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Abstract: Cancer is a leading cause of death worldwide. Invention of better cancer treatment strategies remained a burning 
topic of the research since decades. Oncolytic virotherapy being a targeted type therapy is an emerging technology that uses 
selective engineered viruses to treat cancerous malignancies. The dynamics of oncolytic M1 virotherapy with spatial effects 
and anti-tumour immune responses cab better be studied and analysed with reaction-diffusion mathematical models. A 
reaction-diffusion mathematical model to characterize the dynamics of oncolytic M1 alphavirus in the cancer treatment 

virotherapy with immune responses is studied in this paper. A numerical simulation technique based on the collocation of 
cubic B-splines is proposed to approximate the solution of the considered reaction-diffusion model. Collocation forms of the 
partial differential equation results in a system of first order ordinary differential equations which in turn have been solved 
by Runge-Kutta method of order 4. The non-linearity of the model is being resolved without any transformation or 
linearization. The computed numerical results are in good agreement with those expected. Easy to apply and achieving 
accurate solutions in less CPU time are the key points of the present approach. 

Keywords: Cancer, Oncolytic M1 virotherapy, Reaction-Diffusion model, Cubic B-splines, basis functions, Tri-diagonal 
matrix, Runge-Kutta (RK4) method. 
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1. Introduction 

Cancer is potentially the collection of life-threatening diseases that occur due to the unconstrained growth 
of anomalous cells. Clusters of such abnormal cells form cancerous tumours. As per the estimation of 

International Agency for Research on Cancer (IARC) [1] on global cancer burden, it has risen to 19.3 million 

cases and 10 million cancer deaths in 2020. Due to COVID-19 pandemic, the diagnosis and the treatment of 

cancer is somehow obstructed [2] that may lead to a momentary drop in recent cancer cases but ultimately be 

followed by advanced stages to increased mortality. Depending upon the type and the stage of the cancer [3], 

there are many treatment strategies like surgery, radiation therapy, chemotherapy, immunotherapy, targeted 

therapy, immune therapy, stem cell transplant and the precision medicines. Wang et. al. [4] proposed 

nanomedicines-based gas therapeutic cancer treatment strategy. Oncolytic virotherapy which uses replication-

competent viruses to kill cancer cells is one of the emerging treatment prominent modalities for cancer 

treatment [5-8]. In the recent past years, oncolytic virotherapy is wide field of research in medical [9] and 

mathematical [10-11] sciences. The ability of the oncolytic therapy that uses selective oncolytic viruses to 
completely remove the tumour cells depends upon the potency of the therapy. Satisfactory results have been 

achieved in clinical trials for the development of various oncolytic viruses. However, there are some challenges 

[7-9] that need to be investigated more precisely to enhance the efficacy of this type of treatment strategies. It 

is a relevant field of research to study the complexity of the impacts of tumour-specific immune responses on 

oncolytic virotherapy [15]. 

In order to provide better insights into the complicated dynamics of oncolytic virotherapy mathematical 

models [10-13] have been proposed. The models are similar to that of HBV and HIV viral infection models 

[16,21] and are aimed to analyse the cancer treatment strategies more effectively. The effect of virus burst size 

on viral therapy is studied by Wang et. al. [8]. Malinzi et. al. [11] proposed a model to analyse the efficacy of 

oncolytic virotherapy with chemotherapy and established that this combined treatment strategy can be a better 

option if the correct optimal dosage is used. 
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The diffusion [14,16,19] of oncolytic viruses within the tumour cells makes the models best suitable to be 

treated mathematically. Tao and Guo [14] have studied a nonlinear system of partial differential equations with 

a moving boundary to analyse the movements of viruses and immune cells. The diffusion of oncolytic viruses 

characterized by the spatial and temporal distributions over the tumour cells has been studied through various 

reaction-diffusion mathematical models. Wang et. al. [12] assumed the diffusion in a bounded domain and 

proposed a reaction-diffusion model to study the dynamics. To study the effects of oncolytic virotherapy on the 
concentration of tumour cells in the presence of CTL immune responses Malinzi et. al. [7] obtained travelling 

wave solutions a reaction-diffusion model.  

To study the impacts of using oncolytic M1 virus on the growth of tumour and normal cells Wang et. at. 

[48] formulated the following basic ordinary differential equation model 

𝑑𝐻(𝑡)

𝑑𝑡
= 𝜅 − 𝑑 𝐻 − 𝛽1𝐻 𝑁 − 𝛽2𝐻 𝑌 

𝑁(𝑡)

𝑑𝑡
= 𝛼1𝛽1𝐻 𝑁 −  𝑑 + 𝜂1  𝑁 

𝑌(𝑡)

𝑑𝑡
= 𝛼2𝛽2𝐻 𝑌 − 𝛽3𝑌 𝑉 − 𝛽4𝑌 𝑍 −  𝑑 + 𝜂2 𝑌 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜇 + 𝛼3𝛽3𝑌 𝑉 −  𝑑 + 𝜂3 𝑉 

(1.1) 

 

where 𝐻 𝑡 ,𝑁 𝑡 ,𝑌 𝑡 ,𝑉(𝑡) denote the concentrations of nutrient, normal cells, tumor cells and free M1 virus 

respectively.  

