On Weakly −**Ricci Symmetric Lightlike Hypersurfaces of Indefinite Cosymplectic Manifolds**

Ejaz Sabir Lone ¹ and Pankaj Pandey ²

^{1,2} Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara (Punjab)-144411, India.

Abstract: The main motive of this paper is to study weakly $\bar{\varphi}$ -Ricci symmetric lightlike hypersurface ($W \bar{\varphi}RS$) – LH of an indefinite cosymplectic manifold (\overline{M}, g) of constant curvature −1. In this paper, we acquire a relationship between 1- forms of (W $\overline{\varphi}RS$) − LH of (\overline{M} , g). We study η -Einstein weakly $\overline{\varphi}$ - Ricci symmetric lightlike hypersurface (W $\overline{\varphi}RS$) − LH of an indefinite cosymplectic manifold (\overline{M}, g) . Finally it is shown that the Ricci tensor S of (\overline{M}, g) is satisfying cyclic parallel and Codazzitype properties of Ricci tensor.

AMS Mathematics Subject Classification (2010):53C15, 53C25, 53C40, 53C50**.**

Keywords: Lightlike hypersurfaces, Weakly $\bar{\varphi}$ -Ricci symmetric, Indefinite Cosymplectic manifold, Einstein manifold, Ricci tensor.

1. Introduction

Many authors have explored the idea of φ -symmetry on both complex and contact geometry of manifolds. Locally φ -symmetric Sasakian manifolds were introduced by [18] as a weaker form of locally symmetric manifolds. Some examples on φ -symmetric Kenmotsu manifolds were examined by [5]. Later [6] proposed the concept of φ -Ricci symmetric Sasakian manifolds and traced out some interesting results. Authors in [24] studied -Ricci symmetric on Kenmotsu manifolds and verified its existence with some examples. In addition authors [19, 20] introduced the concept of weakly symmetric and weakly Ricci symmetric manifolds as generalizations of Chaki's pseudo-symmetric and pseudo-Ricci symmetric manifolds.

Definition 1.For Levi-Civita connection \overline{D} , Riemannian metric g and an associated 1-forms α , β , γ if forall F, *I*, $L \in \Gamma(TM)$, the Ricci tensor *S* satisfies

(1)
$$
(\overline{D}_F S)(J,L) = \ddot{\alpha}(F)S(J,L) + \ddot{\beta}(J)S(F,L) + \ddot{\gamma}(L)S(J,F)
$$

Thenthe non-flat Riemannian manifold is called weakly Ricci symmetric [15]. Where $\ddot{\alpha}(F)=g(F,\ddot{\rho})$, $\ddot{\beta}(J) = g(J, \ddot{\delta})$ and $\ddot{\gamma}(L) = g(L, \ddot{\kappa})$, corresponding to 1-forms $(\ddot{\alpha}, \ddot{\beta}, \ddot{\gamma})$ and, $(\ddot{\rho}, \ddot{\delta}, \ddot{\kappa})$ are associated vector fields respectively.

Also on Kenmotsu manifolds \overline{M} ($n \geq 3$), authors [17] generally introduced representation of φ -Ricci symmetries on Kenmotsu manifolds. Then $\forall F, J$, Lthe Riemannian manifold \overline{M} satisfying

(2)
$$
\varphi^2(D_FQ)(J) = A(F)Q(J) + B(J)Q(F) + g(QF,J)\ddot{\rho}
$$

is known to be as φ -Ricci symmetric. Where Q , (A, B) are Ricci operator and not simultaneously zero 1−forms, such that $g(F, \phi) = D(F)$, from equation (2), if

$$
\varphi^2(D_FQ)(J) = 0
$$

then, \overline{M} is locally φ -Ricci symmetric [17] of dimension \geq 3. Motivated by these authors we study weakly φ -Ricci symmetric lightlike hypersurfaces of Indefnite cosymplectic manifolds of constant curvature -1.

