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1. INTRODUCTION AND PRELIMINARIES: 

A metric space is just a non-empty set X associates with a function d  of two variables 

enabling us to measure the distance between points. In advanced mathematics, we need to 

find the distance not only between numbers and vectors, but also between more complicated 

objects like sequences, sets and functions. In order to find appropriate concepts of a metric 

space, numerous approaches exist in this sphere. Thus, new notions of distance lead to new 

notions of convergence and continuity. A number of generalizations of a metric space have 

been discussed by many eminent mathematicians. Mustafa and Sims [15] introduced the 

notion of a G-metric space and suggested an important generalization of a metric space as 

follows. 

 

Definition 1.1[15]The pair ( , )X G is called a G-metric space if X  is a nonempty set and d  

is a G-metric on X  . That is, 
3: [0, )G X    such that for all 1 2 3, , , ,x x x a X  we have  

(i) 1 2 3( , , ) 0G x x x   if and only if 1 2 3x x x   

(ii) 1 1 3( , , ) 0G x x x   with 1 2x x  

(iii) 1 1 2 1 2 3( , , ) ( , , )G x x x G x x x  for all with 2 3x x  

(iv)  

(v) 1 2 3 1 2 3( , , ) ( , , ) ( , , )G x x x G x a a G a x x   
 

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )G x x x G x x x G x x x G x x x G x x x G x x x    
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Example 1.1[15] Let ( , )X d  be a metric space. Define 3: [0, )G X   by 

1 2 2 3 3 1
1 2 3

( , ) ( , ) ( , )
( , , )

3

d x x d x x d x x
G x x x

 
 , Then ( , )X G  is a G-metric space. 

Recently, some authors studied some important fixed point theorems with application 

in G-metric space. In 2012, Sedghi et al. [18] introduced a new generalized metric space 

called an S-metric space.  

 

Definition 1.2 [18] The pair ( , )X d  is called an S-metric space if X  is a nonempty set and 
3: [0, )d X    such that for all 1 2 3, , ,x x x X  we have 

(i) 1 2 3( , , ) 0d x x x   

(ii) 1 2 3 1 2 3( , , ) 0d x x x x x x     

(iii) 1 2 3 1 1 2 2 3 3( , , ) ( , , ) ( , , ) ( , , )d x x x d x x a d x x a d x x a    

 

Example 1.2[18] Let   be the real line. Then ( , , )S x y z x y y z     for all , ,x y z  is 

an S-metric on . This S-metric is called the usual S-metric on .  

Abbas et. al. [1] established the notion of A-metric spaces, a generalization of S-

metric spaces. 

 

Definition 1.3 [1]The pair ( , )X d  is called an A-metric space if X  is a nonempty set and 

: [0, )nd X    such that for all , , 1,2,..., ,ia x X i n   we have 

(i) 1 2 1( , ,..., , ) 0n nd x x x x   

(ii) 1 2 1 1 2 1( , ,..., , ) 0 ...n n n nd x x x x x x x x        

(iii) 1 2 1 1 1 1 2 2 2 1 1 1( , ,..., , ) ( , ,..., , ) ( , ,..., , ) ... ( , ,..., , ) ( , ,..., , )n n n n n n n n nd x x x x d x x x x d x x x a d x x x a d x x x a       

 

Example 1.3[1] Let X   . Define the function : [0, )nA X    by

1 2 3

1

( , , ,..., )
n

n i i

i i j

A x x x x x y
 

  , then ( , )X A  is called then usual A-metric space. 

Fixed point theorems have been studied in many contexts, one of which is the fuzzy setting. 

The concepts of fuzzy sets were initially introduced by Zadeh[22] in 1965. To use this 

concept in topology and analysis, the theory of fuzzy sets and its applications have been 

developed by eminent authors. It is well known that a fuzzy metric space is an important 

generalization of a metric space.Many authors have introduced fuzzy metric spaces in 

different ways. For instance, George and Veeramani [7] modified the concept of a fuzzy 

metric space introduced by Kramosil and Michalek [12] and define the Hausdorff topology of 

a fuzzy metric space. 

