An Orthogonal Left Centralizer and Reverse Left Centralizer on Semiprime Rings

Fawaz Ra'ad Jarullah

Department of Mathematics, College of Education, Al-Mustansirya University, Iraq fawazraad1982@gmail.com

Abstract

: Let R be a semiprime ring. Then we prove the following main result: Let R be a 2-torsion free semiprime ring, t be a left centralizer and h be a reverse left centralizer of R , suppose that $\mathrm{t}^{2}=h^{2}$. Then $\mathrm{t}+\mathrm{h}$ and $\mathrm{t}-\mathrm{h}$ are orthogonal.

Key Words: semiprime ring, left centralizer, reverse left centralizer, orthogonal left centralizer and reverse left centralizer .

Mathematic Subject classification: 16 N 60, 42C05, 33C45.

1-Introduction :

A ring R is called semiprime if $x R x=(0)$ implies $=0$, such that $x \in R \quad[3]$.
Let R be a ring then R is called 2-torsion free if $2 x=0$ implies $x=0$, for all $x \in R \quad$ [3] .
A left (resp. right) centralizer of a ring R is an additive mapping $t: R \longrightarrow R$ which satisfies the equation : $t(x y)=t(x) y($ resp.t $(x y)=x t(y))$, for all $x, y \in R$. t is called a centralizer of R if it is both a left and a right centralizer [4].

A left (resp. right) Jordan centralizer of a ring R is an additive mapping $t: R \longrightarrow R$ which satisfies the equation $t\left(x^{2}\right)=t(x) x\left(\right.$ resp. $\left.t\left(x^{2}\right)=x t(x)\right)$, for all $x \in R$ t is called a Jordan centralizer of R if it is both a left and a right Jordan centralizer [4]. Also , Jarullah and Salih introduced the concepts of a higher reverse left (resp. right) centralizer and a Jordan higher reverse left (resp. right) centralizer on rings as follows : Let $t=\left(t_{i}\right)_{i \in N}$ be a family of additive mappings of a ring R into itself .Then t is called a higher reverse left (resp. right) centralizer of R if for all $x, y \in R$ and $n \in N$

$$
\begin{equation*}
t_{n}(x y)=\sum_{i=1}^{n} t_{i}(y) t_{i-1}(x)\left(\text { resp. } t_{n}(x y)=\sum_{i=1}^{n} t_{i-1}(y) t_{i}(x)\right) \tag{3}
\end{equation*}
$$

Let $t=\left(t_{i}\right)_{i \in N}$ be a family of additive mappings of a ring R into itself. Then t is called a Jordan higher reverse left (resp. right) centralizer of R , if the following equation holds, for all $x \in R$ and $n \in N: t_{n}\left(x^{2}\right)=\sum_{i=1}^{n} t_{i}(x) t_{i-1}(x)\left(\right.$ resp. $\left.t_{n}\left(x^{2}\right)=\sum_{i=1}^{n} t_{i-1}(x) t_{i}(x)\right)[3]$. In this paper, we define and study the concept of orthogonal when t be a left centralizer and h be a reverse left centralizer of semiprime ring and we prove some of lemmas and theorems about orthogonally one of these theorems is :
Let R be a 2-torsion free semiprime ring, t be a left centralizer and h be a reverse left centralizer of R, such that t and h are commuting. Then t and h are orthogonal if and only if $t(x) h(y)+h(x) t(y)=0$, for all $x, y \in R$.

In our work we need the following Lemmas :
Lemma (1.1): [2]

Let R be a 2-torsion free semiprime ring and x , y be elements of R , then the following conditions are equivalent :
(i) x ry $=0$, for all $r \in R$
(ii) $y r x=0$, for all $r \in R$
(iii) $x r y+y r x=0$, for all $r \in R$

If one of these conditions is fulfilled ,then $\mathrm{xy}=\mathrm{yx}=0$.

Lemma (1.2): [1]

Let R be a 2-torsion free semiprime ring and x , y be elements of R if $\mathrm{xry}+\mathrm{yrx}=0$, for all $r \in R$,then $x r y=y r x=0$.

2-Orthogonal Left Centralizer and Reverse Left Centralizer on Semiprime Rings :

In this section we will introduce the definition of orthogonal when t be a left centralizer and h a reverse left centralizer of semiprime rings .

Definition (2.1):

Let t be a left centralizer and h be a reverse left centralizer of a ring R. Then t and h are called orthogonal if
$\mathrm{t}(\mathrm{x}) \mathrm{R} \mathrm{h}(\mathrm{y})=(0)=\mathrm{h}(\mathrm{y}) \mathrm{Rt}(\mathrm{x})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.