Duggal-Bejancu 10 introduced lightlike geometry of semi-Riemannian manifolds and is completely different from Riemannian and semi-Riemannian one. To overcome this difficulty arisen due to degenerate metric authors obtained transversal bundle for such hypersurfaces. After 10 researchers across the globe studied lightlike hypersurface of manifolds by following Duggal-Bejancu approach. For degenerate hypersurfaces of manifolds we refer ($[12], [13],$).

In this paper, we have studied the effect of $(W\varphi - RSLH)$ on anindefinite cosymplectic manifolds (\bar{M}, g) . In section 2, we will provide some basic concepts and terminologies used in lightlike geometry and cosymplectic manifolds. In section 3,we study ($W \varphi - RSLH$) of an indefnite cosymplectic manifolds (\overline{M}, q) to obtain some results.

2. Preliminaries

Let (\overline{M}, g) be a (2n+1) dimensional differentiable manifold endowed with $(\overline{\varphi}, \xi, \eta)$ as almost contact structure. Where $\bar{\varphi}$ is a (1-1) type tensor field, η is 1-form and ξ represents an associated vector field satisfying

(4)
$$
\overline{\varphi}^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \eta(\overline{\varphi}) = 0, \overline{\varphi}\xi = 0.
$$

For any F, Jon (\overline{M}, g) , if the following condition is satisfied

(5)
$$
g(\overline{\varphi}F,\overline{\varphi}J)=g(F,J)-\eta(F)\eta(J)
$$

then the structure ($\overline{\varphi}$, $\overline{\xi}$, η , \overline{q}) is as almost contact metric structure and the manifold with this structure is known to be as almost contact metric manifold, where *g* is Riemannian metric. From equation (5) we acquire

$$
\eta(F)=g(F,\xi).
$$

Moreover, for Riemannian metric g and Livi-Civita connectionif($\overline{D}_F \overline{\varphi}$) = 0 and $\overline{D}_F \xi = 0$, then we call (\overline{M} , g), as an indefnite cosymplectic manifold $[13]$.

A plane section κ in a tangent space of indefinite cosymplectic manifold (\bar{M}, g) if spanned by F orthogonal to $\bar{\varphi}F$ and ξ is called $\bar{\varphi}$ -section. Where F unit tangent is vector and is non-null vector field on an indefnite cosymplectic manifold (\overline{M}, g) . $\overline{\varphi}$ -sectional curvature is the sectional curvature with respect to κ determined by non-null vector field F. If $\overline{\varphi}$ -sectional curvature c at each point in (\overline{M}, g) does not depend on $\overline{\varphi}$ -section, then c is constant and (\overline{M}, g) is known to be an indefinite cosymplectic space form denoted by $\overline{M}(c)$. Therefore curvature tensor of indefinite cosymplectic space form $\overline{M}(c)$ is given [13] by

(6)
$$
R(F,J,L) = \frac{c}{4} \{g(J,L)F - g(F,L)J + \eta(F)\eta(L)J - \eta(J)\eta(L)F + g(F,L)\eta(J)\xi - g(J,L)\eta(F)\xi - g(\overline{\phi}J,L)\overline{\phi}F - g(\overline{\phi}F,L)\overline{\phi}J - 2g(\overline{\phi}F,J)\overline{\phi}L\}
$$

For all \mathbf{F} , \mathbf{J} , $\mathbf{L} \in \Gamma(T\overline{M})$.

Now let us recall some of the elementary and important terminologies about the geometry of lightlike (degenerate) hypersurfaces of semi-Riemannian manifolds.

