error 

Norm 

𝑳∞ 

Error 

Norm 

𝑳𝟐 

Error 

Norm 

𝑳∞ 

Error 

Norm 

𝑳𝟐 

Error 

Norm 

𝑳∞ 

Error 

Norm 

10 2.92E-4 9.02E-5 1.11E-4 4.54E-5 3.73E-4 1.29E-4 1.53E-4 5.43E-5 

50 3.01E-4 8.23E-5 1.11E-4 4.19E-5 7.06E-4 1.81E-4 3.82E-4 1.08E-4 

100 3.01E-4 8.24E-5 1.12E-4 4.19E-5 6.91E-4 1.81E-4 3.73E-4 1.09E-4 

200 3.02E-4 8.20E-5 1.16E-4 4.20E-5 6.83E-4 1.81E-4 3.69E-4 1.09E-4 

 
TABLE 4. 
Comparison of errors for u components with Raslan et al. [17], Khater et al. [6] and Rashid and Ismail [8] for the 

parameters  𝒂𝟎 = 0.05, N = 16, ∆t = 0.01 at different time levels    
Raslan et al.  

[17] 

Khater et al. [6] Rashid and 

Ismail 

[8] 

Present 

Method 

t 𝜶 𝜷 𝑳𝟐  𝑳∞  𝑳∞  𝑳∞  𝑳𝟐  𝑳∞  
.5 .1 .3 1.51E-4 4.43E-5 1.44E-3 9.62E-4 3.57E-4 1.83E-4 

.5 .3 .3 2.06E-4 6.42E-5 - - 5.21E-4 2.32E-4 

1 .1 .3 2.97E-4 8.44E-5 1.27E-3 1.15E-3 6.57E-4 2.59E-4 

1 .3 .3 4.07E-4 1.19E-4 - - 9.86E-4 3.27E-4 

 

 
TABLE 5. 
Comparison of errors for v components with Raslan et al. [17], Khater et al. [6] and Rashid and Ismail [8] for the 

parameters 𝒂𝟎= 0.05, N = 16, ∆t = 0.01 at different time levels    
Raslan et al. 

[17] 

Khater et 

al. 

[6] 

Rashid and 

Ismail 

[8] 

Present 

Method 

t 𝜶 𝜷 𝑳𝟐  𝑳∞  𝑳∞  𝑳∞  𝑳𝟐  𝑳∞  
0.5 0.1 0.3 5.77E-4 2.34E-5 5.42E-4 3.33E-4 1.94E-4 1.07E-4 

0.5 0.3 0.3 2.06E-4 6.42E-5 - - 5.21E-4 2.32E-4 

1 0.1 0.3 1.13E-4 4.42E-5 1.29E-3 1.16E-3 3.42E-4 1.36E-4 

1 0.3 0.3 4.07E-4 1.19E-4 - - 9.86E-4 3.27E-4 

 

TABLE 6. 
Comparison of errors for u components with Raslan et al. [17], Mittal and Jiwari [11] and Mittal and Arora [14] 

for the parameters 𝒂𝟎= 0.05, N = 21, 𝜼 = 2 , ξ = 2, ∆t = 0.01 at different time levels    
Raslan et al. 

[17] 

Mittal and 

Jiwari[11] 

Mittal and 

Arora  

[14] 

Present 

Method 

t 𝜶 𝜷 𝑳𝟐  𝑳∞  𝑳∞  𝑳∞  𝑳𝟐  𝑳∞  

0.5 0.1 0.3 1.52E-4 4.33E-5 4.17E-5 4.17E-5 3.90E-4 2.12E-4 

0.5 0.3 0.3 2.07E-4 6.10E-5 - - 2.12E-4 2.65E-4 
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1 0.1 0.3 2.98E-4 8.17E-5 8.28E-5 8.26E-5 7.10E-4 7.10E-4 

1 0.3 0.3 4.09E-4 1.17E-4 - - 1.08E-3 3.40E-4 

 
TABLE 7. 
Comparison of errors for v component with Raslan et al. [17], Mittal and Jiwari [11] and Mittal and Arora [14] 

for the parameters 𝒂𝟎= 0.05, N = 21, 𝜼 = 2 , ξ = 2, ∆t = 0.01 at different time levels    
Raslan et al.  

