New families of Unlike degree Wiener Index (UDWI)for Graph Structures

Dr. S.S. Sandhya¹, Sarasree.S²,

Author1 :Assistant Professor, Department of Mathematics Sree Ayyappa College for Women, Chunkankadai. Author 2 :Research Scholar Regno : 20113182092002 Sree Ayyappa College for Women, Chunkankadai. [Affiliated to Manonmaniam Sundararajan University, Abishekapatti – Tirunelveli - 627012, Tamilnadu, India] Email : shilpavishnu76@gmail.com¹ sssandhya2009@gmail.com²

Abstract :

In this work we introduced a novel concept concept Unlike degree Wiener index (UDWI) for some graph structures .We study the unlike degree Wiener Index for few graph structures such as Caterpillar, P_n^2 , $B_{n,n}$, $K_{1,n,n}$, B(n, n), Hd_n , S_n .

Introduction :

The Wiener index is the sole topological index that has been employed in drug discovery Research out of a large number of them .In 1947, Chemist Harold Wiener created the Wiener index of a graph (V, E) denoted by W(G). The half-sum of the shortes distances between every pair of vertices in a graph G is the Wiener index

 $W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i v_j)$ where $d(v_i v_j)$ is the smallest distance between the vertices v_i and v_i in Graph G

J.BaskarBabujee and A.Subhashini established the Like Wiener Index (LDWI) in 2006 and it is described as $W_{ud} = \frac{1}{2} \sum_k \sum_{i,j=1}^n d(v_i^k v_j^k) \cdot d(v_i^k v_j^k)$ stands for the distance between the two of vertices of same degree. We investigate theUnlike Degree Wiener Index (UDWI) for a set of graph strutures derived from graph operators in this work.

AMS Subject Classification :05C12,92E10

Key words and Phrases :Wiener Index

Definition 1.1

Unlike Wiener index is ascertain $asW_{ud} = \sum_k \sum_{i,j=1}^n d(v_i^k v_j^k)$, where $d(V_i^k, V_j^k)$ is the distance between the two vertices of different degrees.

2. Main Results

Theorem 1

The Unlike Wiener Index of Caterpillar graph is $W_{ud} = n^2 + n$

Proof:

Let G = (V, E) be a Caterpillar.

Figure 7.4 Caterpillar

$$V = (v_1, v_2 \dots v_n, v_1', v_2', \dots v_n', v_1'', v_2'', \dots v_n'')$$
$$E = \{v_i v_{i+1}, v_i v_i', v_i v_i'' \mid 1 \le i \le n\}$$

The vertices v_1', v_2', \dots, v_n' and $v_1'', v_2'', \dots, v_n''$ has one and the vertices v_2, v_3, \dots, v_{n-1} has degree four except v_1 and v_n having degree three.

$$deg(v'_i) = 1 , \forall 1 \le i \le n$$
$$deg(v''_i) = 1 , \forall 1 \le i \le n$$

$$deg(v_i) = 4 , \forall 2 \le i \le n-1$$
$$deg(v_i) = 3 , for i = 1 and i = n$$

 $W_{ud}(G)$

$$= d(v_1, v_2) + d(v_1, v_3) + \dots + d(v_1, v_n)$$

+ \dots \dots + d(v_n, v_{n-1}) + d((v_n, v_{n-2}) + \dots + d((v_n, v_2))
+ d(v_1 v_1') + d(v_2, v_2') + \dots + d(v_n, v_n') + d(v_1, v_1'') + d(v_2, v_2'') + d(v_n, v_n'')
+ d(v_n, v_n'')
= [1 + 2 + \dots + (n - 1)] + [1 + 2 + 3 + \dots + (n - 1)]
+ [1 + 1 + \dots + 1](n times) + [1 + 1 + \dots + ...1](n)times

$$= 2\left[\frac{(n-1)(n-1+1)}{2}\right] + (n+n)$$
$$= n(n-1) + n + n$$
$$= n^{2} - n + n + n$$
$$= n^{2} + n$$

$$= n(n + 1)$$

Theorem 2

The Unlike degree Wiener Index of (P_n^2) is $W_{ud} = P_n^2 = 4(n-2)$

Proof : Let $P_n^2 = (V, E)$ $V = (v_1, v_2, \dots, v_n)$ $E = (v_i v_{i+1}, v_j v_{j+1}; 1 \le i \le n - 1.1 \le j \le n - 2)$

The vertices v_1 and v_n have degree two ,the vertices v_2 and v_{n-1} have degree three and all other vertices $v_3, v_4, \dots \dots v_{n-2}$ have degree four.

$$\deg(v_1) = \deg(v_n) = 2$$
$$\deg(v_2) = \deg(v_{n-1}) = 3$$
$$\deg(v_k) = 4; 3 \le k \le n - 2$$

 $W_{ud}(P_n^2)$

$$= d(v_1, v_2) + d(v_1, v_3) + \dots + d(v_1, v_{n-1}) + \dots + d(v_n, v_{n-1}) + d((v_n, v_{n-2}) + \dots + d((v_n, v_2)+) + d(v_2, v_3) + d(v_2, v_4) + \dots + d(v_2, v_{n-2}) + d(v_{n-1}, v_{n-2}) + d(v_{n-1}, v_{n-3}) + \dots + d(v_{n-1}, v_3) = (1 + 1 + \dots + 1)(n - 1) times$$