Assume that $(M, \bar{g}, S(TM))$ to be a null hypersurface of (\bar{M}, g) . Then over $(M, \bar{g}, S(TM))$, there exists $tr(TM)$ a rank 1 unique vector bundle in such a way that for any **Z** of TM^{\perp} on $Y \subset M$, there exists **X** a unique section of $tr(TM)$ on the coordinate neighbourhood Y known as null transversal vector field of hypersurface $(M, \overline{g}, S(TM))$. Such that

(7)
$$
\overline{g}(Z,X) = 1, \qquad \overline{g}(X,X) = \overline{g}(X,0) = 0
$$

 \forall *O* $\in \Gamma(S(TM_{1M}))$. Then tangent bundle $T\overline{M}$ is decomposed as

(8)
$$
T\overline{M}_{|M} = S(TM) \oplus (TM \perp \oplus tr(TM)),
$$

(9)
$$
T\overline{M}_{|M} = TM \oplus tr(TM).
$$

Here $tr(TM)$ is known to be as lightlike transversal bundle of hypersurface with respect to $S(TM)$ and $tr(TM)$ is complementry but not orthogonal vector bundle to TM in $\overline{M}_{|M}$ [9].

According to equation (8) for all $F, J \in \Gamma(S(TM_M))$, the local Gauss and Weingarten formulas are given as

$$
\overline{D}_F J = D_F J + B(F, J),
$$

$$
\overline{D}_F X = -A_X F + \tau(F) X,
$$

$$
(12) \t\t\t D_FPI = D^*{}_FPI + C(F,PI)\xi,
$$

(13) = ∗ + ()

Here \overline{D} , (D, D^*) represent Livi-Civita connection of (\overline{M}, g) and linear connections on $(TM, S(TM))$ respectively. (B, C) and (A_X, A^*_{X}) represent local fundamental forms and shape operators on TM and $\Gamma(S(TM)$ respectively. Also τ and P represent 1-form and projection morphisms of $\Gamma(TM)$ on $S(TM)$ respectively. By using the fact that $B(F, J) = g\overline{D}_F J$, ξ), we know that the local second fundamental form B is independent of choice of $S(TM)$ and hence satisfies

(14)
$$
B(F,Z) = 0, \quad \forall F \in \Gamma(TM).
$$

Unfortunately D on TM is not a metric connection and hence satisfies

(15)
$$
(D_F g)(J, L) = B(F, J)\theta(L) + B(F, L)\theta(J) \quad \forall F, J, L \in \Gamma(TM).
$$

Here θ represents 1- form defined as, $\theta(F) = g(F,X)$, for all $F \in \Gamma(TM)$. However, D^{*} on $S(TM)$ is metric connection, and the above shape operators are related to their local second fundamental forms as

(16)
$$
B(F,J) = \overline{g}(A^*{}_Z F,J), \quad g(A^*{}_Z F,X) = 0
$$

(17)
$$
\mathbf{C}(\mathbf{F},\mathbf{P}\mathbf{J})=\overline{\mathbf{g}}(\mathbf{A}_{X}\mathbf{F},\mathbf{P}\mathbf{J}),\ \ \mathbf{g}(\mathbf{A}_{X}\mathbf{F},X)=\mathbf{0}.
$$

From (16), $A^*_{Z}Z$ =0. With respect to connections \overline{D} and D , the Riemannian curvature tensors of (\overline{M}, g) and $(M, \overline{g}, S(TM))$ are represented by \overline{R} and R respectively as given by

(18)
$$
g(\overline{R}(F,J)\xi,PO)=\overline{g}(R(F,J)L,PO)+B(F,L)C(J,PO)-B(J,L)C(F,PO)
$$

(19)
$$
g(\overline{R}(F,J)L,\xi) = \overline{g}(R(F,J)\xi,PO)
$$

$$
= (D_F B)(J,L) - (D_J B)(F,L) + B(J,L) \tau(F) - B(F,L) \tau(J)
$$

(20)
$$
g(\overline{R}(F,J)L,X) \&= \overline{g}(R(F,J)\xi,X) \n= \overline{g}(D_F(A_XJ) - D_J(A_XF) - \overline{g}(A_X(F,J),L) + \overline{g}(A_XF,L)\tau(J) \n- \overline{g}(A_XJ,L)\tau(F) + \overline{g}(A^*_{\xi}F,A_XJ) - \overline{g}(A^*_{\xi}J,A_XF) - 2d\tau(F,J)\theta(L)
$$