Example (2.2):

Let R be a ring of all 2×2 matrices of integer numbers, such that
$\mathrm{R}=\left\{\left(\begin{array}{ll}\mathrm{x} & 0 \\ \mathrm{O} & \mathrm{y}\end{array}\right) ; \mathrm{x}, \mathrm{y} \in \mathrm{Z}\right\}$
Let $t: R \rightarrow R$ be an additive mapping of a ring R into itself, such that
$t\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)=\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)$, for all $\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \in R$
And $\mathrm{h}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping of a ring R into itself, such that
$h\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & y\end{array}\right)$, for all $\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \in R$.
t is a left centralizer and h is a reverse left centralizer . Then t and h are orthogonal of R.

Example (2.3):

Let t is a left centralizer and h is a reverse left centralizer of a ring R, let S be a ring, such that $S=R \oplus R=\{(x, y) ; x, y \in R\}$, we define t^{*} and h^{*} on S by $\mathrm{t}^{*}((\mathrm{x}, \mathrm{y}))=(\mathrm{t}(\mathrm{x}), 0)$ and $\mathrm{h}^{*}((\mathrm{x}, \mathrm{y}))=(0, \mathrm{~h}(\mathrm{y}))$, for all $(\mathrm{x}, \mathrm{y}) \in \mathrm{S}$.

Then t^{*} and h^{*} are orthogonal of S.

Lemma (2.4):

Let R be a semiprime ring, suppose that t be a left centralizer and h be a reverse left centralizer of R, satisfy $t(x) R h(x)=(0)$, for all $x \in R$. Then $t(x) R h(y)=(0)$, for all $x, y \in R$.

Proof:

Suppose that $\mathrm{t}(\mathrm{x}) \mathrm{zh}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$
Replace x by $\mathrm{x}+\mathrm{y}$ in (1), we have that
$\mathrm{t}(\mathrm{x}+\mathrm{y}) \mathrm{zh}(\mathrm{x}+\mathrm{y})=0$
$t(x) z h(x)+t(x) z h(y)+t(y) z h(x)+t(y) z h(y)=0$

Therefore, by our assumption and Lemma (1.1), we get
$\mathrm{t}(\mathrm{x}) \mathrm{zh}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$
Thus, $t(x) R h(y)=(0)$, for all $x, y \in R$

Lemma (2.5):

Let R be a 2-torsion free semiprime ring, t be a left centralizer and h be a reverse left centralizer of R , such that t and h are commuting. Then t and h are orthogonal if and only if $t(x) h(y)+h(x) t(y)=0$, for all $x, y \in R$.

Proof:

Suppose that t and h are orthogonal
T.P. $t(x) h(y)+h(x) t(y)=0$, for all $x, y \in R$

Since t and h are orthogonal, we have that
$\mathrm{t}(\mathrm{x}) \mathrm{zh}(\mathrm{y})=0=\mathrm{h}(\mathrm{x}) \mathrm{zt}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$
Therefore ,by Lemma (1.1), we get the require result
Conversely , Suppose that $t(x) h(y)+h(x) t(y)=0$, for all $x, y \in R$
T.P. t and h are orthogonal

By our assumption, we have that
$t(x) h(y)+h(x) t(y)=0$, for all $x, y \in R$
Left multiply by z , we have that
$z \mathrm{t}(\mathrm{x}) \mathrm{h}(\mathrm{y})+\mathrm{zh}(\mathrm{x}) \mathrm{t}(\mathrm{y})=0$
Since t and h are commuting, we have that
$\mathrm{t}(\mathrm{x}) \mathrm{zh}(\mathrm{y})+\mathrm{h}(\mathrm{x}) \mathrm{zt}(\mathrm{y})=0$, for all $\mathrm{z} \in \mathrm{R}$
By Lemma (1.2), we have that
Thus, $\mathrm{t}(\mathrm{x}) \mathrm{zh}(\mathrm{y})=0=\mathrm{h}(\mathrm{x}) \mathrm{zt}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$
Hence, t and h are orthogonal

Theorem (2.6):

Let R be a 2-torsion free semiprime ring, t be a left centralizer and h be a reverse left centralizer of R , where t and h are commuting. Then the following conditions are equivalent :
(i) t and h are orthogonal
(ii) $\mathrm{th}=0$
(iii) $\mathrm{ht}=0$
(iv) th $+\mathrm{ht}=0$

Proof: (i) \Leftrightarrow (ii)

Suppose that t and h are orthogonal
$\mathrm{t}(\mathrm{x}) \mathrm{zh}(\mathrm{y})=0=\mathrm{h}(\mathrm{y}) \mathrm{zt}(\mathrm{x})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$
T.P. th $=0$