Elaiw et. at. [17] extended the model (1.1) considering the effects of CTL immune responses on the 

oncolytic virotherapy. It was also assumed that all the components in the considered model undergo diffusion 

so that the proposed model took the form of a reaction-diffusion model comprising of a system of partial 

differential equations. The non-negativity and the boundedness of the solution and the stability of the 

equilibrium points are analysed in the extended model. 

The reaction-diffusion mathematical models take the form of the systems of semi-linear parabolic partial 

differential equations and correspond to a wide range of physical and dynamical phenomena occurring in day-

to-day life. The solutions of reaction-diffusion equations account to a wide range of behaviours together with 

self-organized patterns formation including the formation of travelling waves. Reaction-diffusion models serve 

as a framework for understanding complex biological patterns. In the present paper, the solutions of the 

reaction-diffusion model for oncolytic M1 virotherapy cancer treatment proposed by Elaiw et. al. [17] has been 

found numerically using the cubic B-splines collocation method. The splines which are piecewise polynomial 

functions [44] constitute an elegant framework for dealing with the discretization and the interpolation 

problems. In this paper, cubic B-splines are collocated over the finite elements to approximate the spatial 

variables and its derivatives. A system of first order ordinary differential equations is obtained which in turn is 

solved by the well-known Runge-Kutta method of order 4. The B-splines are preferred over the other 
traditional schemes for their inheritance of continuity and the small local support over the given partition of the 

domain. In combination with collocation, this significantly reduces the efforts for solving differential 

equations. This method provides efficient explicit solutions with high accuracy and minimal computational 

efforts. Mittal and Jain [33] proposed a scheme based on collocation of cubic B-splines to solve the non-linear 

parabolic partial differential equations numerically.  Mittal and Tripathi [34] have suggested a numerical 

method to approximate the solutions of coupled-Burger’s equation using collocation of modified B-spline 

collocation scheme. Mittal et al. [35-39] have proposed the collocation of cubic B-splines to approximate 

solutions of various linear and non-linear partial differential equations. The authors also used the proposed 

scheme for a larger dimension malaria infection reaction-diffusion model [49] and achieved the accurate 

solutions. Therefore, cubic B-splines collocation method is applied to solve the reaction-diffusion oncolytic 

M1 virotherapy model in [17]. The computed numerical results are found in good agreement with those already 

in the literature. This scheme is found to be simple and easy to implement.  

This paper is organized as follows: In section 2, the reaction-diffusion model for the oncolytic M1 

virotherapy considered in this paper is described. In section 3, the procedure to implement the proposed 

method is given. In section 4-7, the method is applied to the given model and the corresponding explanation is 

given. In section 8, the numerical simulations are given and the results are summarized in Section 9. In section 

10, Conclusions are discussed that briefly summarize the numerical outcomes.  
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2.The reaction-diffusion oncolytic M1 virotherapy model 

Elaiw et. al. [17] extended the model motivated and studied by [48] describing the oncolytic M1 

virotherapy for cancer patient’s treatment upon considering the effects of cytotoxic T-lymphocytes (CTLs) 

immune responses to destroy the tumour cells. The diffusion behaviour of the various cell concentrations gives 
rise to a system of partial differential equations in the form of the well-known reaction-diffusion Mathematical 

model.  

The model studied and analysed in the present paper is as given below: 

𝜕𝐻(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝐻  ∆𝐻 + 𝜅 − 𝑑 𝐻 − 𝛽1𝐻 𝑁 − 𝛽2𝐻 𝑌 

𝜕𝑁(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝑁  ∆𝑁 + 𝛼1𝛽1𝐻 𝑁 −  𝑑 + 𝜂1  𝑁 

𝜕𝑌(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝑌  ∆𝑌 + 𝛼2𝛽2𝐻 𝑌 − 𝛽3𝑌 𝑉 − 𝛽4𝑌 𝑍 −  𝑑 + 𝜂2 𝑌 

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝑉  ∆𝑉 + 𝜇 + 𝛼3𝛽3𝑌 𝑉 −  𝑑 + 𝜂3 𝑉 

𝜕𝑍(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝑍  ∆𝑍 + 𝛼4𝛽4𝑌 𝑍 − (𝑑 + 𝜂4)𝑍 

 (2.1) 