(21)
$$
g(\overline{R}(F,J)\xi,X)=\overline{g}(R(F,J)\xi,X)=\overline{g}(A^*\xi F,A_XJ)-\overline{g}(A^*\xi J,A_XF)-2d\tau(F,J)
$$

3. Weakly φ **Ricci symmetric lightlike hypersurfaces of indefinite cosymplectic manifolds**

Tangent to ξ i.e., $\xi \in \Gamma(TM)$, let (M, \bar{g}) be degenerate (lightlike) hypersurface of (\bar{M}, g) , such that $g(\xi, \xi)$ = $\varepsilon = \pm 1$. If $\bar{g}(\bar{\varphi}Z, Z) = 0$ then itmeans $\bar{\varphi}Z$ is tangent to (M, \bar{g}) . Here Z is the local section of TM^{\perp} . Therefore we can select a screen distribution $S(TM)$ in such a manner that it contains $\varphi(TM^{\perp})$ as a vector subbundle.

Now let us consider X a local section of transversal bundle $tr(TM)$. Therefore $\bar{g}(\bar{\varphi}X, Z) = \bar{g}(X, \bar{\varphi}Z) = 0$, we found that $\overline{\varphi}X$ is also tangential to (M, \overline{g}) . But $\overline{g}(\overline{\varphi}X, X) = 0$, implies with respect to Zthe components of $\overline{\varphi}X$ vanishes and hence $\overline{\varphi}X \in \Gamma S(TM)$. From $(7), g(\overline{\varphi}X, \overline{\varphi}Z)=1$. [**2**], If $\in M$, then $\xi \in S(TM)$ implies

$$
\bar{g}(\bar{\varphi}Z,\xi)=\bar{g}(\bar{\varphi}X,\xi)=0,
$$

Then, there exists D_0 , of rank $2n - 4$ distribution on (M, \bar{g}) , such that $\bar{\varphi}(D_0) = D_0$, then we have the following decomposition

$$
(22) \t\t\t TM = (D_1 \oplus D_2) \perp \langle \xi \rangle
$$

Here D_1 and D_2 are distributions on let (M, \bar{g}) . Now let us assume Y and V to be local null vector fields such that $Y = -\overline{\varphi}X$ and $V = -\overline{\varphi}Z$. Let R_1 and Q_1 be projection morphisms of tangent bundle TM into D_1 and D₂ respectively, then for any $F \in \Gamma(TM)$, equation (22) yields

(23)
$$
F = R_1 F + Q_1 F + \eta(F) \xi, \qquad Q_1 F = u(F)Y.
$$

Here $u(F) = g(F, V)$, is a differential 1-form. Applying $\bar{\varphi}$ to above equation (23), we obtain

$$
\bar{\varphi}F = \bar{\phi}F + u(F)X
$$

Where $\bar{\varphi}$ represents (1, 1) type tensor field on(M, \bar{g}), and is defined as $\bar{\varphi}F = \bar{\varphi}R_1F$. Addition to this, we have following results

(25)
$$
B(F,\xi) = 0, \ C(F,\xi) = \theta(F)
$$

$$
\bar{\phi}^2 F = -F + \eta (F)\xi + u(F)\xi, \ D_F \xi = 0
$$

Let us assume that (\overline{M}, g) , is an indefinite cosymplectic manifold of constant curvature -1, such that

$$
\overline{R}(F,J)L = g(J,L)F - g(F,L)J,
$$

for any F, J, $L \in \Gamma(TM)$.