+
$$[(1 + 1 + 1 + \dots + 1)(n - 1 \text{ times })] + [1 + 1 + \dots + 1](n - 3 \text{ times }) + [1 + 1 + \dots + 1](n - 3)\text{ times}$$

$$= (n - 1) + (n - 1) + (n - 3) + (n - 3)$$
$$= 2(n - 1) + 2(n - 3)$$
$$= 2n - 2 + 2n - 6$$
$$= 4n - 8$$
$$= 4(n - 2)$$

Theorem 3

The Unlike degree Wiener Index of Double Graph $K_{1,n,n}$ is $W_{ud}(K_{1,n,n}) = 4n$

Proof:

 $V = (v_0, v_1, v_2 \dots v_n, v_1', v_2', \dots v_n')$ $E = \{v_0 v_i, v_i v_i'; 1 \le i \le n\}$ The vertices $v_1, v_2 \dots v_n$ has degree two and the vertices $v_1', v_2', \dots v_n'$ has degree one except v_0'

$$deg(v_0) = n$$

$$deg(v_i) = 2 ; \forall 1 \le i \le n \text{ and}$$

$$deg(v_i') = 1; \forall 1 \le i \le n$$

Figure 7.7 $K_{1,n,n}$

$$W_{ud}(K_{1,n,n}) = d(v_0, v_1) + d(v_0, v_2) + \dots \dots + d(v_0, v_n) + d((v_0, v_n') + d((v_1, v_1') + d((v_2, v_2') + \dots \dots + d((v_n, v_n'))$$

$$= (1 + 1 + 1 + \dots + 1)(n \text{ times })$$

+ (2 + 2 + 2 + \dots \dots + 2)(n times)
+ (1 + 1 + 1 + \dots + 1)(n times)

$$= n + 2n + n$$

= 4n

Theorem 4

The Unlike degree Wiener Index of Bistar Hd_n is $(W_{ud}(Hd_n) = n^2 - 2$

Proof:

Let $(Hd_n) = (V, E)$ $V = \{v_1, v_2, v_3, \dots, v_n\}$ have *n* vertices and n - 1 edges $E = \{v_i v_{i+1}, v_i v_{i+2}; 1 \le i \le n\}$ $deg(v_1) = deg(v_3) = deg(v_5) = deg(v_7) \dots = deg(v_n) = 1$ $deg(v_2) = deg(v_4) = \dots deg(v_{n-2}) = 3$

$$W_{ud} (Hdn) = d(v_1, v_2) + d(v_1, v_4) + \dots + d(v_1, v_{n-2}) + d((v_n, v_{n-2})) + \dots + d((v_n, v_2)) + d((v_n, v_1)) + d((v_2, v_3)) + d(v_4, v_5)) + d(v_{n-1}, v_{n-2})$$

$$= \begin{bmatrix} 1+2+3+\dots+1\\(n-1) \\ + [1+1+\dots+n](n-2)times \end{bmatrix}$$
$$= 2 \begin{bmatrix} (n-1)(n-1+1)\\ 2 \end{bmatrix} + (n-2) \times 1$$
$$= n(n-1) + (n-2)$$
$$= n^2 - n + n - 2$$
$$= n^2 - 2$$

Theorem :5

The Unlike degree Wiener index of star graph, S_n is $W_{ud}(S_n) = n$

Proof:

Let
$$S_n = (V, E)$$

 $V = \{v_0, v_1, v_2, \dots, v_n\}$ have $n + 1$ vertices and n edges

 $E = \{v_0 v_i; 1 \le i \le n\}$

All the vertices v_1, v_2, \dots, v_n has degree one except v_0

Figure 7.6

 $deg(v_0) = n$ and $deg(v_i) = 1 \forall \ 1 \le i \le n$

$$W_{ud} = d(v_0, v_1) + dv_0, v_2) + \dots + d(v_0, v_n)$$

= 1 + 1 + 1 + \dots 1(n times)
= n

Conclusion :

We have studied Unlike degree Wiener Index for various graph structures derived using graph operators. In future a comparison study will be carried out with Wiener index and Unlike degree Wiener Index for various compounds.

References :

- [1]. F. Harary, Graph Theory, Narosa publishing House, New Delhi, 1988.
- [2]. J.A. Gallian, A Dynamic Survey of Graph Labelling, *The Electronic Journal of Computations*.
- [3] A.Subhashini,J.BaskarBabujee,Like Degree Wiener Index For Structures,International Journal of Pure and Applied Mathematics,Volume 114 No .62017 ,219-225
- [4] "Power 3 Mean Labeling of Cycle Related Graphs", The International Journal of Analytical and Experimental Modal Analysis" ISSN NO: 0886-9367, Vol. XI, Issue XII, February – 2021.
- [5] Sarasree .S and S.S .Sandhya ,Some new wiener index of Power -3 Mean graphs Journal of Physis

Doi10.1088/1742-6596/1947/1/012035

[6]Sarasree.S and S.S.Sandhya ,Wiener index of some standard Power 3 mean graphs "Published in Journal of emerging technologies and innovative Research volume 8 issue 6,June -2021,ISSN NO : 2349-5162

[7] Sarasree.S and S.S.Sandhya "Laplacian Matrix of Power 3 Mean graphs Published in Journal of emerging technologies and innovative Research Volume 8 issue 6,June 2021 ISSN :2349-5162