[17] 

Mittal and Jiwari 

[11] 

Mittal and 

Arora [14] 

Present 

Method 

t 𝜶 𝜷 𝑳𝟐  𝑳∞  𝑳∞  𝑳∞  𝑳𝟐  𝑳∞  
0.5 0.1 0.3 5.82E-5 2.32E-5 5.42E-5 1.48E-4 2.16E-4 1.26E-4 

0.5 0.3 0.3 2.07E-4 6.10E-5 - - 5.73E-4 2.65E-4 

1 0.1 0.3 1.14E-4 4.15E-5 1.07E-4 4.77E-4 3.78E-4 1.45E-4 

1 0.3 0.3 4.09E-4 1.17E-4 - - 1.08E-3 3.40E-4 

 

 

 
FIGURE 8. 
Comparison between Exact and Numerical solution of u(x, t) and v(x, t) for parameters ∆𝒕 = 𝟎. 𝟎𝟎𝟏, 𝒂𝟎 = 𝟎. 𝟎𝟓,
𝑵 = 𝟏𝟎, 𝜶 =  𝟎. 𝟏, 𝜷 = 0.3 at time level t = 0.5 
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FIGURE 9. 
Comparison of Exact and Numerical solutions of u and v components for parameters parameters∆𝒕 = 𝟎. 𝟎𝟎𝟏,
𝑵 = 𝟏𝟎, 𝜶 =  𝟎. 𝟑, 𝜷 = 0.3 at time level t = 0.5 

 

 

 

FIGURE 10. 
Comparison between Exact and Numerical solutions of u and v components for parameters parameters∆𝒕 =
𝟎. 𝟎𝟎𝟏, 𝑵 = 𝟐𝟎, 𝜶 =  𝟎. 𝟏, 𝜷 = 0.3 at time level t = 1 
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FIGURE 11. 
Comparison between Exact and Numerical solutions of u and v components for parameters parameters∆𝒕 =
𝟎. 𝟎𝟎𝟏, 𝑵 = 𝟐𝟎, 𝜶 =  𝟎. 𝟑, 𝜷 = 0.3 at time level t = 1 

 

 
FIGURE 12. 
Graphical representation of Exact and Numerical solutions of u and v components for parameters 

parameters     ∆𝒕 = 𝟎. 𝟎𝟎𝟏, 𝑵 = 𝟐𝟎, 𝜶 =  𝟎. 𝟏, 𝜷 = 0.3 at time level t = 0.5, 1, 1.5, 2 and 2.5 
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FIGURE 13. 
Graphical representation of Exact and Numerical solutions of u and v components for parameters 

parameters∆𝒕 = 𝟎. 𝟎𝟎𝟏, 𝑵 = 𝟑𝟎, 𝜶 =  𝟎. 𝟏, 𝜷 = 0.5, 𝒂𝟎 = 𝟎. 𝟓 at time level t = 0.5, 1, 1.5, 2 and 2.5 

 

Example 3.By using the parameters 𝛿 =  −1, 𝜇 =  −1, 𝜂 =  −2, 𝜉 =  −2, 𝛼 =
5

2
𝑎𝑛𝑑 𝛽 = 

5

2
 in 

coupled 1-D equation (1.1) and (1.2), the following system of coupled equation will be obtained, 

𝑢𝑡 - 𝑢𝑥𝑥- 2 𝑢𝑢𝑥+ 
5

2
(𝑢𝑣)𝑥= 0    (3.15) 

𝑣𝑡 - 𝑣𝑥𝑥- 2 𝑣𝑣𝑥 + 
5

2
(𝑢𝑣)𝑥= 0    (3.16) 

 

The analytical solutionof the above-coupled equations ispresented as follows: 

{
𝑢(x, t) =  𝜆 [1 − tanh {

3

2
 𝜆 (𝑥 − 3 𝜆 𝑡)}]

𝑣(x, t)  =  𝜆 [1 − tanh{
3

2
 𝜆 (𝑥 − 3 𝜆 𝑡)}]

,   𝑥 ∈ [-20,20] and 𝑡 >  0(3.17) 

 

Initial conditions: 

𝑢(𝑥, 0) = 𝜆 [1 − tanh {
3

2
 𝜆 𝑥}](3.18) 

𝑣(𝑥, 0) = 𝜆 [1 − tanh {
3

2
 𝜆 𝑥}](3.19) 

 

Boundary Conditions: 

𝑢(−20, 𝑡) = 𝜆 [1 − tanh {
3

2
 𝜆 (−20 − 3 𝜆 𝑡)}](3.20) 

𝑢(20, 𝑡) = 𝜆 [1 − tanh {
3

2
 𝜆 (20 − 3 𝜆 𝑡)}](3.21) 

𝑣(−20, 𝑡) = 𝜆 [1 − tanh{
3

2
 𝜆 (−20 − 3 𝜆 𝑡)}] (3.22) 

𝑣(20, 𝑡) = 𝜆 [1 − tanh{
3

2
 𝜆 (20 − 3 𝜆 𝑡)}](3.33) 

 