Now to define a non-symmetric induced Ricci-tensor $R^{(0,2)}$ on (M, \bar{g}) , it is noted that D is not the Livi-Civita connection and $R^{(0,2)}$ has no physical meaning like that of symmetric Ricci tensor Ric on (\overline{M}, g) . Therefore by direct calculations an induced Ricci tensor $R^{(0,2)}(F, J)$ is given by

(27)
$$
R^{(0,2)}(F,J) = S(F,J) = (2n-1)\bar{g}(F,J) + B(F,J)tr A_X - B(A_X F,J).
$$

From (27), we obtain

(28)
$$
R^{(0,2)}(F,\xi) = S(F,\xi) = (2n-1)\eta(F), \quad Q\xi = (2n-1)\xi
$$

Theorem 1. Suppose (\overline{M}, g) be an indefinite cosymplectic manifold of constant curvature -1 and let (M, \overline{g}) be weakly $\bar{\phi}$ -Ricci symmetric null hypersurface of (\bar{M}, g) with $\xi \in \Gamma(TM)$, then the sum of non-zero 1-forms is zero everywhere

$$
A(\xi) + B(\xi) + D(\xi) = 0
$$

Proof. We know that a lightlike hypersurface (M, \bar{g}) is said to be weakly $\bar{\phi}$ – Ricci symmetric null hypersurface of an indefinite cosymplectic manifold (\overline{M}, g) , if it satisfies

(29)
$$
\bar{\phi}^2(D_F Q)J = A(F)QJ + B(J)QF + S(F,J)\rho
$$

for all $F, J \in \Gamma(TM)$. Here $A(F) = g(F, \delta), B(J) = g(J, \kappa)$ are 1-forms and δ, κ, ρ are associated vector fields. From equation (25), we obtain

(30) $-\bar{g}((D_FQ))(J), L) + \eta(D_FQ)(J)\xi + u(D_FQ(J))Y = A(F)QJ + B(J)QF + S(F,J)\rho$

We know that

$$
(D_FQ)(J)=D_FQJ-QD_FJ
$$

Now taking inner product of equation (29) with L, we acquire

(31) $-\bar{g}((D_F Q J, L) + \bar{g}(Q D_F J, L) + \eta(D_Q J) \eta(L) - \eta(Q D_F J) \eta(L)$

+
$$
u(D_FQ) \bar{g}(Y,L) - u(QD_F) \bar{g}(Y,L) = A(F)S(J,L) + B(J)S(F,L) + D(L)S(F,J)
$$

Replacing *J* by ξ in (31), and using (25) and (27), we acquire

(32)
$$
(2n-1)A(F)\eta(L) + B(\xi)S(F,L) + (2n-1)D(L)\eta(F) = 0
$$

Again putting $F = L = \xi$ in (32), we acquire

$$
A(\xi) + B(\xi) + D(\xi) = 0
$$

Theorem 2. Suppose (\overline{M}, a) be an indefinite cosymplectic manifold of constant curvature -1 and let (M, \overline{a}) be weakly $\bar{\phi}$ -Ricci symmetric null hypersurface of (\bar{M}, g) with $\in \Gamma(TM)$. Let (M, \bar{g}) and screen bundle $S(TM)$ are totally umbilical, Then (M, \bar{g}) is locally $\bar{\phi}$ -Ricci symmetric null hypersurface if $\bar{\alpha}\bar{\beta} = (2n - 1) + \bar{\alpha}tr A_{\chi}$.

Proof. Assume lightlike hypersurface(M , \bar{g}) to be weakly $\bar{\phi}$ -Ricci symmetric null hypersurface of (\bar{M} , g) such that $\xi \in \Gamma(TM)$. From (29) after taking inner product with L we obtain

(33)
$$
\bar{g}(\bar{\phi}^{2}(D_{F}Q),L) = A(F)S(J,L) + B(J)S(F,L) + D(L)S(F,J)
$$

Using (27) in (33) we acquire

 (34)

$$
\bar{g}(\bar{\phi}^{2}(D_{F}Q)J, L)\&=A(F)(2n-1)\bar{g}(J, L)+B(J, L)trA_{X}-B(A_{X}J, L)+B(J)(2n-1)\bar{g}(F, L)+B(F, L)trA_{X}-B(A_{X} F, L)+D(L)(2n-1)\bar{g}(F, J)+B(F, J)trA_{X}-B(A_{X} F, J)
$$

