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ABSTRACT 

The usefulness of a model for characterising pitch profiles in voice signals is critical in a 

wide range of application areas, but it is particularly important in natural-sounding text-to-

speech systems, which are becoming increasingly popular. Despite its simplicity, the Fujisaki 

model has demonstrated remarkable accuracy across a wide range of languages. A much 

more difficult task is that of solving the inverse problem, i.e., extracting the input parameters 

that formed an observed pitch contour, which has the potential to be very beneficial in the 

field of automatic extraction of prosodic parameters from a given speech signal and could be 

of considerable importance A tiny sample of 100 male and female utterances from the 

natural, USS, and HTS systems were used to establish the Fujisaki Model parameters 

speakers was used. Both natural and synthetic speech are produced using the same text 

content. 
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I. INTRODUCTION 

Computational models are increasingly being used to capture prosodic characteristics. A good 

example of this is when attempting to parameterize fundamental frequency (F0) contours 

sparingly, that is, by establishing By extracting a limited number of parameters from the 

estimated F0 contour values, we may establish links between the F0 contour and the 

utterance's informative units and structures. An algorithm based on data from an error-prone 

method that relies on F0 is inherently sensitive to those flaws because F0 only exists for 

spoken sounds and proper extraction is frequently difficult. Despite the presence of non-

vocalic pauses and micro-prosodic undulations in F0,the auditory system interprets these as 

truly seamless intonation contours. Because the laryngeal mechanism is so difficult to 

describe in terms of articulatory features, the fundamental frequency contour cannot be 

described in terms of how it is produced. This mechanism may be shared by all people, 

although previous studies have found that speakers of different languages use intonation 

differently and some are more sensitive to specific parts of the F0 contour than others. When 

speaking a stress-timed language, such as English or German, speakers pay close attention to 

accented syllables and boundary tones, whereas tone language speakers give each word its 

own tonal contour. 

FUJISAKI’S MODEL 

Between the 1970s and the 1980s, H. Fujisaki and his colleagues devised an analytical model 

for characterising the fundamental frequency (F0) changes in the electromagnetic spectrum. It 
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encompasses the basic mechanisms that are involved in the creation of speech and are 

responsible for the formation of a specific prosodic structure. Following that, the 

representation of speech prosody in terms of the model characteristics, also known as the 

inverse problem, has been handled using a variety of approaches and techniques. The 

overlapping between sets of model contours and natural contours has been demonstrated to 

be satisfactory using Fujisaki's model (see Fig. 1).

 

 

Figure 1: Using a prosody method to create speech synthesis, the following steps are 

performed: pitch contour extraction from speech (◦), pitch contour representation by 
using a prosody model (•), and possible modified pitch contours generated by using a 

prosody model (*) with appropriate prosodic-feature manipulations (Ti). 

II. RESEARCH METHODOLOGY 

First, the Fujisaki Model parameters were examined using a small sample of 100 natural, 

USS, and HTS utterances provided by a man and female speaker, respectively, in order to 

determine their significance. Both natural and synthetic speech are produced using the same 

text content. In this study, the parameters derived from the model-generated F0 contour in 

log-domain were used in the analysis; these were Fb, xp, yp, xa, and ya, to name a few. 

Shows the summary of the analysis in based on mean and standard deviation, as well as the 

number of observations. On the basis of the same text, we conduct the current analysis on 

individual utterances, and we then expand the application of the application of the technique 

to a classification problem on a large, non-parallel, statistically significant dataset 

DATA ANALYSIS 

Due to the varied durations of the commands and elements, it is not possible to use the 

Fujisaki model parameters as strength. Our early work utilising the characteristics of the 

Fujisaki model for judging natural and synthetic speech in Gujarati are investigated. Figure 2 

shows spectrograms for the same phrase for human speech, USS, and HTS-based synthetic 

speech. In terms of speaker characteristics, the spectrogram of USS-based synthetic speech is 

very comparable to the spectrogram of authentic speech. Although the spectrogram has 

breaks that appear to indicate a discontinuity in the formant contour, this is not the case 
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(dotted oval showing abruptness due to concatenation). These gaps can occur in actual speech 

as well; however, because to the concatenation of speech sound units, the breaks are longer. 

frequency with which they occur in USS-based speech is significantly higher than in normal 

speech. The appears to be the formant structure and intelligibility of HTS-based speech are 

not preserved in HTS-based speech, as evidenced by the spectrogram (dotted squares). 

 

 

Figure 2 (a) Speech Signal, (b) spectrogram of (a), (c) USS-based speech, (d) 

spectrogram of (c), (e) HTS-based speech and (f) spectrogram of (e). 

With the Itakura–Saito distance metric, we are able to gauge the differences between various 

spectrograms. A perceptual disparity among an original spectrum P(⍵) and an approximation 

spectrum P(⍵) is measured by this function. A synthetic representation of natural speech is 

considered should be a close match to real speech To compute the IS distance, the utterances 

were time-aligned using DTW, and the LPCs were extracted from the speech signal for every 

20 ms speech frame with a frame shift of 10 ms. between the utterances and the target. 

background noise. 

 

 

The number of speech frames is denoted by the letter N. Table 1 shows that the IS distance 

between natural and USS speech is much shorter when compared to HTS speech, which is 

owing to the fact that the IS distance evaluates spectral properties that are reliant on the size 

and form of the person's vocal tract.
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Table 1: Over 100 utterances, the average IS distance between natural and synthetic 

speech was calculated for both male and female speakers. 