In Table 8 and Table 9, a comparison of 𝐿2 and 𝐿∞Errors is given for u-component with [13] for 

the parameters ∆t = 0.001, 𝑁=320at 𝑡 = 1,2 ,3, 4 and 5 for the values of 𝜆 = 0.1 and λ =0.5 

respectively. Errors are not compared for v-component because it can be understood that 𝑢 and 𝑣 

both components are same. In Figure 14, graphical representation of exact and numerical 
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solutions of u-component is given for ∆t = 0.001, 𝑁 = 101 at 𝑡 = 1, 5, 10, 15, 20 and 25 for the 

value of 𝜆 = 0.1. In Figure 15, graphical representation of exact and numerical solutions of u 

component is given for ∆t = 0.001, 𝑁 = 320 at 𝑡 = 1, 3, 5, 7, 9 and 11 for the value of  𝜆 = 0.5. In 

following Figure 16, graphical representation of exact and numerical solutions of u- component 

is given for ∆t = 0.001, 𝑁 = 320 at 𝑡 = 1, 2, 3, 4 and 5 for the value of  𝜆 = 0.1. In Figure 17, a 

comparison between exact and numerical solution of 𝑢(𝑥, 𝑡) is given for the parameters 𝑁 = 320, 

∆t = 0.001, 𝜆 = 0.5 at the 𝑡 = 1, 2, 3, 4 and 5 respectively. In Figure 18, comparison of exact and 

numerical solutions is given for 𝑁= 350, ∆t = 0.001, 𝜆 = 0.1 at Figure 19, analysis of exact and 

numerical solutions of 𝑢(𝑥, 𝑡) is done with the help of graphs for 𝑁 = 350, ∆t =0.001, 𝜆 = 0.5 at 𝑡 
= 0.1, 0.2, 0.3, 0.4 and 0.5. 

 

TABLE 8. 
Errors compared with LBM[13] and FDM [13] with parameters ∆t = 0.001, N = 320 and 𝝀= 0.1 for u-component  

𝑳𝟐 Error Norm 𝑳∞ Error Norm 

t LBM 

[13] 

FDM 

[13] 

Present LBM 

[13] 

FDM 

[13] 

Present 

1 1.4829 × 10−6 1.5724 × 10−6 1.94E-6 5.7788 × 

10−7 

6.2856×10−7 2.58E-6 

2 2.7955 × 10−6 2.9383 × 10−6 2.51E-6 1.0754 × 

10−6 

1.1138×10−6 2.87E-6 

3 3.9298 × 10−6 4.1676 × 10−6 3.01E-6 1.4861 × 

10−6 

1.5879×10−6 3.17E-6 

4 4.9434 × 10−6 5.2504 × 10−6 3.50E-6 1.8800 × 

10−6 

1.9868×10−6 3.48E-6 

5 5.8615 × 10−6 6.1878 × 10−6 3.99E-6 2.2034 × 

10−6 

2.3468×10−6 3.82E-6 

 

TABLE 9. 
Comparison of 𝑳𝟐 and𝑳∞errors for u-component for the parameters ∆t = 0.001, N = 320, 𝝀= 0.5 at the time levels 

t = 1, 2, 3, 4 and 5  
𝑳𝟐 Error Norm  𝑳∞ Error Norm 

Time 

level 

LBM 

[13] 

FDM 

[13] 

Present  LBM 

[13] 

FDM 

[13] 

Present  

1 1.6362 × 

10−4 

1.6930 × 10−4 1.28E-5 6.7505 × 10−4 7.1670×10−4 1.15E-5 

2 1.9746 × 

10−4 

2.0052 × 10−4 2.26E-5 8.1705 × 10−4 8.6540×10−4 1.93E-5 

3 2.0557 × 

10−4 

2.0625 × 10−4 3.19E-5 8.6375 × 10−4 9.1450×10−4 2.65E-5 

4 2.0543 × 

10−4 

2.0466 × 10−4 4.11E-5 8.8160 × 10−4 9.3330×10−4 3.34E-5 

5 2.0231 × 

10−4 

2.0074 × 10−4 5.03E-5 8.9060 × 10−4 9.4110×10−4 4.03E-5 
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FIGURE 14. 
Graphical representation of Exact and Numerical solution of u(x, t) for the parameters ∆t = 0.001, N = 101, 𝝀= 

0.1 at the time levels t = 1, 5, 10, 15, 20 and 25 

 

 

 
FIGURE 15. 
Graphical representation of Exact and Numerical solution of u(x, t) for the parameters ∆t = 0.001, N = 320, 𝝀= 

0.5 at the time levels t = 1, 3, 5, 7, 9 and 11 
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FIGURE 16. 
Graphical representation of Exact and Numerical solution of u(x, t) for the parameters ∆t = 0.001, N = 320, 𝝀= 

0.1 at the time levels t = 1, 2, 3, 4 and 5 

 