 

Definition 1.4 [17]A t-norm *  is a function :[0,1] [0,1] [0,1]    such that for all 

, , , [0,1],a b c d  the following are satisfied: 

(i) *1a a  (1 acts as the identity element) 

(ii) * *a b b a  (symmetry) 

(iii) * *a b c d  whenever a c  and b d  (non-deceasing) 

(iv) *( * ) ( * )*a b c a b c  (associative). 
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Definition 1.5 [12]The 3-tuple   , ,X M T  is known as fuzzy metric space (shortly, FM-

space) if X is an any set, T is a continuous t-norm, and M is a fuzzy set in (0, )X X    

satisfying the following conditions for all , ,x y z X and , 0;s t           (i)  

 , ,0 0,M x y 
          

(ii)

 , , 1M x y t    if and only if ,x y          

(iii)    , , , , ,M x y t M y x t         (iv) 

      , , , , , , , ,T M x y t M y z s M x z t s 
      

(v)

( , , ) : [0, ) [0,1]M x y   is continuous.      Informally, 

we can think of ( , , )M x y t  as the degree of nearness between x  and y with respect to t  . 

 

Example 1.4[7]Let ( , )X d  be a metric space. Define the t-norm *a b ab  or

* min{ , }.a b a b  For all , , 0,x y X t   let ( , , ) .
( , )

t
M x y z

t d x y



Then ( , ,*)X M  is a 

fuzzy metric space. 

 

Lemma 1.1 [14]Let ( , ,*)X M  be a fuzzy metric space. If there exist (0,1)k  such that, for 

all ,x y X  and 0,t  ( , , ) ( , , )M x y kt M x y t   then .x y     

In the process of generalization of fuzzy metric spaces, Sun and Yang [21] coined the notion 

of G-fuzzy metric space and established common fixed point theorems for four mappings. 

 

Definition 1.6 [21] The 3-tuple   , ,X V T  is known as fuzzy metric space (shortly, GF-

space) if X is an any set, T is a continuous t-norm, and G is a fuzzy set in (0, )X X X     

satisfying the following conditions for all , ,x y z X and , 0;s t     (i)    

 , , , 0,G x x y t   with ,x y         (ii)    

   , , , , , ,G x x y t G x y z t with ,y z         (iii) 

( , , , ) 1G x y z t  if and only if ,x y z        (iv)    

( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , ),G x y z t G x z y t G y x z t G z x y t G y z x t G z y x t      (v)    

      , , , , , , , , , , ,T G x a a t G a y z s G x y z t s        (vi)   

( , , , ) : [0, ) [0,1]M x y z   is left continuous. 

 

Example 1.5 [21]Let G  be a G-metric on a nonempty set .X  Define the t-norm *a b ab  or 

* min{ , }.a b a b  For all , , 0,x y X t   let ( , , , ) .
( , , )

t
G x y z t

t G x y z



Then ( , ,*)X G  is a G-

fuzzy metric space. 

 

Lemma 1.2[21] Let ( , ,*)X G  be a GF-space. Then ( , , , )G x y z t  is non-decreasing with 

respect to t  for all , , .x y z X  

 

On the other hand, the concept of coupled fixed points and mixed monotone property of a 

fuzzy metric space are established by Bhaskar and Lakshmikantam [4]. Lakshmikantam and 

Ciric [13] discussed the mixed monotone mappings and gave some coupled fixed point 
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theorems, which can be used to discuss the existence and uniqueness of a solution for a 

periodic boundary value problem.  

 

Definition 1.7 [13]An element ( , )x y X X   is called a coupled fixed point of a mapping 

:P X X X   if ( , )P x y x  and ( , ) .P y x y  

 

Definition 1.8 [13]An element ( , )x y X X   is called a coupled coincidence point of a 

mapping :P X X X   and :Q X X  if ( , ) ( )P x y Q x  and ( , ) ( ).P y x Q y  

 

Definition 1.9 [13]An element ( , )x y X X   is called a common coupled fixed point of a 

mapping :P X X X   and :Q X X  if ( , ) ( )x P x y Q x   and ( , ) ( ).y P y x Q y   

 

Example 1.6 Let [0,1].X   Define :P X X X   and :Q X X as 1
2 4

( , ) ,
x yP x y 

 

( ) .Q x x  For 0x   and 1
2

y   we have, 
1
2

0 1
2 4

( , ) 0,P x y


   (0) 0Q   and 
1
2

0 1 1
2 4 2

( , ) ,P x y


   1 1
2 2

( ) .Q   

So, 1
2

( , ) (0, )x y   is a common fixed point of the  mappings :P X X X   and :Q X X . 