 

for 𝑡 > 0, 𝑥 𝜖 Ω,  where 𝐻 𝑥, 𝑡 , 𝑁 𝑥, 𝑡 , 𝑌 𝑥, 𝑡 , 𝑉(𝑥, 𝑡) and 𝑍(𝑥, 𝑡) respectively denote the concentrations 

of the nutrient, normal cells, tumour cells, free oncolytic M1 viruses and CTL cells at any position x and time 

instant t. 𝜕Ω is the smooth boundary of the bounded and the continuous domain Ω.𝛽4𝑌 𝑍 and 𝛼4𝛽4𝑌 𝑍 are the 

rates at which the CTLs attack and kill the tumour cells and stimulate respectively. Δ =
𝜕2

𝜕𝑥 2 is the Laplacian 

operator and 𝐷Λ  denotes the diffusion coefficient of the componentΛ. The parameter 𝜂4 denotes the natural 

death rate constant of CTLs. 

The model is associated with the biologically intact, continuous and the non-negative initial conditions  

𝐻 𝑥, 0 = 𝜓1(𝑥) 

 𝑁 𝑥, 0 = 𝜓2(𝑥) 

𝑌 𝑥, 0 = 𝜓3(𝑥) 

𝑉 𝑥, 0 = 𝜓4(𝑥) 

𝑍 𝑥, 0 = 𝜓5(𝑥) 

(2.2) 

and the homogeneous Neumann boundary conditions representing a natural dispersal barrier.  

 
𝜕𝐻

𝜕𝑛  
=

𝜕𝑁

𝜕𝑛  
=

𝜕𝑌

𝜕𝑛  
=

𝜕𝑉

𝜕𝑛  
=

𝜕𝑍

𝜕𝑛  
= 0 ;     𝑡 > 0,   𝑥 𝜖 𝜕Ω                                       (2.3) 

where  
𝜕

𝜕𝑛  
 is the outward normal derivative on the boundary 𝜕Ω. These boundary conditions signify that the 

cells and the viruses cannot cross the boundary [12]. 

3. Mathematical Formulation 

The solution domain  𝑎,𝑏   is partitioned into a mesh of uniform step size length  

ℎ = 𝑥𝑖+1 − 𝑥𝑖 =
(𝑏 − 𝑎)

𝑛
 ;   𝑖 = 0, 1, 2… . . ,𝑛 − 1 

by the knots 𝑥𝑖  where 𝑖 = 0, 1, 2… . . , 𝑛 such that 

𝑎 = 𝑥0 < 𝑥1 ………… < 𝑥𝑛 = 𝑏 

Our numerical treatment for oncolytic M1 virotherapy reaction-diffusion model using the collocation 

method with cubic B-splines is to find the approximate 

solutions 𝐻𝑛  𝑥, 𝑡 , 𝑁𝑛  𝑥, 𝑡 , 𝑌𝑛  𝑥, 𝑡 ,  𝑉𝑛  𝑥, 𝑡 ,  𝑍𝑛  𝑥, 𝑡 to the exact solutions  𝐻 𝑥, 𝑡 , 𝑁 𝑥, 𝑡 , 𝑌 𝑥, 𝑡 ,
𝑉 𝑥, 𝑡 , 𝑍 𝑥, 𝑡  respectively, in the form given below 



454 
 

𝐻𝑛  𝑥, 𝑡 =  𝜎𝑗
(𝐻) 𝑡  𝐶𝑗  𝑥 ,         𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 > 0                                           (3.1)

𝑛+1

𝑗=−1

 

𝑁𝑛  𝑥, 𝑡 =  𝜎𝑗
(𝑁) 𝑡  𝐶𝑗  𝑥 ,         𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 > 0                                       (3.2)

𝑛+1

𝑗=−1

 

𝑌𝑛  𝑥, 𝑡 =  𝜎𝑗
(𝑌) 𝑡  𝐶𝑗  𝑥 ,         𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 > 0                                       (3.3)

𝑛+1

𝑗=−1

 

𝑉𝑛  𝑥, 𝑡 =  𝜎𝑗
(𝑉) 𝑡  𝐶𝑗  𝑥 ,         𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 > 0                                      (3.4)

𝑛+1

𝑗=−1

 

𝑍𝑛  𝑥, 𝑡 =  𝜎𝑗
(𝑍) 𝑡  𝐶𝑗  𝑥 ,         𝑎 ≤ 𝑥 ≤ 𝑏,   𝑡 > 0                                      (3.5)

𝑛+1

𝑗=−1

 

where𝜎𝑗
(𝑖) 𝑡  ; 𝑖 = 𝐻,𝑁,𝑌,𝑉,𝑍  are the time dependent quantities to be determined from the boundary 

conditions and the collocation of differential equations. 