 

 
FIGURE 17. 
Graphical representation of Exact and Numerical solution of u(x, t) for the parameters ∆t = 0.001, N = 320, 𝝀= 

0.5 at the time levels t = 1, 2, 3, 4 and 5 
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FIGURE 18. 
Graphical representation of Exact and Numerical solution of u(x, t) for the parameters ∆t = 0.001, N = 350, 𝝀= 

0.1 at the time levels t = 0.1, 0.2, 0.3, 0.4 and 0.5 

 

 
FIGURE 19. 
Graphical representation of Exact and Numerical solution of u(x, t) for the parameters ∆t = 0.001, N = 350, 𝝀= 

0.5 at the time levels t = 0.1, 0.2, 0.3, 0.4 and 0.5 

 

4. Stability of proposed method 

Following [52, 34, and 53], the Stability of Coupled viscous 1D Burgers' equation is discussed as 

follows. Coupled 1D non-linear Burgers' equation is given ahead, 

 

𝑢𝑡 + 𝛿𝑢𝑥𝑥+ 𝜂𝑢𝑢𝑥+ 𝛼(𝑢𝑣)𝑥= 0 

𝑣𝑡 + 𝜇𝑣𝑥𝑥+ 𝜉𝑣𝑣𝑥 + 𝛽(𝑢𝑣)𝑥= 0 

 

By discretizing the above system of 1D coupled equations, the following coupled system will be 

obtained,  
𝑑𝑢

𝑑𝑡
 =- 𝛿 ∑ 𝑎𝑖𝑗

(2) 𝑢(𝑥𝑗)
𝑛
𝑗=1  – 𝜂𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1  
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- 𝛼[𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗
(1) 𝑣(𝑥𝑗)

𝑛
𝑗=1 + 𝑣(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1 ]  (4.1) 

 
𝑑𝑣

𝑑𝑡
 =- 𝜇 ∑ 𝑎𝑖𝑗

(2) 𝑣(𝑥𝑗)
𝑛
𝑗=1  – 𝜉𝑣(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑣(𝑥𝑗)
𝑛
𝑗=1  

-  𝛽 [𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗
(1) 𝑣(𝑥𝑗)

𝑛
𝑗=1 + 𝑣(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1 ]           (4.2) 

 

Discretization of u-component is given as follows   
𝑑𝑢

𝑑𝑡
 = - 𝛿 ∑ 𝑎𝑖𝑗

(2) 𝑢(𝑥𝑗)
𝑛
𝑗=1  – 𝜂𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1  - 𝛼[𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗

(1) 𝑣(𝑥𝑗)
𝑛
𝑗=1 + 𝑣(𝑥𝑖)      

∑ 𝑎𝑖𝑗
(1) 𝑢(𝑥𝑗)

𝑛
𝑗=1 ] 

𝑑𝑢

𝑑𝑡
 = - 𝛿[𝑎𝑖1

(2) 𝑢(𝑥1) + ∑ 𝑎𝑖𝑗
(2) 𝑢(𝑥𝑗)

𝑛−1
𝑗=2 + 𝑎𝑖𝑛

(2) 𝑢(𝑥𝑛)] – 𝜂𝑢(𝑥𝑖)[ 𝑎𝑖1
(1) 𝑢(𝑥1) + ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛−1
𝑗=2 +

         𝑎𝑖𝑛
(1)
 𝑢(𝑥𝑛)] - 𝛼𝑢(𝑥𝑖) [𝑎𝑖1

(1)
 𝑣(𝑥1) + ∑ 𝑎𝑖𝑗

(1)
 𝑣(𝑥𝑗)

𝑛−1
𝑗=2 + 𝑎𝑖𝑛

(1)
 𝑣(𝑥𝑛)]- 𝛼 𝑣(𝑥𝑖) [𝑎𝑖1

(1)
 𝑢(𝑥1) +

          ∑ 𝑎𝑖𝑗
(1) 𝑢(𝑥𝑗)

𝑛−1
𝑗=2 + 𝑎𝑖𝑛

(1) 𝑢(𝑥𝑛)] 

 
𝑑𝑢

𝑑𝑡
 = - 𝛿[∑ 𝑎𝑖𝑗

(2) 𝑢(𝑥𝑗)
𝑛−1
𝑗=2 ] – 𝜂𝑢(𝑥𝑖)[ ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛−1
𝑗=2 ] - 𝛼𝑢(𝑥𝑖) [∑ 𝑎𝑖𝑗

(1) 𝑣(𝑥𝑗)
𝑛−1
𝑗=2 ] - 𝛼 𝑣(𝑥𝑖) 

        [∑ 𝑎𝑖𝑗
(1) 𝑢(𝑥𝑗)