As assumed lightlike hypersurface (M, \bar{g}) and screen bundle $S(TM)$ are totally umbalical. Then substituting $B(F, J) = \overline{\alpha} \overline{g}(F, J)$ \$ and $C(F, J) = \overline{\beta} \overline{g}(F, J)$, in above equation we get

(35)
$$
\bar{g}(\bar{\phi}^{2}(D_{F}Q)J,L) = [(2n-1) + \bar{\alpha}tr A_{X} - \bar{\alpha}\bar{\beta}]\bar{g}(A(F)J + B(J)F + \bar{g}(F,J)\bar{g}(\rho,L).
$$

Where $\bar{\alpha}$ and $\bar{\beta}$ are smooth functions. Again using the given hypothesis $\bar{\alpha}\bar{\beta} = (2n - 1) + \bar{\alpha}tr A_{\rm v}$ in (35), it yields

$$
\bar{\phi}^2(D_F Q)J = 0
$$

Theorem 3.Suppose (\overline{M}, q) be an indefinite cosymplectic manifold of constant curvature -1 and let (M, \overline{q}) be weakly $\bar{\phi}$ -Ricci symmetric η -Einstein null hypersurface of (\bar{M}, g) with $\xi \in \Gamma(TM)$. If (M, \bar{g}) is locally $\bar{\phi}$ -Ricci symmetric null hypersurface of (\overline{M}, g) , then either $\overline{\alpha} = -\overline{\beta}$ or sum of non-zero 1-forms is zero everywhere.

Proof.As assumed (M, \bar{g}) is locally $\bar{\phi}$ -Ricci symmetric null hypersurface of (\bar{M}, g) , then from equation (29) we obtain

$$
(37) \qquad A(F)QJ + B(J)QF + S(F,J)\rho = 0
$$

Again taking inner product of the above equation (37) with L, we get

$$
(38) \qquad A(F)S(J,L) + B(J)S(F,L) + D(L)S(F,J)
$$

By our assumption (M, \bar{g}) is an η -Einstein null hypersurface of (\bar{M}, g) , that is

$$
S(F,J) = \overline{\alpha} \overline{g}(F,J) + \overline{\beta} \eta(F) \eta(J),
$$

Hence equations (38) leads us

(39)
$$
A(F) \left[\bar{\alpha} \bar{g}(J, L) + \bar{\beta} \eta(J) \eta(L) \right] \& + B(J) \left[\bar{\alpha} \bar{g}(F, L) + \bar{\beta} \eta(F) \eta(L) \right] + D(L) \left[\bar{\alpha} \bar{g}(F, J) + \bar{\beta} \eta(F) \eta(J) \right] = 0
$$

By putting $F = J = \xi$, $F = L = \xi$ and $J = L = \xi$ in (39), by turns and then adding the resulting equations, we have

(40)
$$
A(\xi) [\bar{\alpha}\eta(L) + \bar{\beta}\eta(L) + \bar{\alpha}\eta(J) + \bar{\beta}\eta(J)] + A(F)[\bar{\alpha} + \bar{\beta}]
$$

$$
+ B(\xi) [\bar{\alpha}\eta(L) + \bar{\beta}\eta(L) + \bar{\alpha}\eta(F) + \bar{\beta}\eta(F)] + B(J)[\bar{\alpha} + \bar{\beta}]
$$

$$
+D(\xi)[\bar{\alpha}\eta(J)+\bar{\beta}\eta(J)+\bar{\alpha}\eta(F)+\bar{\beta}\eta(F)]+D(L)[\bar{\alpha}+\bar{\beta}]=0.
$$

By setting $F = I = Lin$ equation (39), which then leads?

(41)
$$
A(\xi) + B(\xi) + D(\xi)[2\bar{\alpha}\eta(F) + 2\bar{\beta}\eta(F)] + A(F) + B(F) + D(F)[\bar{\alpha} + \bar{\beta}] = 0.
$$

Using theorem (1) in equation(40), we obtain our result.

