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Abstract: The objective of this correspondence is to offer an elaboration of some latest inequalities' findings, in which we have 
given a new improvement of ‘useful’ Jensen's inequality, as well as utilization in the theory of information. In linear spaces, for 
convex functions constructed on a convex subset, an improvement inequality of Jensen's is provided. For ‘useful mean 

𝑔 −deviation and ‘useful’ 𝑔 −divergences, we provide robust lower bounds as well as the ‘useful’ mean h-absolute deviation, 
and lastly, we have given applications of divergence measure. Uniqueness for the ‘useful’ KL-Divergence and ‘useful’ Jeffreys 
divergence is obtained. 
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1. Introduction  

Let ∆𝑘
+= {𝒍 = (𝑙1, 𝑙2, … , 𝑙𝑘); 𝑙𝑖 ≥ 0, ∑ 𝑙𝑖 = 1𝑘

𝑖 } , be a lot of all possible discrete likelihood 

distributions of a random variable 𝒙 = {𝑥1, 𝑥2 … … … 𝑥𝑘} and ℧ = {(𝑢1, 𝑢2, … … 𝑢𝑘); 𝑢𝑖 > 0 ∀𝑖,
℧ ∈ ℧𝑘} are the utility distribution attached to each 𝒍 ∈ ∆𝑘

+ such that 𝑢𝑖 > 0 is the utility of an 
event having the probability of occurrence  𝑙𝑖 > 0. 

Let 𝑢𝑖  be the utility or importance of the result 𝑥𝑖 , as well as ℧ = (𝑢1, 𝑢2, … … 𝑢𝑘)  be the 

arrangement of non-negative actual numerals. In general, the utility is unaffected by the 

likelihood of encoding the source symbol 𝑥𝑖, i.e., 𝑙𝑖. 

The pattern of information is provided by 

[

𝑥1, 𝑥2 … … … 𝑥𝑘

𝑙1, 𝑙2 … … … 𝑙𝑘

𝑢1, 𝑢2 … … … 𝑢𝑘

] , Where ∑ 𝑙𝑖 = 1𝑘
𝑖=1 , 0 < 𝑙𝑖 ≤ 1, 𝑢𝑖 > 0, (1) 

The source is not completely identified by the distribution of likelihood 𝒍 across the source 

symbols 𝒙 without their qualitative character, according to Belis and Guiasu [5]. As a result of 

the experimenter's findings, it is indeed deduced that the source symbols or letters are given 

weights based on their significance or use. The following qualitative-quantitative measure of 

information was thus introduced by Belis and Guisau [5]: 

𝐻(𝒍; ℧) = − ∑ 𝑢𝑖𝑙𝑖 log 𝑙𝑖
𝑘
𝑖=1      (2) 

The ‘useful’ information measure is called the quantitative-qualitative measure defined in 
(2). This calculation may be used as a statistic for the average amount of ‘useful’ information 
produced by the information system (1). It is clear that when utilities are ignored, (2) reduces 
to Shannon’s information measure [25] which is given below: 

𝐻(𝒍) = − ∑ 𝑙𝑖 log 𝑙𝑖
𝑘
𝑖=1      (3) 

By using different postulates, several authors have specified the entropy of Shannon. By 

utilizing significant assumptions which Fadeev [14] deduced, Khinchin [17] made Shannon's 

statement more precise. Tverberg [28], Chandy and Mcliod [6], Kendall [16], etc., were further 

defined by the entropy of Shannon by considering various sets of postulates. For strongly 

convex and highly mid-convex functions, counterparts of the converse Jensen inequality were 

presented by Klaricic & Nikodem [18]. Dwivedi and Sharma [9] obtained the lower and upper 

bound for Renyi information rate in the terms of utility. In several fields of mathematics, convex 

functions play an essential role in information theory, Rashid et al., [23], further improvement 
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of Jensen’s inequality given by Dragomir [10], Ge-Jile et al. [15], and Sayyari, [24], the function 

is very important for the study of optimization problems, where it has many beneficial 

properties. Jeffreys-Renyi type divergences and Jensen-Renyi induced by convex functions and 

represented by Kluza [19], also, Kumari & Sharma [20] given ‘useful’ non-symmetric 

divergence for some cases. 