𝑛−1
𝑗=2 ]+ 𝐹𝑖        (4.3) 

 

where 𝐹𝑖= - 𝛿[𝑎𝑖1
(2) 𝑢(𝑥1) + 𝑎𝑖𝑛

(2) 𝑢(𝑥𝑛)] – 𝜂𝑢(𝑥𝑖)[ 𝑎𝑖1
(1) 𝑢(𝑥1) + 𝑎𝑖𝑛

(1) 𝑢(𝑥𝑛)] - 𝛼𝑢(𝑥𝑖)     

                   [𝑎𝑖1
(1) 𝑣(𝑥1) + 𝑎𝑖𝑛

(1) 𝑣(𝑥𝑛)]- 𝛼 𝑣(𝑥𝑖) [𝑎𝑖1
(1) 𝑢(𝑥1) + 𝑎𝑖𝑛

(1) 𝑢(𝑥𝑛)]  

 

Discretization of v-component is given as follows, 
𝑑𝑣

𝑑𝑡
 = - 𝜇[∑ 𝑎𝑖𝑗

(2)
 𝑣(𝑥𝑗)

𝑛
𝑗=1 ] – 𝜉𝑣(𝑥𝑖) [∑ 𝑎𝑖𝑗

(1)
 𝑣(𝑥𝑗)

𝑛
𝑗=1 ] 

-  𝛽 [𝑢(𝑥𝑖) ∑ 𝑎𝑖𝑗
(1) 𝑣(𝑥𝑗)]

𝑛
𝑗=1  - 𝛽𝑣(𝑥𝑖)[ ∑ 𝑎𝑖𝑗

(1) 𝑢(𝑥𝑗)
𝑛
𝑗=1 ] 

 
𝑑𝑣

𝑑𝑡
 = - 𝜇[𝑎𝑖1

(2) 𝑣(𝑥1) + ∑ 𝑎𝑖𝑗
(2) 𝑣(𝑥𝑗)

𝑛−1
𝑗=2 + 𝑎𝑖𝑛

(2) 𝑣(𝑥𝑛)] – 𝜉𝑣(𝑥𝑖) [𝑎𝑖1
(1) 𝑣(𝑥1) + ∑ 𝑎𝑖𝑗

(1) 𝑣(𝑥𝑗)
𝑛−1
𝑗=2 +

           𝑎𝑖𝑛
(1) 𝑣(𝑥𝑛)] - 𝛽𝑢(𝑥𝑖) [𝑎𝑖1

(1) 𝑣(𝑥1) + ∑ 𝑎𝑖𝑗
(1) 𝑣(𝑥𝑗) + 𝑎𝑖𝑛

(1) 𝑣(𝑥𝑛)]
𝑛−1
𝑗=2  - 𝛽𝑣(𝑥𝑖)[ 𝑎𝑖1

(1) 𝑢(𝑥1) +

           ∑ 𝑎𝑖𝑗
(1)
 𝑢(𝑥𝑗)

𝑛−1
𝑗=2 + 𝑎𝑖𝑛

(1)
 𝑢(𝑥𝑛)] 

𝑑𝑣

𝑑𝑡
 = - 𝜇[∑ 𝑎𝑖𝑗

(2)
 𝑣(𝑥𝑗)

𝑛−1
𝑗=2 ] – 𝜉𝑣(𝑥𝑖) [∑ 𝑎𝑖𝑗

(1)
 𝑣(𝑥𝑗)

𝑛−1
𝑗=2 ] - 𝛽𝑢(𝑥𝑖) [∑ 𝑎𝑖𝑗

(1)
 𝑣(𝑥𝑗)]

𝑛−1
𝑗=2  - 𝛽𝑣(𝑥𝑖)[     

∑ 𝑎𝑖𝑗
(1) 𝑢(𝑥𝑗)

𝑛−1
𝑗=2 ] + 𝐺𝑖        (4.4) 

where 𝐺𝑖 =      - 𝜇[𝑎𝑖1
(2) 𝑣(𝑥1) + 𝑎𝑖𝑛

(2) 𝑣(𝑥𝑛)] – 𝜉𝑣(𝑥𝑖) [𝑎𝑖1
(1) 𝑣(𝑥1) + 𝑎𝑖𝑛

(1) 𝑣(𝑥𝑛)] - 𝛽𝑢(𝑥𝑖)  

[𝑎𝑖1
(1) 𝑣(𝑥1) + 𝑎𝑖𝑛

(1) 𝑣(𝑥𝑛)] - 𝛽𝑣(𝑥𝑖)[ 𝑎𝑖1
(1) 𝑢(𝑥1) + 𝑎𝑖𝑛

(1) 𝑢(𝑥𝑛)] 