And,  𝐶𝑗  𝑥  are the cubic B-splines basis functions at the knots, defined by: 

                                    𝐶𝑗  𝑥 =
1

ℎ3

 
  
 

  
  𝑥 − 𝑥𝑗−2 

3
                         𝑥 ∈  𝑥𝑗−2 ,𝑥𝑗−1 

 𝑥 − 𝑥𝑗−2 
3
− 4 𝑥 − 𝑥𝑗−1 

3
                𝑥 ∈  𝑥𝑗−1 ,𝑥𝑗  

 𝑥𝑗+2 − 𝑥 
3
− 4 𝑥𝑗+1 − 𝑥 

3
                 𝑥 ∈  𝑥𝑗 ,𝑥𝑗+1 

 𝑥𝑗+2 − 𝑥 
3

                        𝑥 ∈  𝑥𝑗+1 , 𝑥𝑗+2 

              0                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (3.6) 

 

where the functions𝐶−1,𝐶0 ,𝐶1 ,…………𝐶,𝐶𝑁 ,𝐶𝑛+1 form a basis over the domain 𝑎 ≤ 𝑥 ≤ 𝑏. 

The values of the functions 𝐶𝑗 (𝑥) and their two successive derivatives 𝐶 ′
𝑗  𝑥 ,  𝐶 ′′

𝑗  𝑥  over the prescribed 

set of knots are given in Table 1 below. 

 

Table 1: Cubic B-splines functions and their derivatives at the knots 

 𝒙𝒋−𝟐 𝒙𝒋−𝟏 𝒙𝒋 𝒙𝒋+𝟏 𝒙𝒋+𝟐 

𝑪𝒋(𝒙) 0 1 4 1 0 

𝑪′
𝒋 𝒙  0 -3/h 0 3/h 0 

𝑪′′
𝒋 𝒙  0 6/ℎ2 -12/ℎ2 6/ℎ2 0 

𝑪𝒋(𝒙) 0 1 4 1 0 

 

At a particular knot 𝑥𝑗 , there exist only three cubic B-splines, namely 𝐶𝑗−1 ,𝐶𝑗 ,𝐶𝑗+1 . Each of the cubic B-

splines functions covers four elements so that each element is covered by four cubic B-splines functions. 

In the proposed scheme, the solution is approximated as a linear combination of the cubic B-splines basis 

functions over the concerned approximation space. 

Using the B-spline functions (3.6) in the approximate solution function (3.1), the approximate values of 

𝐻𝑛  𝑥, 𝑡  and its first two successive derivatives at any time t and at a particular knot 𝑥𝑗  can be expressed in 

terms of time-dependent parameters 𝜎𝑗
(𝐻) 𝑡  as: 
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𝐻𝑗 = 𝜎𝑗−1
(𝐻) + 4𝜎𝑗

(𝐻) + 𝜎𝑗+1
(𝐻)

ℎ𝐻′
𝑗 = 3(𝜎𝑗+1

(𝐻)
− 𝜎𝑗−1

(𝐻))

ℎ2𝐻′′
𝑗 = 6(𝜎𝑗+1

(𝐻)
− 2𝜎𝑗

(𝐻) + 𝜎𝑗+1
(𝐻))

                                                    (3.7) 

 

The corresponding values of the approximate solutions for the remaining four variables and their 

derivatives can be obtained in the similar manner. 

4.Treatment at Boundary Conditions 

If 𝑘0(𝑡) and 𝑘1(𝑡) are the Neumann boundary values of H respectively 

 

 
𝜕𝐻

𝜕𝑥
 
𝑥=𝑎

= 𝑘0 𝑡    𝑎𝑛𝑑    
𝜕𝐻

𝜕𝑥
 
𝑥=𝑏

= 𝑘1 𝑡     (4.1) 

 
Then the approximate solution of H can be written as 

𝐻𝑥 𝑥0 , 𝑡 =  𝜎𝑗
(𝐻)

1

𝑗=−1

𝐶 ′
𝑗  𝑥0 = 𝑘0(𝑡) 

𝐻𝑥 𝑥𝑁 , 𝑡 =  𝜎𝑗
(𝐻)

𝑛+1

𝑗=𝑛−1

𝐶 ′
𝑗  𝑥𝑛  = 𝑘1(𝑡) 

(4.2) 

Using the Table 1, we get, 

𝜎1
(𝐻) − 𝜎−1

(𝐻) =  
ℎ

3
 𝑘0(𝑡) 

𝜎𝑛+1
(𝐻) − 𝜎𝑛−1

(𝐻) =  
ℎ

3
 𝑘1(𝑡) 

(4.3) 

so that 

𝜎−1
(𝐻) = 𝜎1

(𝐻) −  
ℎ

3
 𝑘0(𝑡) 

𝜎𝑛+1
(𝐻) = 𝜎𝑛−1

(𝐻) +  
ℎ

3
 𝑘1(𝑡) 

(4.4) 

 

Thus, the two-time dependent quantities falling outside the prescribed knots are determined. The remaining 

other variables can also be treated at the boundary conditions similarly. 