Suppose 𝑔 be a convex function on 𝑅, and also 𝑅 be the convex subset of linear space 𝒯. If 

𝒍 = (𝑙1, … , 𝑙𝑘)  is the sequence of chance distribution with utility distribution ℧ =
{(𝑢1, 𝑢2, … … 𝑢𝑘); 𝑢𝑖 > 0 ∀𝑖}  and 𝒙 = (𝑥1, … , 𝑥𝑘) ∈ 𝑅𝑘 , in this case, following ‘useful’ 

Jensen’s inequality holds: 

𝑔 (
(∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑥𝑖)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) ≤
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑔(𝑥𝑖)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

 .     (4) 

It may be noted that when utilities are 𝑢𝑖 = 1, then (4) reduces to Jensen’s inequality. The 

inequality of Jensen is very significant of all inequalities because it has many mathematical and 

statistical applications and its special cases are several other well-known inequalities such as 

Holder's inequality, Cauchy's inequality, AGH inequalities, etc. 

We have provided the following ‘useful’ refinement of (4): 

𝑔 (
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) ≤
∑ 𝑢𝑖1𝑙𝑖1

𝑘
𝑖1,…,𝑖𝑡+1=1 …𝑢𝑖𝑡+1

𝑙𝑖𝑡+1

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

𝑔 (
𝑥𝑖1+⋯+𝑥𝑖𝑡+1

𝑡+1
)  

 ≤
∑ 𝑢𝑖1𝑙𝑖1

𝑘
𝑖1,…,𝑖𝑡=1 …𝑢𝑖𝑡

𝑙𝑖𝑡

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

𝑔 (
𝑥𝑖1+⋯+𝑥𝑖𝑡

𝑡
) 

       ≤. . . ≤
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑔(𝑥𝑖)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

     (5) 

for 𝒍 = (𝑙1, … , 𝑙𝑘) ∈ ∆𝑘
+, 𝒙 = (𝑥1, … , 𝑥𝑘) ∈ 𝑅𝑘, ℧ = (𝑢1, … , 𝑢𝑘) ∈ ℧𝑘 and 𝑡 ≥ 1. 

The above measure (5) reduces to results which were obtained in 1989, by Pecaric and 
Dragomir [22], when utilities are ignored i.e., 𝑢𝑖 = 1 .  

If 𝑟1, …, 𝑟𝑡 ≥ 0 with ∑ 𝑟𝑞
𝑡
𝑞=1 = 1, then we have the following refinement: 

 𝑔 (
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) ≤
∑ 𝑢𝑖1𝑙𝑖1

𝑘
𝑖1,…,𝑖𝑡=1 …𝑢𝑖𝑡

𝑙𝑖𝑡

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

𝑔 (
𝑥𝑖1+⋯+𝑥𝑖𝑡

𝑡
)  

      ≤
∑ 𝑢𝑖1𝑙𝑖1

𝑘
𝑖1,…,𝑖𝑡=1 …𝑢𝑖𝑡

𝑙𝑖𝑡

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

𝑔(𝑟1𝑥𝑖1
+ ⋯ + 𝑟𝑡𝑥𝑖𝑡

)  

≤
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑔(𝑥𝑖)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

      (6) 

Where 1 ≤ 𝑡 ≤ 𝑘 , when utilities are ignored i.e., 𝑢𝑖 = 1 , then (6) is reduced to Jensen’s 

inequality. 

An improvement of the following Jensen's inequality: 

𝑔 (
∑ 𝑢𝑞𝑙𝑞

𝑘
𝑞=1 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)  
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≤ min
𝑡∈{1,2,…𝑘}

[(1 − 𝑢𝑡𝑙𝑡)𝑔 (

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

 − 𝑢𝑡𝑙𝑡𝑥𝑡

1−𝑢𝑡𝑙𝑡
) + 𝑢𝑡𝑙𝑡𝑔(𝑥𝑡)]  

 ≤
1

𝑘
[∑ (1 − 𝑢𝑡𝑙𝑡)𝑘

𝑡=1 𝑔 (

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

 − 𝑢𝑡𝑙𝑡𝑥𝑡

1−𝑢𝑡𝑙𝑡
) +

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1 𝑔(𝑥𝑡)