• 𝑈 =  (𝑢, 𝑣)’ 

• 𝑢 = (𝑢2, 𝑢3, 𝑢4, …….., 𝑢𝑛−1) and  𝑣 = (𝑣2, 𝑣3, 𝑣4, …….., 𝑣𝑛−1) 

• 𝐴2= [𝑎𝑖𝑗
(2)

] and𝐴1 = [𝑎𝑖𝑗
(1)

] 

• 
𝑑𝑈

𝑑𝑡
 = BU + H, H = (F, G)’, F = [𝐹𝑖], G = [𝐺𝑖] 

• 𝐵 = [
𝐴 0
0 𝐴∗

] 
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[

𝑑𝑢

𝑑𝑡
𝑑𝑣

𝑑𝑡

] =  [
𝐴 0
0 𝐴∗

] [
𝑢
𝑣
] + [

𝐹𝑖
𝐺𝑖
] 

where 

𝐴 = −𝛿𝐴2 - (𝜂𝑢𝑖 + 𝛼𝑢𝑖 + 𝛼𝑣𝑖)𝐴1 

 

and 

𝐴∗= −𝜇𝐴2 - (𝜉𝑢𝑖 + 𝛽𝑢𝑖 +  𝛽𝑣𝑖)𝐴1 

Stability of this proposed scheme depends upon the stability of the matrix B. Stability of 

the proposed scheme is checked with the Matrix stability analysis methodpresented in 

following Figure 20 for different grid points.  

 

 

FIGURE 20: STABILITY OF PROPOSED SCHEME 

 

5. Conclusion 

In the present paper, modified cubic Hyperbolic B-spline based Differential quadrature method is 

implemented to obtain the numerical solution of coupled 1D non-linear viscous Burgers' 

equation. Modified cubic Hyperbolic B-spline is used as the test function to get the weighting 

coefficients by using DQM; obtained set of ODEs is solved by using the SSP-RK43 scheme. The 

effectiveness of the proposed scheme got checked with the help of three test examples. In order 

to check the accurateness of the proposed scheme, obtained results are presented in the form of 

Tables and Figures. It has been observed that on making the comparison with previous numerical 

results and with exact solutions, the present scheme is acceptable. The stability of the proposed 
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scheme is also discussed with the help of the Matrix stability analysis method, which shows that 

the present developed scheme is unconditionally stable. 

 

Conflict of Interest - Authors have no conflict of interest. 

Data availability statement- All data is included within the manuscript. 

References 

 

1. Esipov SE, (1995),"Coupled Burgers equations: a model of polydispersive 

sedimentation.", Physical Review E, 52(4), 3711. 

2. Kaya D, (2001),"An explicit solution of coupled viscous Burgers' equation by the 

decomposition method.", International Journal of Mathematics and Mathematical 

Sciences, 27(11), 675-680. 

3. Soliman A A, (2006),"The modified extended tanh-function method for solving Burgers-

type equations.", Physica A: Statistical Mechanics and its Applications, 361(2), 394-404. 

4. AbdouM A and Soliman AA, (2005),"Variational iteration method for solving Burger's 

and coupled Burger's equations.", Journal of Computational and Applied 

Mathematics, 181(2), 245-251. 

5. WeiG W and Gu Y, (2002),"Conjugate filter approach for solving Burgers' 

equation.",  Journal of Computational and Applied Mathematics, 149(2), 439-456. 

6. Khater A H, Temsah R S and Hassan M M, (2008), "A Chebyshev spectral collocation 

method for solving Burgers’-type equations.", Journal of Computational and Applied 

Mathematics, 222(2), 333-350. 

7. Dehghan M, Hamidi A andShakourifar M, (2007),"The solution of coupled Burgers' 

equations using Adomian–Pade technique." Applied Mathematics and 

Computation, 189(2), 1034-1047. 

8. Rashid A and Ismail A I B M, (2009),"A Fourier pseudospectral method for solving 

coupled viscous Burgers equations." Computational Methods in Applied Mathematics 

Comput. Methods Appl. Math., 9(4), 412-420. 

9. Srivastava V K, Awasthi M K andTamsir M, (2013),"A fully implicit Finite-difference 

solution to one dimensional Coupled Nonlinear Burgers' equations.", Int. J. Math. 

Sci, 7(4), 23. 

10. Srivastava V K, Tamsir M, Awasthi M K and Singh S, (2014),"One-dimensional coupled 

Burgers' equation and its numerical solution by an implicit logarithmic finite-difference 

method." Aip Advances, 4(3), 037119. 

11. MittalR C and Jiwari R, (2012),"Differential quadrature method for numerical solution of 

coupled viscous Burgers' equations.", International Journal for Computational Methods 

in Engineering Science and Mechanics, 13(2), 88-92. 