5. Implementation to a Reaction-Diffusion equation 

The reaction-diffusion differential equation for 𝐻 𝑥, 𝑡  is given by: 

 
𝜕𝐻 𝑥, 𝑡 

𝜕𝑡
= 𝐷𝐻  ∆𝐻 + 𝜙1 𝐻,𝑁,𝑌, 𝑉,𝑍  5.1  

 

where𝐷𝐻 is diffusion coefficient and the first term on the right-hand side of (5.1) represents the diffusion 

term and 𝜙1 represents the reaction term.  

Using (3.7) in the approximate solution expression (3.1) for𝐻𝑛  𝑥, 𝑡 , the given differential equation (5.1) 
reduces to the following system of differential equations: 

 

𝜎 𝑗−1
(𝐻) + 4𝜎 𝑗

(𝐻) + 𝜎 𝑗+1
(𝐻) = (𝜎𝑗−1

(𝐻) − 2𝜎𝑗
(𝐻) + 𝜎𝑗+1

(𝐻))𝐷𝐻  +  𝜙1𝑗 0 ≤ 𝑗 ≤ 𝑛(5.2) 

 

 𝜙1𝑗  being the right-hand side of H at the j-th node. Upon eliminating 𝜎 −1
(𝐻),𝜎 𝑛+1

(𝐻),𝜎−1
(𝐻),𝜎𝑛+1

(𝐻)  using 

(4.4), the following system of differential equations is obtained: 

 

                                       𝐴 𝝈  (𝑯) = 𝐵𝐻𝝈 
(𝑯)  +  𝜙𝟏

      (5.3) 
where 
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                        𝐴 =

 
 
 
 
 
 
 
 4   2                                     
1   4   1                              

………
………

                               1   4   1
                                     2   4  

 
 
 
 
 
 

 𝑛+1 ×(𝑛+1)

(5.4) 

and  

                                                                                𝐵𝐻 = 𝐷𝐻 .𝐵   (5.5) 

                                            𝐵 =  
6

ℎ2
 

 
 
 
 
 
 
 
−2         2                                     
   1    − 2    1                              

………
………

                               1  − 2         1
                                          2    − 2  

 
 
 
 
 
 

 𝑛+1 ×(𝑛+1)

                                         (5.6) 

and 

𝝈  (𝑯) =

 
 
 
 
 
 
 
 𝜎 0

(𝐻)

𝜎 1
(𝐻)

…
…
…

𝜎 𝑛−1
(𝐻)

𝜎 𝑛
(𝐻)  

 
 
 
 
 
 
 

, 𝜙𝟏
 =

 
 
 
 
 
 
 
 
 𝜙10 +  

ℎ

3
 𝑘0(𝑡) 

𝜙11

…
…
…

𝜙1(𝑛−1)

𝜙1𝑛 −  
ℎ

3
 𝑘1(𝑡) 

 
 
 
 
 
 
 
 

(𝑛+1)×1

 (5.7) 

 

Here, A is a tri-diagonal matrix of order (𝑛 + 1) and  𝜙𝟏
   is the right-hand side column vector of order 

 𝑛 + 1 . 
Similar systems of differential equations can be described in the corresponding time dependent quantities 

for the remaining variables with their respective right hand side vectors. 

6.Evaluation of the initial vector 𝝈𝟎 (𝑯)
 

 The initial vector 𝝈𝟎 (𝑯)
can be obtained by using the given initial conditions and the boundary values of 

their derivatives. 

                                                                   𝐻𝑥 𝑎, 0 = 𝐻𝑥 𝑥0 , 0 = 𝑘0 0   (6.1) 

𝐻 𝑥𝑗 , 0 = 𝜓1 𝑥𝑗  ,        𝑗 = 1,2…… , 𝑛 − 1         (6.2) 

𝐻𝑥 𝑏, 0 = 𝐻𝑥 𝑥𝑁 , 0 = 𝑘1 0             (6.3) 

 
Similar expressions will be obtained for the other remaining variables. Equations (6.1) - (6.3) on applying 

to (3.1) yields a  𝑛 + 1 × (𝑛 + 1) system of differential equations of the form 

 

𝐴 𝜎0 (𝐻)
= 𝜙1

0                        (6.4) 

where 

𝜎0 (𝐻)
=

 
 
 
 
 
 
 
 

𝜎𝐻0
0

𝜎𝐻1
0

…
…
…

𝜎𝐻(𝑛−1)
0

𝜎𝐻𝑛
0  

 
 
 
 
 
 
 

,           𝜙𝟏
𝟎 =

 
 
 
 
 
 
 
 
 𝜓1 𝑥0 +  

ℎ

3
 𝑘0(0)

𝜓1 𝑥1 
…
…
…

𝜓1 𝑥𝑛−1 

𝜓1 𝑥𝑛  −  
ℎ

3
 𝑘1(0) 

 
 
 
 
 
 
 
 

 

 

and so on. This system being a tri-diagonal system can thus be solved by Thomas algorithm [42, 43] to get 

the initial coefficients of the B-splines functions in the approximated solution.  