By our assumption, we have that
$\mathrm{h}(\mathrm{y}) \mathrm{zt}(\mathrm{x})=0$
Replace x by $\mathrm{h}(\mathrm{y})$, we have that
$\mathrm{h}(\mathrm{y}) \mathrm{zt}(\mathrm{h}(\mathrm{y}))=0$
$\mathrm{t}(\mathrm{h}(\mathrm{y})) \mathrm{zt}(\mathrm{h}(\mathrm{y}))=0$
$\mathrm{t}(\mathrm{h}(\mathrm{y})) \mathrm{zt}((\mathrm{h}(\mathrm{y}))=0$
Since R is a semiprime ring, we have that
$\mathrm{t}(\mathrm{h}(\mathrm{y}))=0$, for all $\mathrm{y} \in \mathrm{R} \Rightarrow \mathrm{th}=0$
Conversely, suppose that th $=0$
T.P. t and h are orthogonal
$h(t(x y))=0$
$h(t(x) y)=0$
$h(y) t(x)=0$, for all $x, y \in R$
Since t and h are commuting, we have
$t(x) h(y)=0$, for all $x, y \in R$
Replace x by xz , we have that
$t(x z) h(y)=0$
$\mathrm{t}(\mathrm{x}) \mathrm{zh}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$
Since t and h are commuting, we have
$h(y) z t(x)=0$, for all $x, y \in R$
Hence t and h are orthogonal

Proof : (i) \Leftrightarrow (iii)

By the same way in (i) \Leftrightarrow (ii) , we get (i) \Leftrightarrow (iii) .

Proof: (i) \Leftrightarrow (iv)

Suppose that t and h are orthogonal
T.P. th $+\mathrm{ht}=0$

By (ii) and (iii), we get the require result
Conversely , suppose that $\mathrm{th}+\mathrm{ht}=0$
T.P. t and h are orthogonal
$(t h+h t)(y x)=0$
$t(h(y x))+h(t(y x))=0$
$\mathrm{t}(\mathrm{h}(\mathrm{x}) \mathrm{y})+\mathrm{h}(\mathrm{t}(\mathrm{y}) \mathrm{x})=0$
$t(h(x)) y+h(x) t(y)=0$, for all $x, y \in R$.
Replace $\mathrm{t}(\mathrm{h}(\mathrm{x}))$ by $\mathrm{t}(\mathrm{x}) \mathrm{h}(\mathrm{y})$, we have that
$t(x) h(y)+h(x) t(y)=0$, for all $x, y \in R$
By Lemma (2.5), we get the require result .

Theorem(2.7):

Let R be a 2-torsion free semiprime ring, t be a left centralizer and h be a reverse left centralizer of R, suppose that $t^{2}=h^{2}$. Then $t+h$ and $t-h$ are orthogonal.

Proof:

$((\mathrm{t}+\mathrm{h})(\mathrm{t}-\mathrm{h})+(\mathrm{t}-\mathrm{h})(\mathrm{t}+\mathrm{h}))(\mathrm{x})$
$=(\mathrm{t}(\mathrm{x})+\mathrm{h}(\mathrm{x}))(\mathrm{t}(\mathrm{x})-\mathrm{h}(\mathrm{x}))+(\mathrm{t}(\mathrm{x})-\mathrm{h}(\mathrm{x}))(\mathrm{t}(\mathrm{x})+\mathrm{h}(\mathrm{x}))$
$=t^{2}(x)-t(x) h(x)+h(x) t(x)-h^{2}(x)+t^{2}(x)+t(x) h(x)-h(x) t(x)-h^{2}(x)$
$=0$
Therefore , $((\mathrm{t}+\mathrm{h})(\mathrm{t}-\mathrm{h})+(\mathrm{t}-\mathrm{h})(\mathrm{t}+\mathrm{h}))(\mathrm{x})=0$
By Theorem (2.6) (iv) \Rightarrow (i), we get the require result

References

[1] Bresar . M ,"Jordan Derivations on Semiprime Rings", Proceedings of the American Mathematical Society,104(4), p.p.1003-1006, 1988.
[2] Breser .M and Vukman .J, "Orthogonal Derivations and on Extension of a Theorem of Posner ", Radovi Mathematick ,5, p.p.237-246,1989.
[3] F.R.Jarullah and S.M. Salih,"A Jordan Higher Reverse Left(resp. Right) Centralizer on Prime Rings", Academic Journal for engineering and science,3(4),p.p.12-18, 2021.
[4] B.Zalar,"On Centralizers of Semiprime Ring", Comment. Math.Univ. Carol.,32(4), p.p.609-614, 1991.