 

Definition 1.10 [13]An element x X  is called a common fixed point of a mapping 

:P X X X   and :Q X X  if ( , ) ( ).x P x x Q x   

 

Example 1.7 Let [0,1].X   Define :P X X X   and :Q X X as  

2 2
( , ) ,

y xyP x y x   ( ) .Q x x  Then we have,
2

2
( , ) ,x xP x x  ( ) .Q x x For 1,x   we get 

(1,1) 1 (1).P Q  So, ( , ) (1,1)x y   is a common fixed point of the pair ( , ).P Q  

 

Definition 1.11 [4]Let ( , )X   be a partially ordered set. The mapping ( , )x y  is said to have 

the mined monotone property if P  is monotone non-decreasing in its first argument and is 

monotone non-increasing in its second argument; that is, for any , ,x y X  

1 2 1 2 1 2, , ( , ) ( , )x x X x x P x y P x y     and 

1 2 1 2 1 2, , ( , ) ( , ).y y X y y P x y P x y     

 

Example 1.8 Let :P X X X   where [0,1]X   be defined by  

,
( , )

0 .

x y if x y
P x y

if x y

 
 


 

For 1 2 1 2, , ,x x X x x   we have 

1 2 1 2( , ) ( , )x y x y P x y P x y      and 1 2( , ) ( , ).P x y P x y  

Therefore, the mappings P  has the mixed monotone property.  

 

Definition 1.12 [4]  Let ( , )X   be a partially ordered set, and :P X X X  and : .Q X X

We say that P  has the mixed Q-monotone property if P  is monotone Q-non-decreasing in 

its first argument and is monotone Q-non-increasing in second argument, that is, for any 

, ,x y X 1 2 1 2 1 2, , ( ) ( ) ( , ) ( , )x x X Q x Q x P x y P x y     and

1 2 1 2 1 2, , ( ) ( ) ( , ) ( , ).y y X Q y Q y P x y P x y     
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Example 1.9 Let :P X X X   where [ 1,1]X    be two functions given by  
2 4( , ) , ( ) .P x y x y Q x x    Therefore, the map P  has the mixed Q-monotone property.  

 

Definition 1.13 [5]The mapping :P X X X   and :Q X X are said to be W-compatible 

if ( ( , )) ( , )Q P x y P Qx Qy  and ( ( , )) ( , )Q P y x P Qy Qx whenever ( , ) ( )P x y Q x  and 

( , ) ( )P y x Q y  for some ( , ) .x y X X   

 

Example 1.10 Define :P X X X  and :Q X X where [ 1,1]X    as
2 2

4( , ) , ( ) .
2

x y
P x y Q x x


   which satisfies. Therefore, the map P  has the mixed Q-

monotone property. ( ( , )) ( , )Q P x y P Qx Qy  and ( ( , )) ( , )Q P y x P Qy Qx . For 1x   and 

1,y   we get ( , ) ( )P x y Q x  and ( , ) ( ).P y x Q y  This implies that the mappings 

:P X X X   and :Q X X  are W-compatible mappings. 

 

Many other eminent authors proved significant results which contributed in the area of fixed 

point theory. 

 

Definition 2.1[8]:- The 3-tuple   , ,X V   is called a V-fuzzy metric space if  is a 

continuous t-norm, and V is a fuzzy set in (0, )nX    satisfying the following conditions for 

all , ,ix y a X and , 0;s t   

(i)  , ,..., , , 0,V x x x y t x y   

(ii)    1 1 1 2 1 2 3 2 3, ,..., , , , , ,..., , , ...n nV x x x x t V x x x x t x x x     

(iii)  1 2 3 1 2 3, , ,..., , 1 ...n nV x x x x t x x x x       

(iv)    1 2 3 1 2 3, , ,..., , ( , , ,..., ),n nV x x x x t V p x x x x t where 1 2 3( , , ,..., )np x x x x  is 

permutation on 1 2 3, , ,..., nx x x x  

(v) 1 2 3 1 1 2 3 1( , , ,..., , , ) ( , , ,..., , , ) ( , , ,..., , , )n n n nV x x x x a t V a a a a x s V x x x x x t s     

(vi) 1 2 3( , , ,..., , ) 1nV x x x x t  as t   

(vii) 1 2 3 1( , , ,..., , ) : (0, ) (0,1]nV x x x x     is continuous. 