7. Implementation of the method 
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The considered oncolytic M1 virotherapy model for cancer treatment can be expressed in the standard 

reaction-diffusion form as: 
𝜕𝐻(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝐻  ∆𝐻 + 𝜙1 𝐻,𝑁,𝑌,𝑉,𝑍  

𝜕𝑁 𝑥, 𝑡 

𝜕𝑡
= 𝐷𝑁  ∆𝑁 + 𝜙2 𝐻,𝑁,𝑌,𝑉,𝑍  

𝜕𝑌 𝑥, 𝑡 

𝜕𝑡
= 𝐷𝑌  ∆𝑌 + 𝜙3 𝐻,𝑁,𝑌,𝑉,𝑍  

𝜕𝑉 𝑥, 𝑡 

𝜕𝑡
= 𝐷𝑉  ∆𝑁 + 𝜙4 𝐻,𝑁,𝑌,𝑉,𝑍  

𝜕𝑍 𝑥, 𝑡 

𝜕𝑡
= 𝐷𝑍  ∆𝑁 + 𝜙5 𝐻,𝑁,𝑌,𝑉,𝑍  

 

where each of the 𝐷𝑖
′𝑠  are the respective diffusion coefficients and the corresponding terms are the 

diffusion terms and  𝜙𝑖  represents the reaction terms in each the corresponding reaction-diffusion 

differential equations. 
As stated above, using the B-splines approximation for the reaction diffusion system (7.1) – (7.5), we get 

the following system of ordinary differential equations 

 

𝑴 𝝈  = 𝑷 𝝈 + 𝑭     
 

where M and P are the block diagonal matrices each of order 5 𝑛 + 1 .  
 

𝑴 =

 
 
 
 
 

𝐴               
 𝐴        

          𝐴       
            𝐴

                     𝐴 
 
 
 
 

5 𝑛+1 ×5(𝑛+1)

 

and  

𝑷 =

 
 
 
 
 
𝐵𝐻

𝐵𝑁

𝐵𝑌

𝐵𝑉

𝐵𝑍  
 
 
 
 

5 𝑛+1 ×5(𝑛+1)

 

 

Here𝝈  and F are the column vectors of time dependent numbers and the right-hand side quantities 
respectively.  

𝝈  =

 
 
 
 
 
𝜎  (𝐻)

𝜎  (𝑁)

𝜎  (𝑌)

𝜎  (𝑉)

𝜎  (𝑍) 
 
 
 
 

,        𝐅 =

 
 
 
 
 
 𝜙1
 

𝜙2
 

𝜙3
 

𝜙4
 

𝜙5
  

 
 
 
 
 

5(𝑛+1)×1

 

 

The parameter vector 𝝈   in the above system of ordinary differential equations is determined at a specified 
time level using the Thomas algorithm. Then the approximate solutions at any desired time can be found by 

computing the time dependent coefficients in the approximated solution by using the RK4 method. 

8. Numerical Simulations 

Numerical simulations are performed to validate and implement the proposed scheme. For this purpose, the 

spatial domain 𝜑 = [0,2] is considered with step size of  ∆𝑥 = 0.1. For calculations, the time step size of 

∆𝑡 = 0.001 is selected. The following parameter values as considered by [11,14] are taken: 𝜅 = 0.02, 𝜇 =
0.01, 𝑑 = 0.02, 𝛼1 = 0.8, 𝛼3 = 0.5, 𝛼4 = 0.8, 𝐷𝐻 = 𝐷𝑁 = 𝐷𝑌 = 0.01, 𝐷𝑉 = 𝐷𝑍 = 0.03.  All the remaining 

parameters are taken as free parameters depending upon the corresponding cases classified by the stability 

analysis.  

Depending upon the convergence of the positive solutions of the model and the global stability of the 
equilibrium points, the numerical simulations are performed under six different cases given below in Table 2. 