 

4.1 

Statistical Evaluation of Outcomes 

Figure 3 depicts the scatter plots for 100 USS and 100 HTS synthesised utterances formed by 

the mean of accent and sentence elements, for each group. The size and form of the USS and 

natural speech clusters differ from those of the HTS and natural speech groups, respectively. 

It is discovered, in particular, that the clusters for USS synthetic speech and natural speech 

are more overlapping, making differentiation between the two classes of speech more 

difficult. However, when it comes to HTS speaking (especially female voice), the two types 

can be identified more clearly. As a result, the female voice in HTS lacks many of the 

prosodic features found in the natural voice. The Student's t-test was used to see if the 

parameter distributions for natural and synthetic voices differed significantly from one 

another. We also investigated if the two sets of synthetic voices differed considerably from 

one another. This demonstrates how the phrase and accent parameters might be useful. to be 

an effective collection of criteria for distinguishing between genuine and synthetic speech in 

the future. 

 

 

 



Turkish Journal of Computer and Mathematics Education  Vol.12 No.12 (2021), 4855 - 4861 

 

 

4859 

 

 

 

Research Article  

Figure 3: Groups of accent and phrase components for (a) natural vs. USS (male), (b) 

natural vs. HTS (male), (c) natural vs. USS (female) and (d) natural vs. HTS (female) 

III. EXPERIMENTAL OUTCOMES 

Creating features using the operation of Fujisaki model parameters is complex because 

information about prosodic phrase breaks and accent components is incorporated in the place 

of their occurrence and is only accessible when the utterances are given parallel. As a result, 

generalising these features to non-parallel utterances is not always straightforward and can be 

difficult. In this Section, we'll create a feature vector that incorporates both the F0 and the 

predicted sentence and accent variables., among other things. The ASV spoof challenge 

database is used to assess the functionality of this feature set. 

5.1 Outcomes on the Development Set of ASVspoof challenge Database  

Because of the small incorporate perspective, we propose a hidden preliminary to evaluate 

the percent EER of Fujisaki model-based features for different Gaussian blend parts using the 

Fujisaki model. The number of components in the combination might range from 2, 4, 8, 16, 

32, 64, and 128. When the amount of mixture components is increased, it is noted that the 

overall tendency is a drop in the EER value. In Figure 4, the lowest EER of 40.88 percent is 

found for 128 combination parts, which is the lowest in the study. As a result, we use 128 

mixture components in this work, as we have in all of our past tests, in order to ensure 

homogeneity.

 

 

Figure 4: The percent EER achieved on the development set for the Fujisaki model-

based features with a changing number of Gaussian constituent materials was 

calculated for each feature on the development set. 

In the following section, we demonstrate the effectiveness of the Fujisaki model-put together 

highlights with respect to the improvement set of the ASV parody challenge data set (see 

Figure 1). As displayed in Table 2, the normal percent EER created by joining 128 blend 

parts is very high, averaging around 40.88 percent overall. It ought to be underlined that the 

improvement set contains only of vocoder-based spoofs, and as needs be, the percent EER 
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gained is extremely high in the current situation. A score-level blend of the Fujisaki model 

features and the structure based MFCC, CFCCIFS, and SBAE highlights is additionally 

endeavoured to reveal any possibly supplementing data. Be that as it may, as displayed in 

Table 5.18, in any event, when score-level combination is performed with any weight factor, 

the framework based highlights show no genuinely critical increment over the discoveries 

gained with the F0, SoE1, SoE2, and forecast based highlights (i.e., no huge improvement). 

As a result, in order to make this proposed feature vector usable for the SSD task, it must be 

adjusted in an efficient manner.

 

Table 2: Score-level fusion of Fujisaki model-based feature set with system-based 

feature sets (using D3 feature vector) at various fusion factors f on the development set 

yielded the following EER (in percent) 

Featu

re 

    FusionFac

tor 

(αf)     Feature 

Set1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Set2 

 40.

88 

15.9

9 

80.0

02 

4.5

00 

3.20

0 

2.50

0 

2.12

3 

1.9

00 

1.6

30 

1.70

0 

1.80

0 

MFCC 

Fujisa

ki 

40.

88 

15.0

1 

7.41

2 

4.2

00 

3.00 2.20

0 

1.80

0 

1.7

00 

1.4

87 

1.60

0 

1.70

0 

CFCC 

Features

 40.88 

19.9

9 

9.21

0 

4.6

00 

3.00 2.00 1.60

0 

1.4

12 

1.2

58 

1.19

9 

1.23

0 

CFCCI

FS 

40.88 17.3

00 

9.70

0 

5.6

33 

4.00 2.74

0 

2.00

2 

1.9

00 

1.5

44 

1.49

0 

1.49

0 

SBAE 

 

IV. CONCLUSION 

It was the first time that the Fujisaki model was investigated for the purpose of identifying the 

absence of prosodic data in discourse, rather than its ordinary application in prosody change 

for TTS frameworks. Thinking about the way that the ridiculed discourse rejects the prosodic 

characteristics that are available in veritable discourse, we endeavor to sum up our 

discoveries from the expression and complement parts to non-equal expressions. While 

looking at the F0, SoE1, and SoE2 highlights with their elements, the sole consistency was 

noticed in the fact that the percent EER decreased as the amount of dynamic information 

increased for each of the three features. The use of a prosodic model while generating speech 

synthesis makes it more difficult for these criteria to distinguish between spoof-specific 

aspects. As a result, it is necessary to change and construct highlights that perform 
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fundamentally well on the ASV parody challenge data base, and following that to investigate 

whether these features can be generalised. 
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