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

] 

 ≤  max
𝑡∈{1,2,...𝑘}

[(1 − 𝑢𝑡𝑙𝑡)𝑔 (

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

 − 𝑢𝑡𝑙𝑡𝑥𝑡

1−𝑢𝑡𝑙𝑡
) +  𝑢𝑡𝑙𝑡𝑔(𝑥𝑡)]  

 ≤
∑ 𝑢𝑞𝑙𝑞

𝑘
𝑞=1 𝑔(𝑥𝑞)

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

         (7) 

We will call the above inequality as 'useful' Jensen’s inequality, where 𝑔,  𝑥𝑡 , and 𝑢𝑡𝑙𝑡  as 
above given, and after utilities are ignored i.e.,𝑢𝑖 = 1, then (7) reduces to Jensen’s inequalities. 

A large body of work on Jensen's inequality and its various extensions, modifications, 

equivalents, and converse findings See, for example, [1,2,3,4,9,10,12,21,22] and [16,17] and 

also given by Simic [26], Tapus, and Popescu [27]. 

We provide purification of Inequality of Jensen’s related through the functionals that are 

general in Section 2. We also currently acquired for ‘useful’ mean  𝑔 −deviation of lower bound 

as well as the ‘useful’ mean ℎ −absolute deviation in Section 3. last Section 4 has provided 

applications for ‘useful’ 𝑔 −divergence measures in information theory, and Applications for 

norms especially for KL-divergence,  𝜒2 − divergence, Absolute divergence, the ‘useful’ 

Jeffreys divergence, total variation divergence, etc. For the ‘useful’ 𝑔 −divergences and ‘useful’ 

mean 𝑔 − deviation, the bounds obtained are superior as compared to the bounds which are 

presented by Dragomir [11]. 

2. New improvements  

In the real linear space 𝒯, suppose that 𝑅 is a convex subset, also let 𝑔: 𝑅 → ℝ is a convex 

function on 𝑅 . If 𝑙𝑖 > 0,  with  ∑ 𝑙𝑖
𝑘
𝑖=1 = 1  where  1 ≤ 𝑖 ≤ 𝑘  and 𝑥𝑖 ∈ 𝑅 , then we write �̅� =

{1,2, … , 𝑘}\𝐸(≠ ∅)  for any nonempty subset 𝐸  of {1,2, … , 𝑘}  and define Ψ𝐸 = ∑ 𝑙𝑖
𝑘
𝑖∈ 𝐸  and 

�̅�𝐸 = 𝛹�̅�  
= ∑ 𝑙𝑞𝑞∈ �̅� = 1 − ∑ 𝑙𝑖

𝑘
𝑖∈ 𝐸 . For the 𝑘 −tuples 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑘),  𝒍 = (𝑙1, 𝑙2, … , 𝑙𝑘) , 

the convex function 𝑔 and ℧ = {(𝑢1, 𝑢2, … … 𝑢𝑘); 𝑢𝑖 > 0 ∀𝑖} utilities are attached to each 𝒍 ∈
∆𝑘

+ shown before. We can define the following function 

𝐴(𝑔, 𝒍, 𝒙;  𝐸, ℧) = 𝛹𝐸𝑔 (
1

𝛹 𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) + �̅�𝐸𝑔 (
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

) (8) 

where we will use, for 𝐸 ⊂ {1,2, … 𝑘} with 𝐸 ≠ ∅ and 𝐸 ≠ {1,2, … 𝑘} here and everywhere 
also below: 

It's worth noting that we have the function for 𝐸 = {𝑡}, 𝑡 ∈ {1,2, … , 𝑘}. 

𝐴𝑡(𝑔, 𝒍, 𝒙; ℧) = 𝐴(𝑔, 𝒍, 𝒙; {𝑡}, ℧) 
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= 𝑢𝑡𝑙𝑡𝑔(𝑥𝑡) + (1 − 𝑢𝑡𝑙𝑡)𝑔 (
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑥𝑖−𝑢𝑡𝑙𝑡𝑥𝑡

1−𝑢𝑡𝑙𝑡
)  (9) 

The above measure reduces to [11] when utilities aspects are ignored i.e., 𝑢𝑖 = 1. 