 

Example 2.1 [8]Let ( , )X A  be a A-metric space. Define the t-norm *a b ab  or 

* min{ , }.a b a b  For all 1 2 3, , ,..., , 0,nx x x x X t   denote 

1 2 3

1 2 3

( , , ,..., , )
( , , ,..., )

n

n

t
V x x x x t

t A x x x x



. Then ( , ,*)X V  is a V-fuzzy metric space. 

 

In addition to fuzzy metric spaces, there are still many extensions of metric and metric space 

terms. Bakhtin [2] and Czerwik [6] introduced a space where, instead of triangle inequality, a 

weaker condition was observed, with the aim of generalization of Banach contraction 

principal [3]. They called these spaces b-metric spaces. Relation between b-metric and fuzzy 

metric spaces is considering in [9]. On the other hand, in [18] the notion of a fuzzy b-metric 

space was introduced, where the triangle inequality is replaced by a weaker one.  
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Definition 2.2 [16]:The 3-tuple  , ,X M T  is known as fuzzy b-metric space if X is any set, T 

is a continuous t-norm, and M is a fuzzy set in (0, )X X    satisfying the following 

conditions for all , ,x y z X and , 0,s t  and a given real number 1,b         (i)    

 , , 0,M x y t               

(ii)     , , 1M x y t    if and only if ,x y          

(iii)       , , , , ,M x y t M y x t                      

(iv)     , , , , ,     ,( ( ) ( ) ( ), ,)t s
b b

T M x y M y z M x z t s           

(v)   ( , , ) :[0, ) [0,1]M x y   is continuous. 

Now, in this paper we introduced a new space that is V-fuzzy b-metric space with the 

help of V-fuzzy metric space and b-Metric space and by using concept of a set-valued or 

multi-valued quasi-contraction mapping a fixed point theorem is established. This theorem 

generalizes and improves some known fixed point theorems in literature. 

 

 

2. V-Fuzzy b-metric space 

Definition 2.1:- The 3-tuple   , ,X V   is called a V-fuzzy b-metric space if  is a 

continuous t-norm, and V is a fuzzy set in (0, )nX    satisfying the following conditions for 

all , , , 1ix y a X b  and , 0;s t   

(i)  , ,..., , , 0,t
b

V x x x y x y   

(ii)    1 1 1 2 1 2 3 2 3, ,..., , , , , ,..., , , ...t t
n nb b

V x x x x V x x x x x x x     

(iii)  1 2 3 1 2 3, , ,..., , 1 ...t
n nb

V x x x x x x x x       

(iv)    1 2 3 1 2 3, , ,..., , ( , , ,..., ),t t
n nb b

V x x x x V p x x x x where 1 2 3( , , ,..., )np x x x x  is 

permutation on 1 2 3, , ,..., nx x x x  

(v) 1 2 3 1 1 2 3 1( , , ,..., , , ) ( , , ,..., , , ) ( , , ,..., , , )t t
n n n nb b

V x x x x a V a a a a x V x x x x x t s     

(vi) 1 2 3( , , ,..., , ) 1t
n b

V x x x x  as t   

(vii) 1 2 3 1( , , ,..., , ) : (0, ) (0,1]nV x x x x      is continuous. 

 

Lemma 2.1:Let  , ,X V   be a V-fuzzy b-metric space. Then 1 2 3( , , ,..., , )t
n b

V x x x x   isnon-

decreasing with respect to .t  

 

Proof:Since 0, 1t b  and t s t   for 0,s   by letting nl x  in condition (v) of V-fuzzy b-

metric space we get, 1 2 3 1 2 3( , , ,..., , ) ( , , ,..., , ) ( , , ,..., , ).t s t s
n n n n n nb b b

V x x x x V x x x x V x x x x   This 

implies that 1 2 3 1 2 3( , , ,..., , ) ( , , ,..., , ).t s t
n nb b

V x x x x V x x x x   So, 1 2 3( , , ,..., , )t
n b

V x x x x  is non-

decreasing with respect to .t  

 

Lemma 2.2 Let ( , , )X V   be a V-fuzzy metric space such that 

1 2 3 1 2 3( , , ,..., , ) ( , , ,..., , )kt t
n nb b

V x x x x V x x x x  with 1,b  (0,1).k  Then 1 2 3 ... .nx x x x     

 

Proof:By assumption 1 2 3 1 2 3( , , ,..., , ) ( , , ,..., , )kt t
n nb b

V x x x x V x x x x    (1) 

