New families of Unlike degree Wiener Index (UDWI)for Graph Structures

Dr. S.S. Sandhya ${ }^{\mathbf{1}}$,Sarasree. $\mathbf{S}^{\mathbf{2}}$,
Author1 :Assistant Professor, Department of Mathematics
Sree Ayyappa College for Women, Chunkankadai.
Author 2 :Research Scholar
Regno : 20113182092002
Sree Ayyappa College for Women, Chunkankadai.
[Affiliated to Manonmaniam Sundararajan University,
Abishekapatti - Tirunelveli - 627012, Tamilnadu, India]
Email : shilpavishnu76@gmail.com ${ }^{1}$
sssandhya2009@gmail.com²

Abstract

: In this work we introduced a novel concept concept Unlike degree Wiener index (UDWI) for some graph structures. We study the unlike degree Wiener Index for few graph structures such as Caterpillar, $P_{n}^{2}, B_{n, n}, K_{1, n, n}, B(n, n), H d_{n}, S_{n}$.

Introduction :

The Wiener index is the sole topological index that has been employed in drug discovery Research out of a large number of them .In 1947 ,Chemist Harold Wiener created the Wiener index of a graph (V, E) denoted by $W(G)$.The half-sum of the shortes distances between every pair of vertices in a graph G is the Wiener index
$W(G)=\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} v_{j}\right)$ whered $\left(v_{i} v_{j}\right)$ is the smallest distance between the vertices v_{i} and v_{j} in Graph G
J.BaskarBabujee and A.Subhashini established the Like Wiener Index (LDWI) in 2006 and it is described as $W_{u d}=\frac{1}{2} \sum_{k} \sum_{i, j=1}^{n} d\left(v_{i}^{k} v_{j}^{k}\right) \cdot d\left(v_{i}^{k} v_{j}^{k}\right)$ stands for the distance between the two of vertices of same degree. We investigate theUnlike Degree Wiener Index (UDWI) for a set of graph strutures derived from graph operators in this work .

AMS Subject Classification :05C12,92E10
Key words and Phrases:Wiener Index

Definition 1.1

Unlike Wiener index is ascertain as $W_{u d}=\sum_{k} \sum_{i, j=1}^{n} d\left(v_{i}{ }^{k} v_{j}{ }^{k}\right)$, where $d\left(V_{i}{ }^{k}, V_{j}^{k}\right)$ is the distance between the two vertices of different degrees .

2. Main Results

Theorem 1

The Unlike Wiener Index of Caterpillar graph is $W_{u d}=n^{2}+n$

Proof:

Let $G=(V, E)$ be a Caterpillar.

Figure 7.4 Caterpillar

$$
\begin{gathered}
V=\left(v_{1}, v_{2} \ldots \ldots v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots . . v_{n}^{\prime}, v_{1}^{\prime \prime},, v_{2}^{\prime \prime}, \ldots \ldots, v_{n}^{\prime \prime}\right) \\
E=\left\{v_{i} v_{i+1}, v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime} 1 \leq i \leq n\right\}
\end{gathered}
$$

The vertices $v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots . . v_{n}{ }^{\prime}$ and $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots \ldots, v_{n}^{\prime \prime}$ has one and the vertices $v_{2}, v_{3}, \ldots \ldots v_{n-1}$ has degree four except v_{1} and v_{n} having degree three.

$$
\begin{array}{cc}
\operatorname{deg}\left(v_{i}^{\prime}\right)=1 & , \forall 1 \leq i \leq n \\
\operatorname{deg}\left(v_{i}^{\prime \prime}\right)=1 & , \forall 1 \leq i \leq n \\
\operatorname{deg}\left(v_{i}\right)=4 & , \forall 2 \leq i \leq n-1 \\
\operatorname{deg}\left(v_{i}\right)=3 & , \text { for } i=1 \text { and } i=n
\end{array}
$$

$$
\begin{aligned}
& W_{u d}(\mathrm{G}) \\
& =d\left(v_{1}, v_{2}\right)+d\left(v_{1}, v_{3}\right)+\cdots \ldots \ldots+d\left(v_{1}, v_{n}\right) \\
& +\cdots \ldots .+d\left(v_{n}, v_{n-1}\right)+d\left(\left(v_{n}, v_{n-2}\right)+\cdots . .+d\left(\left(v_{n}, v_{2}\right)\right.\right. \\
& +d\left(v_{1} v_{1}^{\prime}\right)+d\left(v_{2}, v_{2}^{\prime}\right)+\cdots \ldots d\left(v_{n}, v_{n}^{\prime}\right)+d\left(v_{1}, v_{1}^{\prime \prime}\right)+d\left(v_{2}, v_{2}^{\prime \prime}\right) \\
& +d\left(v_{n}, v_{n}^{\prime \prime}\right) \\
& =[1+2+\cdots \ldots(n-1)]+[1+2+3+\cdots . .+(n-1)] \\
& +[1+1+\cdots . .+1](n \text { times })+[1+1+\cdots \ldots .1](n) \text { times } \\
& =2\left[\frac{(n-1)(n-1+1)}{2}\right]+(n+n) \\
& =n(n-1)+n+n \\
& =n^{2}-n+n+n \\
& =n^{2}+n \\
& =n(n+1)
\end{aligned}
$$