Theorem 1. Suppose that 𝑔: 𝑅 → ℝ is a convex function on 𝑅 and in the real linear space 𝒯, 
let 𝑅 be a convex subset, and 𝑢𝑖 > 0 are the utilities attached to probabilities. For any nonempty 

subset 𝐸 = {1,2, … , 𝑘}, if 𝑙𝑖 > 0, with ∑ 𝑙𝑖
𝑘
𝑖=1 = 1, and 𝑥𝑖 ∈ 𝑅, then we have 

∑ 𝑢𝑡𝑙𝑡𝑔(𝑥𝑡)𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

≥ 𝐴(𝑔, 𝒍, 𝒙; 𝐸, ℧) ≥ 𝑔 (
∑ 𝑢𝑡𝑙𝑡𝑥𝑡

𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

)    (10) 

Proof. We have the convexity of the function 𝑔 

𝐴(𝑔, 𝒍, 𝒙;  𝐸, ℧) = 𝛹𝐸𝑔 (
1

𝛹 𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) + �̅�𝐸𝑔 (
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)  

≥ 𝑔 [𝛹𝐸 (
1

𝛹 𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) + �̅�𝐸 (
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)]  

≥ 𝑔 (
∑ 𝑢𝑡𝑙𝑡𝑥𝑡

𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

)  

This establishes the second ‘useful’ inequality in (10), for any 𝐸. 

We also have by the Jensen inequality 

∑ 𝑢𝑡𝑙𝑡𝑔(𝑥𝑡)𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

=
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖∈ 𝐸 𝑔(𝑥𝑖)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

+
∑ 𝑢𝑞𝑙𝑞

𝑘
𝑞∈ �̅� 𝑔(𝑥𝑞)

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

  

≥ 𝛹𝐸𝑔 (
1

𝛹𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) + �̅�𝐸𝑔 (
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)  

= 𝐴(𝑔, 𝒍, 𝒙; 𝐸, ℧) 

This establishes the first ‘useful’ inequality in (10), for any 𝐸. 

Remark 1. Here we notice that the inequality (10) may be expressed in the following ways: 

∑ 𝑢𝑡𝑙𝑡𝑔(𝑥𝑡)𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

≥ max
∅≠𝐸⊂{1,2,…,𝑘}

𝐴(𝑔, 𝒍, 𝒙; 𝐸, ℧)    (11) 

and 

 𝑔 (
∑ 𝑢𝑡𝑙𝑡𝑥𝑡

𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

) ≤ min
∅≠𝐸⊂{1,2,…𝑘}

𝐴(𝑔, 𝒍, 𝒙; 𝐸, ℧)    (12) 

These inequalities imply the following findings, using a somewhat more difficult technique 
of proof: 

∑ 𝑢𝑡𝑙𝑡𝑔(𝑥𝑡)𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

≥ max
𝑡∈ {1,2,…,𝑘}

𝐴𝑡(𝑔, 𝒍, 𝒙; ℧)    (13) 

and 

𝑔 (
∑ 𝑢𝑡𝑙𝑡𝑥𝑡

𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

) ≤ min
𝑡∈ {1,2,…,𝑘}

𝐴𝑡(𝑔, 𝒍, 𝒙; ℧)    (14) 

Furthermore, since 

max
∅≠𝐸⊂{1,2,…,𝑘}

𝐴(𝑔, 𝒍, 𝒙; 𝐸, ℧) ≥ max
𝑡∈ {1,2,…,𝑘}

𝐴𝑡(𝑔, 𝒍, 𝒙; ℧)  

and 
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 min
𝑡∈ {1,2,…,𝑘}

𝐴𝑡(𝑔, 𝒍, 𝒙; ℧) ≥ min
∅≠𝐸⊂{1,2,…𝑘}

𝐴(𝑔, 𝒍, 𝒙; 𝐸, ℧) 

The resulting inequalities (11) and (12) are thus superior to the prior results from [11]. 