The detailed biological significances and the impacts of these six different cases are discussed in detail in the 

later section 9 of Results and Discussions. 
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Table 2: Parameters in different Cases 

 

Cases I II III IV V VI 

𝜷𝟏 0.03 0.03 0.1 0.04 0.15 0.15 

𝜷𝟐 0.03 0.1 0.03 0.5 0.35 0.5 

𝜷𝟑 0.1 0.1 0.1 0.1 0.1 0.05 

𝜷𝟒 0.03 0.2 0.03 0.6 0.1 0.6 

𝜼𝟏 0.04 0.04 0.008 0.05 0.008 0.008 

𝜼𝟐 0.01 0.008 0.01 0.008 0.008 0.008 

𝜼𝟑 0.008 0.008 0.006 0.005 0.008 0.005 

𝜼𝟒 0.01 0.01 0.01 0.02 0.01 0.02 

𝜶𝟐 0.8 0.8 0.8 0.9 0.9 0.9 

 

Depending upon the global stability of the equilibrium points for the competition-free equilibrium, the 

treatment failure immune-free equilibrium, the tumour-free equilibrium, the treatment failure equilibrium, 

partial success immune-free equilibrium and the coexistence equilibrium as discussed in [17] there are defined 

threshold positive numbers 𝑅0 ,𝑅1 ,𝑅2 ,𝑅𝑝
 ,𝑅𝑞

  and 𝑅𝑟
  as:  

𝑅0 =
𝜅𝛼2𝛽2

𝑑(𝑑 + 𝜂2)
 

                                         𝑅1 =
𝜅𝛼1𝛽1

𝑑 𝑑 + 𝜂1 
 

                                          𝑅2 =
𝛼4𝛽4 𝑑 + 𝜂3 

𝛼3𝛽3 𝑑 + 𝜂4 
 

  𝑅𝑝
  =

𝜇𝛽3

 𝑑 + 𝜂2  𝑑 + 𝜂3 
 

𝑅𝑞
 = 1 +  

𝛽2 𝑑 + 𝜂4 

𝛼4𝛽4𝑑
 

𝑅𝑟
 = 1 +  

𝛽2 𝑑 + 𝜂3 

𝛼3𝛽3𝑑
 

 

This paper mainly concerns with the numerical simulation techniques to solve the oncolytic M1 virotherapy 

model for the cancer treatment. A detailed analysis of these threshold parameters and their biological aspects 

can be well studied in [17] and the available literature.  

Two different sets of the initial values are taken under consideration for a better understanding and 

comparison of results. The first set of initial conditions for the model will be considered as similar to [40-41] 

 

𝜓1 𝑥 = 0.3  1 + 0.2 𝑐𝑜𝑠2 𝜋𝑥   

𝜓2 𝑥 = 0.2  1 + 0.2 𝑐𝑜𝑠2 𝜋𝑥   

𝜓3 𝑥 = 0.1  1 + 0.2 𝑐𝑜𝑠2 𝜋𝑥   

𝜓4 𝑥 = 0.1  1 + 0.2 𝑐𝑜𝑠2 𝜋𝑥   

 𝜓5 𝑥 = 0.01  1 + 0.2 𝑐𝑜𝑠2 𝜋𝑥   

            (8.1) 

Taking into account the biological aspects of the model, the following set of initial conditions are also 
considered: 

𝜓1 𝑥 = 0.3  1 + 0.2  sin(𝜋𝑥)   
𝜓2 𝑥 = 0.2  1 + 0.2  sin(𝜋𝑥)   
𝜓3 𝑥 = 0.1  1 + 0.2  sin(𝜋𝑥)   
𝜓4 𝑥 = 0.1  1 + 0.2  sin(𝜋𝑥)   

    𝜓5 𝑥 = 0.01  1 + 0.2  sin(𝜋𝑥)   
            (8.2)
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9. Results and Discussions 

In this section, the numerical solutions obtained by the proposed scheme for the given cancer oncolytic M1 

virotherapy treatment reaction- diffusion model [17] are summarized by performing simulations for the six 

globally stability dependent different cases. 
 

In Case I, for𝑅0 <  𝑅𝑝
  and 𝑅1 < 1 the solutions lead to the competition free equilibrium asymptotically 

stable state. The simulated results are depicted in the Figures 1.1 and 1.2 for the two sets of the considered 

initial conditions. The cancer treatment strategy successfully eradicated the tumour cells but failed to restore 

the normal cells in the absence of immune responses, leading to the patient death. 
 

In Case II, for𝑅0 >  𝑅𝑝
  and  𝑅2 > 1, the oncolytic M1 virotherapy leads to the extinction of the normal 

cells and failed to remove the tumour cells in the absence of the immune responses. The simulated results are 

depicted in the Figures 2.1 and 2.2. The situation refers to the threatening case for the cancer patient’s health. 
 