Theorem 2

The Unlike degree Wiener Index of $\left(P_{n}^{2}\right)$ is $W_{u d}=P_{n}^{2}=4(n-2)$

Proof :

$\operatorname{Let} P_{n}^{2}=(V, E)$

$$
V=\left(v_{1}, v_{2}, \ldots . v_{n}\right)
$$

$E=\left(v_{i} v_{i+1}, v_{j} v_{j+1} ; 1 \leq i \leq n-1.1 \leq j \leq n-2\right)$

Figure $7.5 P_{n}^{2}$

The vertices v_{1} and v_{n} have degree two ,the vertices v_{2} and v_{n-1} have degree three and all other vertices $v_{3}, v_{4}, \ldots \ldots v_{n-2}$ have degree four.

$$
\begin{gathered}
\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{n}\right)=2 \\
\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{n-1}\right)=3 \\
\operatorname{deg}\left(v_{k}\right)=4 ; 3 \leq k \leq n-2
\end{gathered}
$$

$$
W_{u d}\left(P_{n}^{2}\right)
$$

$$
=d\left(v_{1}, v_{2}\right)+d\left(v_{1}, v_{3}\right)+\cdots \ldots \ldots+d\left(v_{1}, v_{n-1}\right)
$$

$$
+\cdots \ldots+d\left(v_{n}, v_{n-1}\right)+d\left(\left(v_{n}, v_{n-2}\right)+\cdots . .+d\left(\left(v_{n}, v_{2}\right)+\right)\right.
$$

$$
+d\left(v_{2}, v_{3}\right)+d\left(v_{2}, v_{4}\right)+\cdots \ldots d\left(v_{2}, v_{n-2}\right)+d\left(v_{n-1}, v_{n-2}\right)
$$

$$
+d\left(v_{n-1}, v_{n-3}\right)+\cdots+d\left(v_{n-1}, v_{3}\right)
$$

$$
=(1+1+\cdots \ldots+1)(n-1) \text { times }
$$

$$
\begin{aligned}
& +[(1+1+1+\cdots . .+1)(n-1 \text { times })]+[1+1+\cdots \ldots+1](n \\
& -3 \text { times })+[1+1+\cdots \ldots .1](n-3) \text { times }
\end{aligned}
$$

$$
\begin{gathered}
=(n-1)+(n-1)+(n-3)+(n-3) \\
=2(n-1)+2(n-3) \\
=2 n-2+2 n-6 \\
=4 n-8 \\
=4(n-2)
\end{gathered}
$$

Theorem 3

The Unlike degree Wiener Index of Double Graph $K_{1, n, n}$ is $W_{u d}\left(K_{1, n, n}\right)=4 n$

Proof:

$V=\left(v_{0}, v_{1}, v_{2} \ldots \ldots v_{n}, v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots . v_{n}{ }^{\prime}\right)$
$E=\left\{v_{0} v_{i}, v_{i} v_{i} ; 1 \leq i \leq n\right\}$
The vertices $v_{1}, v_{2} \ldots \ldots v_{n}$ has degree two and the vertices $v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots . . v_{n}{ }^{\prime}$ has degree one except v_{0}
$\operatorname{deg}\left(v_{0}\right)=n$
$\operatorname{deg}\left(v_{i}\right)=2 ; \forall 1 \leq i \leq n$ and
$\operatorname{deg}\left(v_{i}^{\prime}\right)=1 ; \forall 1 \leq i \leq n$

Figure $7.7 K_{1, n, n}$

$$
\begin{aligned}
W_{u d}\left(K_{1, n, n}\right) & =d\left(v_{0}, v_{1}\right)+d\left(v_{0}, v_{2}\right)+\cdots \ldots \ldots+d\left(v_{0}, v_{n}\right)+d\left(\left(v_{0}, v_{n}^{\prime}\right)\right. \\
& +d\left(\left(v_{1}, v_{1}^{\prime}\right)+d\left(\left(v_{2}, v_{2}^{\prime}\right)+\cdots \ldots \ldots+d\left(\left(v_{n}, v_{n}^{\prime}\right)\right.\right.\right.
\end{aligned}
$$

$$
\begin{gathered}
=(1+1+1+\cdots \ldots+1)(n \text { times }) \\
+(2+2+2+\cdots \ldots+2)(n \text { times }) \\
+(1+1+1+\cdots .+1)(n \text { times }) \\
=n+2 n+n \\
\\
=4 n
\end{gathered}
$$