Corollary 1. Suppose (\overline{M}, g) be an indefinite cosymplectic manifold of constant curvature -1 and let (M, \overline{g}) be weakly $\bar{\phi}$ -Ricci symmetric Einstein null hypersurface of an indefnite cosymplectic manifold (\bar{M}, g) with $\xi \in \Gamma(TM)$. If (M, \bar{g}) is locally $\bar{\phi}$ -Ricci symmetric null hypersurface of (\bar{M}, g) , then sum of non-zero 1-forms is zero everywhere.

Theorem 4. Let (M, \bar{g}) be weakly $\bar{\phi}$ -Ricci symmetric degenerate hypersurface of (\bar{M}, g) of constant curvature -1 with $\xi \in \Gamma(TM)$. If (M, \bar{g}) admits Codazzi type of Ricci tensor, then $\bar{g}([F, I], \xi) = 0$ i, e. $F = I$.

Proof. We know that the Ricci tensor $R^{(0,2)} = S$, satisfies Codazzi type of Ricci tensor if

(42)
$$
(D_F S)(J, L) = (D_j S)(F, L)
$$

for all $F, J, L \in \Gamma(TM)$.

Fromequations (27) and (1), we obtain

(43)
\n
$$
(2n - 1)[B(F, J)\theta(L) + B(F, L)\theta(J) - \bar{g}(D_F J, L) - \bar{g}(J, D_F L)] +
$$
\n
$$
D_F B(J, L) tr A_X - D_F B(A_X J, L) + B(A_X D_F J, L) + B(A_X J, D_F L)
$$
\n
$$
= (2n - 1)[B(J, F)\theta(L) + B(J, L)\theta(F) - \bar{g}(D_F F, L) - \bar{g}(F, D_J L)] +
$$
\n
$$
D_J B(F, L) tr A_X - D_J B(A_X F, L) + B(A_X D_J F, L) + B(A_X F, D_J L)
$$

Replacing L by ξ and using $B(F, \xi) = 0$ in above equation, we get

(44)
$$
\bar{g}(D_FJ,\xi) - \bar{g}(D_JF,\xi) = 0
$$

$$
D_FJ - D_JF = 0
$$

Or

$$
(45) \t\t\t [F,J] = 0
$$

Hence our desired result is obtained.

Theorem 5. Let (M, \bar{g}) be weakly $\bar{\phi}$ -Ricci symmetric degenerate hypersurface of (\bar{M}, g) of constant curvature -1with ξ ∈ $\Gamma(TM)$. If (M, \bar{g}) is totally geodesic and admits cyclic parallelof Ricci tensor, then L is parallel vector field.

Proof.From equation (43), we acquire

(46)
$$
(D_J S)(L, F) = (2n - 1)[B(J, L)\theta(F) + B(J, F)\theta(L) - \bar{g}(D_J L, F) - \bar{g}(L, D_J F)] + D_J B(L, F) tr A_X - D_J B(A_X L, F) + B(A_X D_J L, F) + B(A_X L, D_J F),
$$

and

(47)
$$
(D_L S)(F, J) = (2n - 1)[B(L, F)\theta(J) + B(L, J)\theta(F) - \bar{g}(D_L F, J) - \bar{g}(F, D_L J)] + D_L B(F, J) \text{tr } A_X - D_L B(A_X F, J) + B(A_X D_L F, J) + B(A_X F, D_L J)
$$

As assumed lightlike hypersurface (M, \bar{g}) admits cyclic parallel of Ricci tensor S, that is

(48)
$$
(D_F S)(J, L) + (D_J S)(L, F) + (D_L S)(F, J) = 0,
$$

Putting equations (43), (46) and (47) in (48) and using $B(F, J) = 0$ in the resulting equation, we get

(49)
$$
\bar{g}(D_FJ, L) + \bar{g}(D_FL, J) + \bar{g}(D_JL, F) + \bar{g}(D_JF, L) + \bar{g}(D_LF, J) + \bar{g}(D_LJ, F) = 0.
$$

Replacing $F = J = \xi$ in (49), we obtain

$$
\bar{g}(D_{\xi}L,\xi)=0.
$$

Hence our result follows from (50).

