
Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

368

Designing and implementing a tool for measuring cohesion and coupling of

Object-Oriented Systems

Atica M. Altaie

Department of Software, College of Computer Science and Mathematics, University of Mosul,

Iraqatica_altaie@uomosul.edu.iq

Article History: Received: 14 February 2022; Revised: 3 March 2022; Accepted: 6 March 2022;
Published online: 10 March 2022

Abstract

Cohesion and coupling are considered essential elements of an object-oriented system's internal quality.

The class diagram represents an important part of the design phase of the development life cycle of the

software. Measurement of metrics early in the design phase will lead to enhancing the quality of design

and source code and minimize the efforts required to build software. This tool calculates coupling and

cohesion for class diagrams using design metrics. The metrics of the tool gather the data and information

after analyzing the XMI file created by the UML tools. Then, we specify the cohesion of the class and the

relationships of coupling via matching tokens of a specific class with tokens of other classes. The

proposed methodology extracts tokens based on metrics for cohesion and coupling. Finally, the results

lead to a suitableassessment of the software quality in terms of its cohesion and coupling measures. The

values of DCH and DC metrics range from 0 to 1, the high cohesion and low coupling are better for the

measure of maintainability, testability, readability, reliability, and reuse.

1. Introduction

The aims of the software engineering phases are to create products which have all of the functions that a

user requires while keeping costs and timelines within the originally specified parameters. Furthermore,

the software of these products is simpler to comprehend and maintain. It is required to travel through the

many stages of the software life cycle in order to obtain this high-quality software[1][2]. Object-oriented

programming is a method for creating reusable, modular software systems. Although discussions about

object-oriented technology are frequently embroiled in debates over which language is better, the object-

oriented approach is really a modeling technique. Increased knowledge, ease of maintenance, and ease are

the goals of object-oriented programming [3][4].

Cohesion and coupling are considered essential elements of an object-oriented system's internal quality

(OOS). Class cohesion refers to the degree of class members belong to each other (attributes and

methods). On the other side, class coupling refers to the degree to which a class in software is coupled to

other classes. For faster and easier systems development, smart software engineersshould optimize

cohesion (cohesion supports encapsulation) and decrease coupling (coupling slows encapsulation) [5][6].

As a result, metrics for controlling Software coupling and cohesion have become essential. A Software's

mailto:Iraqatica_altaie@uomosul.edu.iq

Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

369

proclivity for coupling results in a high level of complexity. Low cohesion and strong coupling can be

used to design software that is reliable, maintainable, and extendible. Many scholars have contributed to

the design of a range of metrics for managing Software coupling and cohesion in order to compute

Software cohesion and coupling[7][8].Calculating the cohesion and coupling effect on testability,

reliability, maintainability, and reusability [9][10].

The UML(Unified Modeling Language) is a graphical representation of a system model that partially

represents the phases of design and implementation of software that will be built by the software

development team. The word "class diagram" refers to a diagram in which the contents are classes with

all characteristics and methods of a class diagram that shows the use of classes [11][12].

The design of the program code has an impact on its quality. The designers' goal is to have the best design

possible at all times. During the design process, it is vital to avoid errors that may result in poor source

code quality in the future [13][14].It is for this reason that we propose a tool aims to present a model that

helps software engineers to calculate coupling and cohesion for class diagram using object oriented

design metrics and give an indicator to software engineers to enhance their design and code.The tool is

quite useful for recognizing class cohesion and coupling to reduce the cost of maintainability, testability,

and reusability.

This study is organized in five sections: Section 2 analyses the previous studies correlated. Section 3

covers the background on metrics used and the tool architecture of proposed model. Section 4covers

testing the model and results throughcase studies. Section 5 outlines conclusion and possible future work.

2. Previous studies

Cohesion and coupling arefeatures that affect the softwarequality .These metrics can be computed by

design andsource code of software. In [15] the metric proposed of Class Cohesion measured the amount

of similarity between approaches is used which represented as a root to compute cohesion of a class. The

similarity between couples of approaches isrepresented as the ratio of the total sum number of common

attributes to the number of special attributes mentioned by both approaches. Cohesion is represented as

the ratio of the total sum of all similarities between couples of approaches to the total number of

probablecouples of approaches.