For 0, 1,t b    since ,kt t
b b
  by lemma 2.1 we have 
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1 2 3 1 2 3( , , ,..., , ) ( , , ,..., , ).kt t
n nb b

V x x x x V x x x x       (2) 

From (1) and (2), and the definition V-fuzzy metric space we get  1 2 3 ... .nx x x x   
 

 

Definition 2.2 Let ( , ,*)X V  is said to be V-Fuzzy b-metric space. A sequence { }rx  is said to 

converge to a point x X  if ( , , ,..., , , ) 1 0, 1,t
r r r r b

V x x x x x as r for all t b     that is, 

for each 0,   there exist n N  such that for all ,r N  we have 

( , , ,..., , , ) 1 ,t
r r r r b

V x x x x x   and we write lim .r rx x   

 

Definition 2.3 Let ( , ,*)X V  is said to be V-Fuzzy b-metric space. A sequence { }rx  is said to 

Cauchy sequence if ( , , ,..., , , ) 1 , 0, 1,t
r r r r q b

V x x x x x as r q for all t b     that is, for each 

0,   there exist 0n N  such that for all , ,r q N  we have ( , , ,..., , , ) 1 .t
r r r r q b

V x x x x x    

 

Definition 2.4 The V-Fuzzy b-metric space ( , ,*)X V  is said to be complete if every Cauchy 

sequence in X is convergent. 

 

Definition 2.5 The mappings : :P X X X and Q X X    are said to be compatible on 

 V-Fuzzy b-metric space if lim ( ( , ), ( , ),..., ( , ), ( , ), ) 1t
r r r r r r r r b

r
V QP x y QP x y QP x y P Qx Qy


  

And lim ( ( , ), ( , ),..., ( , ), ( , ), ) 1t
r r r r r r r r b

r
V QP y x QP y x QP y x P Qy Qx


  

Whenever { }rx  and { }ry  are sequences in X such that 

lim ( ) lim ( , ) lim ( ) lim ( , )r r r r r r
r r r r

Q x P x y x and Q y P y x y
   

     for all , 0, 1.x y Xand t b    

 

3. MAIN RESULTS 

In this section, we prove fixed point theorems for coupled maps on partially ordered V-

fuzzyb-metric spaces. 

 

Theorem 3.1 Let ( , , )X V   be a complete V-fuzzy b-metric spaces, and  ,X   be a partially 

orders set. Let :P X X X  be a mapping such that P has the mixed monotone property 

and :Q X X  be two mapping such that      (T1)  

( ) ( );P X X Q X          (T2) P  has the 

mixed Q-monotone property;     (T3)   there exists (0,1)k  such 

that 

( ( , ), ( , ),..., ( , ), ( , ), )

( , ,..., , , )

( , ,..., , ( , ), )

( , ,..., , ( , ), )

kt
b

t
b

t
b

t
b

V P x y P x y P x y P u v

V Qx Qx Qx Qu

V Qx Qx Qx P x y

V Qu Qu Qu P u v







 

for all , , , , , 0, 1,x y u v X t b    for which ( ) ( )Q x Q u  and ( ) ( )Q y Q v  or ( ) ( )Q x Q u  and 

( ) ( );Q y Q v           (T4) Q   is 

continuous and P and Q  are compatible.         
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Also suppose that             (a) P is 

continuous or                       (b) X  has the 

following properties: 

(i) If { }nx  is a non decreasingsequence ,rx x then ,rx x for all r N   

(ii) If { }ny  is a non decreasing sequence ,ry y then .ry y for all r N   

If there exist 0 0,x y X  such that 0 0 0( ) ( , )Q x P x y  and 0 0 0( ) ( , ),Q y P y x  then Pand Qhave 

a coupled coincidence point in X. 

 

Proof:Let 0 0( , )x y  be a given point in X X  such that 

0 0 0 0 0 0( ) ( , ) ( ) ( , ),Q x P x y and Q y P y x  Using (T1), Choose 1 1,x y   such that 

0 0 1 0 0 1( , ) ( ) ( , ) ( )P x y Q x and P y x Q y        (3) 

Construct two sequences { } { }r rx and y  in X  such that 

1 1( , ) ( ) ( , ) ( )r r r r r rP x y Q x and P y x Q y    for all 0r       (4) 

Now we shall prove that  

1 1( ) ( ) ( ) ( )r r r rQ x Q x and Q y Q y           (5) 

We use mathematical induction. 