The case of uniform distribution, in which 𝑙𝑖 =
1

𝑘
 is the same for all {1,2, … , 𝑘}, is also 

interesting. When we take a natural integer 𝑎 with it by 1 ≤ 𝑎 ≤ 𝑘 − 1, if we define 

𝐴𝑎(𝑔, 𝒙) : =
𝑎

𝑘
𝑔 (

1

𝑎
∑ 𝑥𝑖

𝑎
𝑖=1 ) +

𝑘−𝑎

𝑘
𝑔 (

1

𝑘−𝑎
∑ 𝑥𝑞

𝑘
𝑞=𝑎+1 )      (15) 

then we can come up with the following conclusion: 

Corollary 1. Let 𝑔: 𝑅 → ℝ is a convex function on 𝑅 and in the real linear space 𝒯, suppose 

𝑅 be a convex subset. If 𝑥𝑖 ∈ 𝑅, then we have for any 𝑎 ∈ {1,2, … , 𝑘 − 1}, 

1

𝑘
∑ 𝑔(𝑥𝑡)𝑘

𝑡=1 ≥ 𝐴𝑎(𝑔, 𝒙) ≥ 𝑔(∑ 𝑥𝑡
𝑘
𝑡=1 )    (16) 

We have the bounds, in particular 

1

𝑘
∑ 𝑔(𝑥𝑡)𝑘

𝑡=1 ≥ max
𝑎∈ {1,2,…,𝑘−1}

[
𝑎

𝑘
𝑔 (

1

𝑎
∑ 𝑥𝑖

𝑎
𝑖=1 ) +

𝑘−𝑎

𝑘
𝑔 (

1

𝑘−𝑎
∑ 𝑥𝑞

𝑘
𝑞=𝑎+1 )]  (17) 

and 

 min
𝑎∈ {1,2,…,𝑘−1}

[
𝑎

𝑘
𝑔 (

1

𝑎
∑ 𝑥𝑖

𝑎
𝑖=1 ) +

𝑘−𝑎

𝑘
𝑔 (

1

𝑘−𝑎
∑ 𝑥𝑞

𝑘
𝑞=𝑎+1 )] ≥ 𝑔 (

1

𝑘
∑ 𝑥𝑡

𝑘
𝑡=1 ) .  (18) 

For symmetric convex functions, the subsequent variant of the inequality (10) may be useful: 

Corollary 2. Suppose that 𝑅 be a convex module with the characteristic that it has the value 

0 ∈ 𝑅 . If 𝑧𝑞 ∈ 𝒯  such that for every 𝑙𝑖 >  0,1 ≤ 𝑖 ≤ 𝑘 , with ∑ 𝑙𝑖
𝑘
𝑖=1 = 1 , we have 𝑧𝑞 −

(∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1 𝑧𝑖)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

∈ 𝑅, for any 𝑞 ∈ {1,2, . . . , 𝑘 } and 𝑢𝑖 > 0 are the utilities attached to probabilities, 

then we have for any subset 𝐸 of {1,2, . . . , 𝑘 } 

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1 𝑔(𝑧𝑡−

∑ 𝑢𝑖𝑙𝑖𝑧𝑖
𝑘
𝑖=1

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

)

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

≥ 𝛹 𝐸𝑔 [�̅�𝐸 (
1

𝛹 𝐸

∑ 𝑢𝑖𝑙𝑖𝑧𝑖
𝑘
𝑖∈ 𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

−
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑧𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)]  

+�̅�𝐸𝑔 [𝛹𝐸 (
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑧𝑞

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

−
1

𝛹𝐸

∑ 𝑢𝑖𝑙𝑖𝑧𝑖
𝑘
𝑖∈ 𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)] 

≥ 𝑔(0)       (19) 

Remark 2. If 𝐸 = {𝑡}, then the specific aspect we may deduce from the corollary is helpful 

as well (19) can be written as 

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1 𝑔(𝑧𝑚−

∑ 𝑢𝑖𝑙𝑖𝑧𝑖
𝑘
𝑖=1

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

)

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1

≥ 𝑢𝑡𝑙𝑡𝑔 [(1 − 𝑢𝑡𝑙𝑡) (𝑧𝑡 −
1

1−𝑢𝑡𝑙𝑡
(

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1 𝑧𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

− 𝑢𝑡𝑙𝑡𝑧𝑡))]  