Manyapproaches have been proposed to recognize coupling of source codelike [16],[17].The authors in

[16] proposed a framework for measuring coupling in softwareby means of XML. First, the program is

analyzed and saved in XML format. Then this file used to computethe metrics of coupling. A

relatedmodelwhichaccompanied in 2016 [17] that implements Java source code, parses and generates the

XML file. Thedifferent measures of coupling between classes areimplementedby means of the code

andthe XMLtokens.

In [18], the authorspresented the coupling metrics to assess the refactoring impact, relating to the metrics

before refactoring processes and after. The studyevaluated only a C++ source code that accomplished by

a single programmer for some refactoring forms and theselimitationsforms threats to the authority of their

results.In another study, Chávez et al. [19] examinein what way refactoring processesimpact on many

internal quality attributes including cohesion, coupling. The authors observed that programmers apply

94% of the refactoring processes to source code components with one serious attribute of internal quality,

Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

370

65% of the refactoring processesincrease the associated attributes and the lasting 35% processessave the

attributes unaffected. Root-canal refactoring processes are applied (also called as pure refactoring) on

source code to either repeatedlyincrease internal quality or at least not get worse.

Pantiuchina et al. [20] purpose a model to investigate quality metrics to detect a planto improve the

quality at design and code phase by programmers empirically. While earliermodels like [21],

[22]surveyed programmers to examine whether metrics support their opiniononthe quality of source code,

The programmersobviouslymake a plan for enhancingthe attributes of quality likecode complexity,

cohesion,readability and coupling.

3. Tool Architecture of Proposed Model

3.1 Metrics Used

The proportion of messages received by a class over the number of messages sent by the class is used

to calculate degree of coupling.

Degree of coupling DC = MRC/MPC

Where MRC is the number of messages a class has received from other classes, and MPC denotes the

number of messages a given class has passed on to other classes. As a result, it is calculated at the

class level rather than the object level [23].

The ratio of the number of attributes used in a class to the total number of attributes for that class is

used to calculate the degree of cohesiveness. The functional power of the qualities is examined in the

Degree of cohesion. It shows how strongly a class's methods or a service's operations are influenced

by the characteristics in the class [24][25].

Degree of cohesion (DCH) = NAU/TNA

a. Tool Architecture

The following steps are used to programming the proposed tool architecture and described in

figure 1 in details:

1. Class Diagram: Initially we create a Class Diagram of software design by Enterprise architect

tool.

2. XMI Document: Generate XMI document from class diagram by Enterprise architect tool to have

the ability to use the information that has been generated in our tool.

3. XMI Parser: XMI-Parsers that constructing a tree ofDOM (Document Object Model) of the XMI

file by the Java programming language. DOM provides a standard way for accessing and

manipulating XMI documents and extracts information via tokens needed to compute the metrics

of cohesion and coupling.

Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

371

4. Cohesion & Coupling metrics Calculation:Calculate DHA and DC metrics for each Class in the

class diagram using information that extracted from XMI parser.

5. Show Results: The results are displayed based on metrics.

Figure 1: Tool Architecture of the Proposed Model (a) represents the calculation steps of cohesion

degree and (b) represents the calculation steps of coupling degree

4. Testing the model and Results: Case Studies

This section explains the testing of the proposed model and results that are obtained after executing

it.A case study of the Airplane system is taken as case study 1, Hospital system as case study 2, and

ATM system as case study 3. The metrics were calculated for each system to obtain cohesion and

Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

372

coupling values. The classes of three systems are building using enterprise architect tool and these

diagrams are described in figure 2:

Figure 2 Class diagram of three case studies:(a) Airplane class diagram (b) Hospital class diagram

(c) ATM class diagram

In these diagrams, we calculatethe degree of cohesion (DHA) and coupling (DC) for each class. Table 1

lists the results for each system. The value of the DC metric ranges from 0 to 1 and when the value is

close to zero, the better for the measure of maintainability, testability, readability, reliability, and reuse.

For example class person in airplane system, the value of DC metric is 0 this means high degrees of

maintainability, testability, readability, reliability, reuse. Class airport in the same system the value of DC

metric is 1 this means low degree of maintainability, testability, and reuse.