 

Step 1:Let 0r  . Since 0 0 0 0 0 0( ) ( , ) ( ) ( , ),Q x P x y and Q y P y x   

Using condition (3) we have 0 1 0 1( ) ( ) ( ) ( )Q x Q x and Q y Q y  So inequality (5) holds for 

0r 
 

 

Step 2:Now suppose that (5) holds for some fixed 0s  . We get 

1 1( ) ( ) ( ) ( )s s s sQ x Q x and Q y Q y    

 

Step 3:Since P has the mixed Q-monotone property using (4), we have 

1 1 1 1( ) ( , ) ( , ) ( ) ( , ) ( , )r r r r r r r r r rQ x P x y P x y and Q y P y x P y x           (6) 

Also, 2 1 1 1 2 1 1 1( ) ( , ) ( , ) ( ) ( , ) ( , ).r r r r r r r r r rQ x P x y P x y and Q y P y x P y x             (7) 

From (6) and (7) we get 

1 1( ) ( ) ( ) ( ).r r r rQ x Q x and Q y Q y        (8) 

From (T1) and (4) we get  

1 1 1 1 1 1 1 1 1

1 1 1 1 1

( ( , ), ( , ),..., ( , ), ( , ), ) ( , ,..., , , )

( , ,..., , ( , ), )

( , ,..., , ( , ), ),

kt t
r r r r r r r r r r r rb b

t
r r r r r b

t
r r r r r b

V P x y P x y P x y P x y V Qx Qx Qx Qx

V Qx Qx Qx P x y

V Qx Qx Qx P x y

        

    







1 1 1 1

1

( , ,..., , , ) ( , ,..., , , )

( , ,..., , , ).

kt t
r r r r r r r rb b

kt
r r r r b

V Qx Qx Qx Qx V Qx Qx Qx Qx

V Qx Qx Qx Qx

   





  

Now, two cases arise.  
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Case 1: If 1 1 1( , ,..., , , )t
r r r r b

V Qx Qx Qx Qx    1( , ,..., , , )kt
r r r r b

V Qx Qx Qx Qx  , then

2

1

1 1 1 1

2 2 2 1

3 3 3 2

0 0 0 1

( , ,..., , , ) ( , ,..., , , )

( , ,..., , , )

( , ,..., , , )

...

( , ,..., , , ).r

kt t
r r r r r r r rb b

t
r r r r bk

t
r r r r bk

t

bk

V Qx Qx Qx Qx V Qx Qx Qx Qx

V Qx Qx Qx Qx

V Qx Qx Qx Qx

V Qx Qx Qx Qx 

   

   

   









 

Then by simple induction we have that, for all 0, 1t b   and 1,2,..., ,r    

11 0 0 0 1( , ,..., , , ) ( , ,..., , , ).r

kt t
r r r r b bk

V x x x x V x x x x        Thus, by 

condition (VF-5) of the definition of a V-fuzzy metric space, for any positive integer p and 

real number 0,t   we have

1

1 1 1 2

1 1 1

( , ,..., , , ) ( , ,..., , , )

( , ,..., , , )

... ...

( , ,..., , , ).

kt t
r r r r p r r r rb bp

t
r r r r bp

t
r p r p r p r p bp

V Qx Qx Qx Qx V Qx Qx Qx Qx

V Qx Qx Qx Qx

p times

V Qx Qx Qx Qx

 

   

      









 

1

2

0 0 0 1

0 0 0 1

( , ,..., , , )

... ...

( , ,..., , , ).

r

r p

t

bpk

t

bpk

V Qx Qx Qx Qx

p times

V Qx Qx Qx Qx



 







 

 

Therefore, taking ,r   by definition (vi) of V-fuzzy b-metric space we get 

( , ,..., , , ) 1 ... ... 1,t
r r r r p b

V Qx Qx Qx Qx p times     

Which implies that { }nx  is a Cauchy sequence in X. 