+(1 − 𝑢𝑡𝑙𝑡)𝑔 [𝑢𝑡𝑙𝑡 (
1

1−𝑢𝑡𝑙𝑡
(

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1 𝑧𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

− 𝑢𝑡𝑙𝑡𝑧𝑡) − 𝑧𝑡)] ≥ 𝑔(0)  (20) 

which is equivalent with 

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1 𝑔(𝑧𝑚−

∑ 𝑢𝑖𝑙𝑖𝑧𝑖
𝑘
𝑖=1

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

)

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1
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≥ 𝑢𝑡𝑙𝑡𝑔 (𝑧𝑡 −
∑ 𝑢𝑞𝑙𝑞

𝑘
𝑞=1 𝑧𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

) + (1 − 𝑢𝑡𝑙𝑡)𝑔 [
𝑢𝑡𝑙𝑡

(1−𝑢𝑡𝑙𝑡)
(

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1 𝑧𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

− 𝑧𝑡)]  

≥ 𝑔(0)         (21) 

where 𝑡 ∈ {1,2, … , 𝑘}. 

Remark 3. The continuous versions are contemplated in [13], for the Lebesgue integral. 

3. Lower bound for ‘useful’ mean 𝒈 −deviation 

Suppose 𝒯 be a real linear space and 𝑢𝑖 > 0 are the utilities attached to probabilities. Define 

the 'useful' mean 𝑔 −  deviation of an 𝑘 − tuple of vectors 𝒙 = (𝑥1, … , 𝑥𝑘)  ∈ 𝒯𝑘  with the 

likelihood dispensation 𝒍 = (𝑙1, … , 𝑙𝑘)   by the nonnegative amount for a convex function 

𝑔: 𝒯 → ℝ with the characteristics that 𝑔(0) = 0. then 

𝑀𝑔(𝒍, 𝒙; ℧) =
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 𝑔(𝑥𝑖−

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1 𝑥𝑡

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

      (22) 

Since 𝑀𝑔(𝒍, 𝒙; ℧)  is positive, this follows that ‘useful’ inequality of Jensen's and can be 

expressed as 

𝑀𝑔(𝒍, 𝒙; ℧) ≥ 𝑔 (
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 (𝑥𝑖−

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1 𝑥𝑡

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

)

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

) = 𝑔(0) = 0.  

For convex function 𝑔(𝑥) = ‖𝑥‖ℎ , ℎ ≥ 1 , and  𝑢𝑖 > 0  are the utilities attached to 
probabilities described on a normed linear space (𝒯, ‖∙‖)  provides a natural example of such 
variations. This is denoted by 

𝑀ℎ(𝒍, 𝒙; ℧) =
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖=1 ‖𝑥𝑖−

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1 𝑥𝑡

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

‖

ℎ

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

     (23) 

The above measure called ‘useful' mean ℎ − absolute variance with distribution 𝒍 =
(𝑙1, … , 𝑙𝑘)  of the 𝑘 − tuple of vectors 𝒙 ∈ 𝒯𝑘  and  𝑢𝑖 > 0  are the utilities attached to 
probabilities. 

For the 'useful' mean 𝑔 −deviation the following findings give a better lower bound. 

Theorem 2. Assume that a convex function 𝑔: 𝒯 → [0, ∞)  with 𝑔(0) = 0 . If 𝒙 ∈ 𝒯𝑘  and 
𝒍 = (𝑙1, … , 𝑙𝑘) is a likelihood dispensation with all 𝑙𝑖 are not zero, then 

𝑀𝑔(𝒍, 𝒙; ℧) ≥ max
∅≠𝐸⊂{1,2,…,𝑘}

{𝛹𝐸𝑔 [�̅�𝐸 (
1

𝛹𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

−
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)]  

+𝛹𝐸𝑔 (
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑧𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

−
1

𝛹𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑧𝑖

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)} ≥ 0  (24) 

In special, we have 

𝑀𝑔(𝒍, 𝒙; ℧) ≥ max
𝑡∈{1,2,…,𝑘}

{(1 − 𝑢𝑡𝑙𝑡)𝑔 [
𝑢𝑡𝑙𝑡

(1−𝑢𝑡𝑙𝑡)
(

∑ 𝑢𝑚𝑙𝑚𝑥𝑚
𝑘
𝑚=1

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1

− 𝑥𝑡)]  
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+𝑢𝑡𝑙𝑡𝑔 (𝑥𝑡 −
∑ 𝑢𝑚𝑙𝑚𝑥𝑚

𝑘
𝑚=1

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1

)} ≥ 0   (25) 

Proof. Corollary 2 and Remark 2 provide the proof. 