Theorem 4

The Unlike degree Wiener Index of Bistar $H d_{n}$ is $\left(W_{u d}\left(H d_{n}\right)=\right.$ $n^{2}-2$

Proof:

Let $\left(\operatorname{Hd}_{\mathrm{n}}\right)=(V, E)$
$V=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots v_{n}\right\}$ have n vertices and $n-1$ edges
$E=\left\{v_{i} v_{i+1}, v_{i} v_{i+2} ; 1 \leq i \leq n\right\}$

$$
\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{3}\right)=\operatorname{deg}\left(v_{5}\right)=\operatorname{deg}\left(v_{7}\right) \ldots \ldots=\operatorname{deg}\left(v_{n}\right)=1
$$

$$
\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{4}\right)=\cdots . . \operatorname{deg}\left(v_{n-2}\right)=3
$$

$$
\begin{aligned}
W_{u d}(\mathrm{Hdn})= & d\left(v_{1}, v_{2}\right)+d\left(v_{1}, v_{4}\right)+\cdots \ldots \ldots+d\left(v_{1}, v_{n-2}\right)+d\left(\left(v_{n}, v_{n-2}\right)\right. \\
& +\cdots \ldots+d\left(\left(v_{n}, v_{2}\right)+d\left(\left(v_{n}, v_{1}\right)+d\left(\left(v_{2}, v_{3}\right)+d\left(v_{4}, v_{5}\right)\right.\right.\right. \\
& +d\left(v_{n-1}, v_{n-2}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
=\left[\begin{array}{c}
1+2+3+\cdots+1 \\
(n-1)
\end{array}\right]+[1+2+3+\cdots . .+(n-1)] \\
\quad+[1+1+\cdots \ldots+n](n-2) \text { times } \\
\quad=2\left[\frac{(n-1)(n-1+1)}{2}\right]+(n-2) \times 1
\end{array}\right] \begin{aligned}
& =n(n-1)+(n-2) \\
& =n^{2}-n+n-2 \\
& =n^{2}-2
\end{aligned}
$$

Theorem :5

The Unlike degree Wiener index of star graph, S_{n} is $W_{u d}\left(S_{n}\right)=n$

Proof:

Let $S_{n}=(V, E)$
$V=\left\{v_{0}, v_{1}, v_{2}, \ldots \ldots v_{n}\right\}$ have $n+1$ vertices and n edges .

$$
E=\left\{v_{0} v_{i} ; 1 \leq i \leq n\right\}
$$

All the vertices $v_{1}, v_{2}, \ldots \ldots v_{n}$ has degree one except v_{0}

Figure 7.6
$\operatorname{deg}\left(v_{0}\right)=n$ and $\operatorname{deg}\left(v_{i}\right)=1 \forall 1 \leq i \leq n$

$$
\begin{array}{r}
\left.W_{u d}=d\left(v_{0}, v_{1}\right)+d v_{0}, v_{2}\right)+\cdots+d\left(v_{0}, v_{n}\right) \\
=1+1+1+\cdots 1(n \text { times }) \\
=n
\end{array}
$$

Conclusion :

We have studied Unlike degree Wiener Index for various graph structures derived using graph operators. In future a comparison study will be carried out with Wiener index and Unlike degree Wiener Index for various compounds.

References:

[1]. F. Harary, Graph Theory, Narosa publishing House, New Delhi, 1988.
[2]. J.A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic Journal of Computations.
[3] A.Subhashini,J.BaskarBabujee,Like Degree Wiener Index For Structures,International Journal of Pure and Applied Mathematics,Volume 114 No . 62017, 219-225
[4] "Power 3 Mean Labeling of Cycle Related Graphs", The International Journal of Analytical and Experimental Modal Analysis" ISSN NO: 08869367, Vol. XI, Issue XII, February - 2021.
[5] Sarasree .S and S.S .Sandhya ,Some new wiener index of Power -3 Mean graphs Journal of Physis
Doi10.1088/1742-6596/1947/1/012035
[6]Sarasree.S and S.S.Sandhya, Wiener index of some standard Power 3
mean graphs "Published in Journal of emerging technologies and innovative Research volume 8 issue 6,June -2021,ISSN NO :
2349-5162
[7] Sarasree.S and S.S.Sandhya "Laplacian Matrix of Power 3 Mean graphs Published in Journal of emerging technologies and innovative Research Volume 8 issue 6,June 2021 ISSN :2349-5162