 

Case 2:  If 1 1 1 1( , ,..., , , ) ( , ,..., , , ),t t
r r r r r r r rb b

V Qx Qx Qx Qx V Qx Qx Qx Qx     then 

1 1( , ,..., , , ) ( , ,..., , , ).kt t
r r r r r r r rb b

V Qx Qx Qx Qx V Qx Qx Qx Qx     By Lemma 2.2 we 

get 1( ) ( ).r rQ x Q x         

 

Thus, there exists a positive integer m such that r m  implies ( ) ( ), ,r mQ x Q x r           which 

shows that { }nQx  is a convergent sequence and so a Cauchy sequence in X. Taking 

1 1, , ,r r r rx y y x u y v x      in (T3), we get

1 1

1 1 1 1 1

( ( , ), ( , ),..., ( , ), ( , ), ) ( , ,..., , , )

( , ,..., , ( , ), )

( , ,..., , ( , ), ).

kt t
r r r r r r r r r r rb b

t
r r r r r b

t
r r r r r b

V P y x P y x P y x P y x V Qy Qy Qy Qu

V Qy Qy Qy P y x

V Qy Qy Qy P y x

 

    







 

So from equation (4) we have  

1 1 1 1

1

( , ,..., , , ) ( , ,..., , , )

( , ,..., , , ).

kt t
r r r r r r r rb b

t
r r r r b

V Qy Qy Qy Qy V Qy Qy Qy Qy

V Qy Qy Qy Qy

   






 

 

In the same way (discussed before), { }nQy  is a Cauchy sequence in X .Since X is a complete 

space, there exist ,x y X  such that

lim ( , ) lim ( ) , lim ( , ) lim ( ) .r r r r r r
r r r r

P x y Q x x P y x Q y y
   

        (9) 
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By considering condition (T4) and r   we have 

( ( ( , )), ( ( , )),..., ( ( , )), ( ( ), ( ), )) 1t
r r r r r r r r b

V Q P x y Q P x y Q P x y P Q x Q y  and

( ( ( , )), ( ( , )),..., ( ( , )), ( ( ), ( ), )) 1t
r r r r r r r r b

V Q P y x Q P y x Q P y x P Q y Q x   (10) as .r 

           

 

By condition (T4) and (a) since P and Q are continuous, form (10) we have 

( , ,..., , ( , ), ) 1t
b

V Qx Qx Qx P x y    And ( , ,..., , ( , ), ) 1.t
b

V Qy Qy Qy P y x     

 

This implies that ( , ) ( ) ( , ) ( ),P x y Q x and P y x Q y   and thus, we have proved that P and 

Qhave a coupled coincidence point in X.Now, suppose that conditions (T4) and (b) hold. 

Since Q is continuous and P,Q are compatible mappings, we have

lim ( ( ), ( )) lim ( ( , )) lim ( ) ( )

lim ( ( ), ( )) lim ( ( , )) lim ( ) ( ).

r r r r r
r r r

r r r r r
r r r

P Q x Q y Q P x y Q Qx Q x and

P Q y Q x Q P y x Q Qy Q y

  

  

  

  
   (11) 

 

By condition (v) of a V-fuzzy b-metric space, as r   , we get

1

1 1 1

( , ,..., , ( , ), ) ( ),( , ,..., , )

( ( ), ( ),..., ( ), ( , ), )

( , ,..., , ( ( , )), )

( ( ( , )), ( ( , )),..., ( ( , )), ( , ), )

( ( ( ,

t t kt
b br

kt
r r r b

t kt
r r b

kt
r r r r r r b

r

V Qx Qx Qx P x y Q Q Q Q QV x x x x

V Q Qx Q Qx Q Qx P x y

V Qx Qx Qx Q P x y

V Q P x y Q P x y Q P x y P x y

V Q P x y




  











 )), ( ( , )),..., ( ( , )), ( , ), ).kt
r r r r r b

Q P x y Q P x y P x y

  

 

We get ( , ,..., , ( , ), ) ( ( , ), ( , ),..., ( , ), ( , ), ).t kt
r r r r r rb b

V Qx Qx Qx P x y V P Qx Qy P Qx Qy P Qx Qy P Qx Qy

(12)Using condition (T3)and equation (11),(12), we get

( , ,..., , ( , ), ) ( ( ), ( ),..., ( ), , )

( ( ), ( ),..., ( , ), )

( , ,..., , ( , ), )

( , ,..., , ( , ), ).

t t
r r rb b

t
r r r r b

t
b

t
b

V Qx Qx Qx P x y V Q Qx Q Qx Q Qx Qx

V Q Qx Q Qx P Qx Qy

V Qx Qx Qx P x y

V Qx Qx Qx P x y









     

 

By Lemma 2.2 we have ( , ) ( ).P x y Q x  Similarly, we get ( , ) ( ).P y x Q y Hence; we proved 

that P and Q have a coupled coincidence point in X. 
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