The value of the DCH metric ranges from 0 to 1 and when the value is close to 1, the better for the

measure of maintainability, testability, readability, reliability, reuse. For example in the airplane system,

Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

373

The classes Airport and SetStatus are equal to 1, this means high degrees of maintainability, testability,

readability, reliability, reuse and class PersonReservation in the same system is equal to 0.33,this

meansthe low degree of maintainability, testability, readability, reliability, and reuse.

Table 1: Theresults ofthe proposed tool : values of cohesion and coupling.

Airplane class diagram

Class name MRC MCP DC NAU TAN DCH

PersonReservation 2.0 2.0 1.0 1.0 3.0 0.33

FlightInstance 3.0 5.0 0.6 2.0 4.0 0.5

Reservation 2.0 3.0 0.66 2.0 3.0 0.66

Airport 3.0 3.0 1.0 2.0 2.0 1.0

Person 0.0 1.0 0.0 1.0 2.0 0.5

Airplanes 3.0 0.0 0.0 1.0 3.0 0.33

Address 3.0 0.0 0.0 3.0 4.0 0.75

SetStatus 2.0 3.0 0.66 1.0 1.0 1.0

Notification 0.0 1.0 0.0 NAU TAN DCH

Hospital class diagram

medical wards 1.0 0.0 0.0 1.0 2.0 0.5

tailering ward 2.0 0.0 0.0 0.0 2.0 0.0

Hospital 0.0 4.0 0.0 3.0 4.0 0.75

surgical wards 2.0 2.0 1.0 2.0 2.0 1.0

pediateic ward 1.0 0.0 0.0 2.0 3.0 0.66

ATM class diagram

Branch 3.0 0.0 0.0 1.0 3.0 0.33

Consortium 2.0 0.0 0.0 1.0 2.0 0.5

EntryStation 0.0 2.0 0 1.0 2.0 0.5

Atm 1.0 2.0 0.5 2.0 2.0 1.0

Cachier Station 1.0 3.0 0.33 1.0 4.0 0.25

5. Conclusion and Future Work

In the proposedtool, we suggest a method to calculate cohesion and coupling exploiting UML

diagrams. So, through the building and testing of the proposed model, conclusions are:Give an indicator

to software engineers on cohesion and coupling values to may change the way that information is

Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

374

presented and to make early improvements and the class with high cohesion and low coupling can be

reused in other systems design and reduced effort needed for maintainability, testability, readability,

reliability, reuse and These values decide if the code needs to be refactoring for enhancing the quality of

design and source code. The proposed tool can be expanded to include other software engineering

concepts metrics and acceptingnot only XMI documents, but also XML documents.

References

[1] Choudhary B.,(2018), “Comparing Service Orientation and Object Orientation: A Case Study on Structural

Benefits and Maintainability”, Institute of Software Technology University of Stuttgart.

[2] Hutchinson B., Smart A., Hanna A., Denton E., Greer C., Kjartansson O., Barnes P., & Mitchell M., (2020),

“Towards Accountability for Machine Learning Datasets: Practices from Software Engineering and Infrastructure”,

arXiv preprint arXiv:2010.13561.

[3] Roy A. &Karforma S., (2013), “Object oriented metrics analysis for implementation of authentication in smart

card based E-Governance mechanism”, Researchers World – Journal of Arts, Science and Commerce, 4(2), pp: 103

– 109.

[4] Sun Q., Wu J., and Liu K., (2020), „„Toward understanding Students‟ learning performance in an object-oriented

programming course: The perspective of program quality,‟‟ IEEE Access, vol. 8, pp. 37505–37517.

[5] Kaur N., Negi A., & Singh H, (2018), “Object Oriented Dynamic Coupling and Cohesion Metrics: A Review”,

Lecture Notes in Networks and Systems, pp.861–869.

[6] Miquirice, S. A., &Wazlawick, R. S. (2018), “Relationship Between Cohesion and Coupling Metrics for Object-

Oriented Systems”, Information and Software Technologies, pp.424–436.

[7] Kalantari, S., Alizadeh, M. &Motameni, H., (2015), “Evaluation of reliability of object-oriented systems based

on Cohesion and Coupling Fuzzy computing”, Journal of Advance in Computer Research 6(1), pp. 85–99.