We have the following, in the particular case: 

Corollary 3. Let a normed linear space to be (𝒯, ‖∙‖), and 𝑢𝑖 > 0 are the utilities attached 

to probabilities. If 𝒙 = (𝑥1, … , 𝑥𝑘) ∈ 𝒯𝑘 and 𝒍 = (𝑙1, … , 𝑙𝑘) is a likelihood dispensation with all 
𝑙𝑖 are not zero, then we have for ℎ ≥ 1 

𝑀ℎ(𝒍, 𝒙; ℧) ≥ max
∅≠𝐸⊂{1,2,…,𝑘}

{𝛹𝐸�̅�𝐸(�̅�𝐸
ℎ−1 + 𝛹𝐸

ℎ−1) ‖
1

𝛹𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

−

                                                                                                                    
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

‖

ℎ

} ≥ 0 (26) 

Remark 4. We can see that from the power function 𝑔(𝑠)ℎ, ℎ ≥ 1 and then by the convexity 

of the function, we have  

𝛹𝐸�̅�𝐸(�̅�𝐸
ℎ−1 + 𝛹𝐸

ℎ−1) = 𝛹𝐸�̅�𝐸
ℎ + �̅�𝐸

ℎ𝛹𝐸 ≥ (𝛹𝐸�̅�𝐸 + �̅�𝐸𝛹𝐸)ℎ = 2ℎ𝛹𝐸
ℎ�̅�𝐸

ℎ 

therefore 

𝛹𝐸�̅�𝐸(�̅�𝐸
ℎ−1 + 𝛹𝐸

ℎ−1) ‖
1

𝛹𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

−
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

‖

ℎ

  

≥ 2ℎ𝛹𝐸
ℎ�̅�𝐸

ℎ ‖
1

𝛹𝐸

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

−
1

�̅�𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

‖

ℎ

  

= 2ℎ ‖�̅�𝐸
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

− 𝛹𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

‖

ℎ

   (27) 

Since 

�̅�𝐸
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

− 𝛹𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞∈ �̅� 𝑥𝑞

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

= (1 − 𝛹𝐸)
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

− 𝛹𝐸 (
∑ 𝑢𝑡𝑙𝑡𝑥𝑡

𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

−
∑ 𝑢𝑖𝑙𝑖𝑥𝑖

𝑘
𝑖∈ 𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

)  

=
∑ 𝑢𝑖𝑙𝑖

𝑘
𝑖∈ 𝐸 𝑥𝑖

∑ 𝑢𝑖𝑙𝑖
𝑘
𝑖=1

− 𝛹𝐸
∑ 𝑢𝑡𝑙𝑡𝑥𝑡

𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

,     (28) 

then we conclude (26)-(28) to get the related, however, more relevant lower bound. 

𝑀ℎ(𝒍, 𝒙; ℧) ≥ 2ℎ max
∅≠𝐸⊂{1,2,…,𝑘}

{‖
∑ 𝑢𝑖𝑙𝑖𝑥𝑖

𝑘
𝑖∈ 𝐸

∑ 𝑢𝑞𝑙𝑞
𝑘
𝑞=1

− 𝛹𝐸
∑ 𝑢𝑡𝑙𝑡𝑥𝑡

𝑘
𝑡=1

∑ 𝑢𝑡𝑙𝑡
𝑘
𝑡=1

‖
ℎ

} (≥ 0)  (29) 

The following is an instance for ‘useful’ mean ℎ −absolute deviation: 
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Corollary 4. Let a normed linear space (𝒯, ‖∙‖), and 𝑢𝑖 > 0 are the utilities attached to 

probabilities. If 𝒙 ∈ 𝒯𝑘 and 𝒍 = (𝑙1, … , 𝑙𝑘) is a likelihood dispensation with all 𝑙𝑖 are not zero, 
then we have for ℎ ≥ 1 