In Case III, for 𝑅1 > 1  and  𝑅0 < 𝑅1 +
𝜅𝜇𝛼1𝛽1𝛽3

𝑑 𝑑+𝜂1  𝑑+𝜂2  𝑑+𝜂3 
, in the absence of immune responses, the 

treatment strategy successfully removed the tumour cells with restoration of the normal cells that leads 

improvement of the patient’s health. The simulated results are shown in the Figures 3.1 and 3.2. 

 

In Case IV, for𝑅2 > 1 ,  𝑅0 >  𝑅𝑞
 +

𝜇𝛾2

𝛼3𝑑 𝑑+𝜂2  𝑑+𝜂4  𝑅2−1 
and  𝑅1 < 𝑅𝑞   

 , in the presence of anti-tumor 

immune responses, leads to the remarkable decrease in the tumor-cells concentration which further degrades 

the concentrations of the oncolytic M1 virus concentration. This leads to the complete failure of the cancer 

treatment strategy.  The results are summarized in the Figures 4.1 and 4.2. 

 

In Case V, for𝑅2 > 1 ,  𝑅0 > 𝑅1 +
𝜅𝜇 𝛼1𝛽1𝛽3

𝑑 𝑑+𝜂1  𝑑+𝜂2  𝑑+𝜂3 
  ,

𝑅0

𝑅1
> 1,𝑅𝑟  

 < 𝑅1 +
𝜇𝛽2

𝛼3𝑑 𝑑+𝜂2  
𝑅0
𝑅1

−1 
  and  𝑅0 <

𝑅1 +
𝜅𝜇𝛼1𝛽1𝛼4𝛽4

𝛼3𝑑 𝑑+𝜂1  𝑑+𝜂2  𝑑+𝜂4  𝑅2−1 
  ,  the oncolytic M1 viruses in the absence of immune responses, partially 

succeed in lowering the concentration of tumor cells and increasing the normal cell’s concentration. In this 

case, the treatment strategy is effective to remove the tumor cells to great extent but not completely. The 

simulations are shown in the Figures 5.1 and 5.2. 

 

In Case VI, for𝑅2 > 1, 𝑅1 > 𝑅𝑞
  ,  𝑅0 > 𝑅1 +

𝜅𝜇𝛼1𝛽1𝛼4𝛽4

𝛼3𝑑 𝑑+𝜂1  𝑑+𝜂2  𝑑+𝜂4  𝑅2−1 
  , the simulations are given in the 

Figures 6.1 and 6.2. The efficacy of the treatment is reduced by the reduction in the concentration of the 

oncolytic viruses. The anti-tumour immune responses just prevent the tumour from getting worst but are unable 

to eradicate it completely.  

 

The global stability of the equilibrium points indicates that the initial conditions do not affect the long run 
conduct of solutions. The simulated results are in excellent agreement with those given in [17]. The method 

successfully provides very accurate solutions in the different setting of parameters. The results are very 

accurate and obtained with less computational efforts.  

10. Conclusion 

The considered reaction-diffusion model for oncolytic cancer treatment virotherapy with immune responses 

is successfully solved by the implementation of the proposed cubic B-splines collocation method. It is also 

observed that the initial conditions do not affect in long run. The results achieved are quite satisfactory and 

competent with those available in [17]. The method being easy to implement, reliable and economical is 

appropriate for such reaction-diffusion models. Such an efficient approach for the numerical simulation of the 

reaction-diffusion model describing the dynamics of the oncolytic M1 virotherapy can be of great use for many 

biologists working on the cancer treatment leading strategies. Due to the complexity and the bigger dimensions 

of the virotherapy model the proposed cubic B-splines technique has advantages over the traditional numerical 

simulation techniques. The piecewise continuity and the differentiability of the cubic B-splines polynomials 

make the proposed technique best suitable for the numerical simulation of the considered reaction-diffusion 

model describing the dynamics of oncolytic virotherapy. For the future purposes, the application of the cubic 
B-splines collocation method is recommended as a burning alternative to deal a large class of similar models 

occurring in the field of medical sciences.

 



460 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The numerical simulations for Case-I with cosine initial conditions. 
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Figure 2: The numerical simulations for Case-II with cosine initial conditions. 
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Figure 3: The numerical simulations for Case-III with cosine initial conditions. 
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Figure 4: The numerical simulations for Case-IV with cosine initial conditions
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Figure 5: The numerical simulations for Case-V with cosine initial conditions. 
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Figure 6: The numerical simulations for Case-VI with cosine initial conditions
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Figure 7: The numerical simulations for Case-I with sine initial conditions
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Figure 8: The numerical simulations for Case-II with sine initial conditions
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Figure 9: The numerical simulations for Case-III with sine initial conditions
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Figure 10: The numerical simulations for Case-IV with sine initial conditions
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Figure 11: The numerical simulations for Case-V with sine initial conditions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The numerical simulations for Case-VI with sine initial conditions 
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