References

- [1] T. Q. Binh, On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen. 42(1) 103-107 (1993).
- [2] C. Calin, Contribution to geometry of CR-submanifolds, Ph.D. thesis, University of Iasi, Romania, 1998.
- [3] B. B. Chaturvedi and P. Pandey, Study on special type of a weakly symmetric Kaehler manifold, Diff. Geom. Dyn. Syst., 17 (2015) 32-37.
- [4] B. B. Chaturvedi and P. Pandey, Some Examples on Weak Symmetries, Gen. Math. Notes, 29(1), (2015), 61-66.
- [5] U. C. De, On φ- symmetric Kenmotsu manifolds, int. Electronic J., Geom, 1(1) (2008) 33-38.
- [6] U. C. De and A. Sarkar,, On Ricci φ−symmetric Sasakian manifolds, Proceedings of the jangjeon Math. Soc., 11(1) (2008) 47-52.
- [7] R. S. D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math. 10 (1979) 1508-1513.
- [8] K. L. Duggal, Foliations 0f Lightlike hypersurfaces and their physical interpretation, Cent. Eur. J. Math., 10(5) (2012) 1789-1800.
- [9] K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and its applications, Kluwer Academic Publishers Group, Dordrecht, 364 (1996) MR1383318 (97e:53121).
- [10] K. L. Duggal and D.H. Jin, Null curves and hypersurfaces of semi-Riemannian manifolds. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2007), MR2358723 (2008k:53149).
- [11] K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds. Frontiers in Mathematics Birkhauser Verlag, Basel, (2010), MR2598375.
- [12] T. H. Kang, S. D. Jung, B. H. Kim, H. K. Pak and J. S. Pak, Lightlike hypersurfaces of indefinite Sasakian manifolds. Indian J. Pure and Appl. Math. 34(9) (2003) 1369-1380.
- [13] T. H. Kang and S. K. Kim, Lightlike Hypersurfaces of Indefinite Cosymplectic manifolds. International Mathematical Forum, 2(67) (2007) 3303-3316.
- [14] F. Malek and M. Samawaki, On weakly symmetric Riemannian manifolds, Differential Geometry-Dynamical System 10 (2008) 215-220.
- [15] F. Massamba, On weakly symmetric Lightlike hypersurfaces of indefnite Sasakian manifolds, STU J. Math, 42(2) (2008) 165-185.
- [16] F. Ozen and S. Altay, On weakly and pseudo symmetric riemannian spaces, Indian Journal of Pure and Applied Mathematics, 33(10) 2001, 14771488.
- [17] D. G. Prakasha, S.K. Hui, and K. Vikas On Weaklyφ-Ricci symmetric Kenmotsu manifolds, International Journal of Pure and Applied Mathematics, 95(4) (2004) 515-521.
- [18] T. Takahashi, Sasakian φ−symmetric spaces, Tohoku Math. j., 29 (1977) 91113.
- [19] L.Tamassy, and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc., J. Bolyai, 56 (1989) 663-670.
- [20] L. Tamassy and T. Q. Binh, Onweakl symmetries of Einstein and Sasakian manifolds, Tensor N. S, 53 (1993) 140-148.
- [21] A. A. Shaikh, M. Ali and Z. Ahsan, Curvature properties of a special type of pure radiation metrics, Journal of Geometry and Physics 136 (2019) 195–206.
- [22] A. A. Shaikh, H Kundu and Z. Ahsan, Curvature properties of Robinson–Trautman metric, J. Geom., 109(38) (2018).
- [23] S. S. Shukla and M. K. Shukla, On φ-Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math, 39(2), (2009), 89-95.
- [24] M. Tarafdar, A. A, Musa and Jawarneh, Semi-pseudo Ricci symmetric manifold, j. Indian inst. of Science, 73 (1993) 140-148.
- [25] P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett corrections, Ann. inst. stst. Math., 14(3) (1999) 99-110.