12. Srivastava V K, Awasthi M K,Tamsir M and Singh S, (2013) "An Implicit Finite-

Difference Solutiontoone-dimensionalcoupled Burgers'Equations." Asian-European 

Journal of Mathematics, 6(04), 1350058. 

13. LaiH and Ma C, (2014),"A new lattice Boltzmann model for solving the coupled viscous 

Burgers' equation.", Physica A: Statistical Mechanics and its Applications, 395, 445-457. 



Turkish Journal of Computer and Mathematics Education   Vol.13 No.02 (2022), 875-904 

 

 

902 

 

 
 

Research Article   
 

 

14. Mittal R C and Arora G, (2011),"Numerical solution of the coupled viscous Burgers' 

equation.", Communications in Nonlinear Science and Numerical Simulation, 16(3), 

1304-1313. 

15. MokhtariR,Toodar A S,Chegini N G, (2011),"Application of the Generalized Differential 

Quadrature Method in Solving Burgers' Equations.", Communications in Theoretical 

Physics, 56(6), 1009. 

16. Salih H M,Tawfiq L N M and Yahya Z R, (2016),"Numerical Solution of the Coupled 

Viscous Burgers' Equation via Cubic Trigonometric B-spline Approach.", Math 

Stat, 2(011). 

17. Raslan K R, El-Danaf T S and Ali K K, (2017),"Collocationmethodwith Quintic B-

Splinemethodforsolvingcoupled Burgers' equations.", Far East Journal of Applied 

Mathematics, 96(1), 55. 

18. Liu F, Wang Y and Li S, (2018),"Barycentric interpolation collocation method for 

solving the coupled viscous Burgers' equations.", International Journal of Computer 

Mathematics, 95(11), 2162-2173. 

19. Li Q, Chai Z and Shi B, (2015),"A novel lattice Boltzmann model for the coupled viscous 

Burgers' equations.", Applied Mathematics and Computation, 250, 948-957. 

20. Bhatt H P, Khaliq A Q M, (2016),"Fourth-order compact schemes for the numerical 

simulation of coupled Burgers' equation.", Computer Physics Communications, 200, 117-

138. 

21. Bellman R, Kashef B G and Casti J, (1972),"Differential quadrature: a technique for the 

rapid solution of non-linear partial differential equations,", J. Comput. Phys. 1, 

 40–52. 

22. Quan J R, Chang C T, (1989),"New insights in solving distributed system equations by 

the quadrature methods-I", Comput. Chem. Eng. 13, 779–788. 

23. Quan J R, Chang C T, (1989),"New insights in solving distributed system equations by 

the quadrature methods-II", Comput. Chem. Eng. 13, 1017–1024. 

24. Shu C, Richards B E, (1990), "High resolution of natural convection in a square cavity by 

generalized differential quadrature", in: Proceedings of third Conference on Adv. Numer. 

Methods Eng. Theory Appl. Swansea, UK, 2, 978–985. 

25. Shu C, (1991), "Generalized differential-integral quadrature and application to the 

simulation of imcompressible viscous flows including parallel computation",Ph.D. thesis, 

Univ. of Glasgow, UK. 

26. Civalek Ö, (2004),"Application of differential quadrature (DQ) and harmonic differential 

quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic 

columns.", Engineering Structures, 26(2), 171-186. 

27. Zhong H, (2004),"Spline-based differential quadrature for fourth order differential 

equations and its application to Kirchhoff plates.", Applied Mathematical 

Modelling, 28(4), 353-366. 

28. Zhong H and Lan M, (2006)," Solution of non-linear initial-value problems by the spline-

based differential quadrature method.", Journal of Sound and Vibration, 296(4-5), 908-

918. 



Turkish Journal of Computer and Mathematics Education   Vol.13 No.02 (2022), 875-904 

 

 

903 

 

 
 

Research Article   
 

 

29. Tamsir M, Srivastava V K andJiwari R, (2016),"An algorithm based on exponential 

modified cubic B-spline differential quadrature method for non-linear Burgers' 

equation.", Applied Mathematics and Computation, 290, 111-124. 

30. Korkmaz A and Dağ, İ, (2011),"Shock wave simulations using sinc differential 

quadrature method.", Engineering Computations, 28(6), 654-674. 

31. KorkmazA and Dag I, (2011),"Polynomial based differential quadrature   method for 

numerical solution of non-linear Burgers' equation.", Journal of the Franklin 

Institute, 348(10), 2863-2875. 

32. Korkmaz A, Aksoy A M and Dag I, (2011),“Quartic B-spline  

differential quadrature method.", Int. J. Nonlinear Sci, 11(4), 403-411. 