[8] Roy A. &Karforma S.,(2013), “Coupling and cohesion analysis for implementation of authentication in

EGovernance”, ACEEE Conference Proceedings Series 02, Fourth International Joint Conference - Advances in

Engineering and Technology (AET) 2013, Elsevier, Pp: 544-554.

[9] Sharma A. &Vishwakarma P. K., (2021), “Maintainability Evaluation for Object Oriented Software Metrics

Using Tool Cohesion Inheritance (COIN)”, Turkish Journal of Computer and Mathematics EducationVol.12 No.1S,

pp.233-238.

[10] Singh D.,(2019), “An optimizating the software metrics for UML structural and behaviourl diagrams using

metrics tool”, INFOCOMP Journal of Computer Science, vol.18, no.1, pp.9-19.

[11] Alsarraj, R. G., Altaie, A. M., & Fadhil, A. A., (2021). “Designing And Implementing A Tool To Transform

Source Code To Uml Diagrams”, Periodicals Of Engineering And Natural Sciences, 9(2), pp. 430–440.

[12] Abu Hassan A &Alshayeb M.,(2019), “A metrics suite for UML model stability, Software & Systems

Modeling”, vol.18, no.1, pp.557-583.

Turkish Journal of Computer and Mathematics Education Vol.13 No.02 (2022), 368-375
Research Article

375

[13] Rapatsalahy A. M., Razafimahatratra H., Mahatody T., Ilie M., Ilie S., & Raft R. N, (2020), “Automatic

generation of software components of the Praxeme methodology from ReLEL”, 2020 24th International Conference

on System Theory, Control and Computing (ICSTCC), pp.843-849.

[14] H. Razafimahatratra, T. Mahatody, J.P. Razafimandimby and S.M. Simionescu, (2017),“Automatic detection of

coupling type in the UML sequence diagram”, 21st International Conference on System Theory, Control and

Computing, Sinaia, Romania, pp. 635-640.

[15] Bonja C. &Kidanmariam E., (2006),“Metrics for class cohesion and similarity between methods”, In:

Proceedings of the 44th Annual Southeast Regional Conference, ACM, pp. 91–95.

[16] Kayarvizhy S., &Kanmani N., (2011),“An Automated Tool for Computing Object Oriented Metrics Using

XML”, in International Conference on Advances in Computing and Communications, pp. 69–79.

[17] Bidve V. S. andSarasu P., (2016), “Tool for measuring coupling in objectoriented java software,” International

Journalof Engineering and Technology, vol. 8, no. 2, pp. 812– 820.

[18] Kataoka Y., Imai T., Andou H., &Fukaya T.,(2002),“A quantitative evaluation of maintainability enhancement

by refactoring”. In 18th International Conference on So‡ware Maintenance (ICSM). Pp.576–585.

[19] Chávez A., Ferreira I., Fernandes E., Cedrim D., & Garcia A., (2017), “How does refactoring affect internal

quality attributes?”, Proceedings of the 31st Brazilian Symposium on Software Engineering - SBES‟17.

[20] Pantiuchina J., Lanza M., &Bavota G., (2018), “Improving code: The (mis) perception of quality metrics”, In

2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, pp. 80–91.

[21] Bavota G., Dit B., Oliveto R., Di Penta M., Poshyvanyk D., & De Lucia A., (2013),“An empirical study on the

developers‟ perception of software coupling”, In Proceedings of the International Conference on Software

Engineering (ICSE), pp. 692– 701.

[22] Steve Counsell, Stephen Swift, Allan Tucker, and Emilia Mendes. Object-oriented cohesion subjectivity

amongst experienced and novice developers: an empirical study. ACM SIGSOFT Software Engineering Notes,

31(5):1–10, September 2006.

[23] Miquirice S. A.&Wazlawick R. S., (2018), “Relationship between cohesion and coupling metrics for object-

oriented systems,” ICISTInternational Conference on Information and Software Technologies, Springer

International Publishing, pp. 424–436.

[24] Li, W., & Henry, S., Object-oriented metrics that predict maintainability. J. Syst. Softw. 23(2), 111–122 (1993)

[25] Joy Christy A.,&Umamakeswari A., (2020),“An Object-Oriented Software Complexity Metric for Cohesion”,

Intelligent Systems Reference Library, vol 185. Springer, Cham.

https://link.springer.com/conference/icist