33. Arora G and Singh BK, (2013),"Numerical solution of Burgers' equation with modified 

cubic B-spline differential quadrature method." Applied Mathematics and 

Computation, 224, 166-177. 

34. AroraG and Joshi V, (2018),"A computational approach using modified trigonometric 

cubic B-spline for numerical solution of Burgers' equation in one and two 

dimensions.", Alexandria Engineering Journal, 57(2), 1087-1098. 

35. Mittal R C and Dahiya S, (2017),"Numerical simulation of three-dimensional telegraphic 

equation using cubic B-spline differential quadrature method.", Applied Mathematics and 

Computation, 313, 442-452. 

36. Mittal R C andJiwari R, (2012),"A differential quadrature method for numerical solutions 

of Burgers'-type equations." International Journal of Numerical Methods for Heat & 

Fluid Flow, 22(7), 880-895. 

37. Jiwari R, Mittal R C and Sharma K K, (2013),"A numerical scheme based on weighted 

average differential quadrature method for the numerical solution of Burgers' 

equation.", Applied Mathematics and Computation, 219(12), 6680-6691. 

38. Shukla H S, Tamsir M, Jiwari R and Srivastava V K, (2018),"A numerical algorithm for 

computation modelling of 3D non-linear wave equations based on exponential modified 

cubic B-spline differential quadrature method.", International Journal of Computer 

Mathematics, 95(4), 752-766. 

39. Jiwari R, Pandit S and Mittal R C, (2012),"Numerical simulation of two-dimensional 

sine-Gordon solitons by differential quadrature method.", Computer Physics 

Communications, 183(3), 600-616. 

40. Mittal R C andJiwari R, (2011), "Numerical solution of two-dimensional reaction–

diffusion Brusselator system.", Applied Mathematics and Computation, 217(12), 5404-

5415. 

41. Korkmaz A, (2010),"Numerical algorithms for solutions of Korteweg–de Vries 

equation.", Numerical methods for partial differential equations, 26(6), 1504-1521. 

42. Tomasiello S, (1998),"Differential quadrature method: application to initial-boundary-

value problems.", Journal of Sound and Vibration, 218(4), 573-585. 

43. Tomasiello S, (2011), "Numerical stability of DQ solutions of wave problems", 

Numerical Algorithms, Vol. 57 No. 3, pp. 289-312. 

44.  Al KaisyAM, Esmaeel RA and Nassar MM, (2007), "Application of the differential 

quadrature method to the longitudinal vibration of non-uniform rods", Engineering 

Mechanics, Vol. 14 No. 5, pp. 303-10. 



Turkish Journal of Computer and Mathematics Education   Vol.13 No.02 (2022), 875-904 

 

 

904 

 

 
 

Research Article   
 

 

45.  Hsu MH, (2009), "Differential quadrature method for solving hyperbolic heat conduction 

problems", Tamkang Journal of Science and Engineering, Vol. 12 No. 3, pp. 331-8. 

46. NeeJ and Duan J, (1998),"Limit set of trajectories of the coupled viscous Burgers' 

equations.", Applied mathematics letters, 11(1), 57-61. 

47. Mainar E, Pena J M and Sanchez-Reyes  J, (2001), "Shape preserving alternatives to the 

rational Bézier model", Computer aided geometric design, 18(1), 37-60. 

48. Yu H and Guozhao W, (2005), "Constructing a quasi-Legendre basis based on the C-

Bézier basis", Progress in Natural Science, 15(6), 559-63. 

49. Wei Y W and Wang G Z, (2014), "An orthogonal basis for non-uniform algebraic-

trigonometric spline space", Applied Mathematics-A Journal of Chinese 

Universities, 29(3), 273-82. 

50. Nouisser O, Sbibih D and Sablonniere P, (2003), "A family of spline quasi-interpolants 

on the sphere", Numerical Algorithms, 33(1-4), 399-413. 

51. Maes J and Bultheel A, (2007), "Modeling Genus Zero Closed Manifolds with      

Spherical Powell-Sabin B-splines", Computer Aided Geometric Design 24 79-89. 

52. Singh B K and Kumar P, (2016), "A novel approach for numerical computation of 

Burgers' equation in (1+ 1) and (2+ 1) dimensions", Alexandria Engineering 

Journal, 55(4), 3331-3344. 

53. Jain M K, (1983), "Numerical solution of differential equations", 2nd edition., Wiley, 

New York, NY 

54. Amirfakhrian M and Nouriani H, (2011), "Interpolation by hyperbolic B-spline 

functions" 

55. Spiteri R J and Rutth S J, (2002), "A new class of optimal high -order strong stability 

preserving time discretization methods", SIAM J. NUMER. ANAL., 40(2), pp. 469-491 

 

 

 

 

 

 

 

 

 

 

 

 