𝑀ℎ(𝒍, 𝒙; ℧) ≥ max
𝑡∈{1,2,…,𝑘}

{[(1 − 𝑢𝑡𝑙𝑡)1−ℎ. 𝑢𝑡
ℎ𝑙𝑡

ℎ + 𝑢𝑡𝑙𝑡] ‖𝑥𝑡 −
∑ 𝑢𝑚𝑙𝑚

𝑘
𝑚=1 𝑧𝑚

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1

‖
ℎ

}  (30) 

Remark 5. Since the function is strictly increasing on [0,1)  as well as 𝑣ℎ(𝑠) =
(1 − 𝑠)1−ℎ𝑠ℎ + 𝑠, ℎ ≥ 1, 𝑠 ∈ [0,1), therefore 

min
𝑡∈{1,2,…,𝑘}

{(1 − 𝑢𝑡𝑙𝑡)1−ℎ. 𝑢𝑡
ℎ𝑙𝑡

ℎ + 𝑢𝑡𝑙𝑡} = 𝑢𝑎𝑙𝑎 + (1 − 𝑢𝑎𝑙𝑎)1−ℎ. 𝑢𝑎
ℎ𝑙𝑎

ℎ 

Where 𝑢𝑎𝑙𝑎 = min
𝑡∈{1,2,…,𝑘}

𝑢𝑡𝑙𝑡, we get the next inequality by (30): 

𝑀ℎ(𝒍, 𝒙; ℧) ≥ [𝑢𝑎𝑙𝑎 + (1 − 𝑢𝑎𝑙𝑎)1−ℎ. 𝑢𝑎
ℎ𝑙𝑎

ℎ] max
𝑡∈{1,2,…,𝑘}

‖𝑥𝑡 −
∑ 𝑢𝑚𝑙𝑚𝑥𝑚

𝑘
𝑚=1

∑ 𝑢𝑚𝑙𝑚
𝑘
𝑚=1

‖
𝑙

  (31) 

which may be better appropriate for usage (see also [12]). 

4. Application for ‘useful’ mean 𝒈 −divergence 

If 𝑢𝑖 > 0 are the utilities attached to probabilities and let 𝑔: [0, ∞) → ℝ  be convex, then 

‘useful’ mean 𝑔 −divergence functional is 

𝑆𝑔(𝒍, 𝒓; ℧) =
∑ 𝑢𝑖𝑟𝑖

𝑘
𝑖=1 𝑔(

𝑙𝑖
𝑟𝑖

)

∑ 𝑢𝑖𝑟𝑖
𝑘
𝑖=1

      (32) 

A generalized measure of information was developed by Csiszar [7], a “distance function” 

on the set of likelihood dispensation 𝕊𝑘. We defined a set of utility distributions ℧𝑘, let 𝒍 =
(𝑙1, 𝑙2, … , 𝑙𝑘)  and 𝒓 = (𝑟1, 𝑟2, … , 𝑟𝑘)  are positive sequences and ℧ = (𝑢1, 𝑢2, … … 𝑢𝑘) . 

Undefined expressions are interpreted in the same way as in [7]. 

𝑔(0) = lim
𝑠→0+

𝑔(𝑠) , 0𝑔 (
0

0
) = 0, 0𝑔 (

𝑏

0
) = lim

𝑟→0+
𝑟𝑔 (

𝑏

𝑟
) = 𝑏 lim

𝑠→∞

𝑔(𝑠)

𝑠
, 𝑏 > 0  

Csiszar and Korner [8] were essentially stated the following results: 

(i) 𝑆𝑔(𝒍, 𝒓; ℧) is jointly convex in 𝒍, 𝒓, if 𝑔 is convex 

(ii) We have, ∀ 𝒍, 𝒓 ∈ 𝑇+
𝑘 

𝑆𝑔(𝒍, 𝒓; ℧) ≥
∑ 𝑢𝑞𝑟𝑞

𝑘
𝑞=1 𝑔(

∑ 𝑙𝑞
𝑘
𝑞=1

∑ 𝑟𝑞
𝑘
𝑞=1

)

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

     (33) 

Equality holds in (33) if and only if  
𝑙1

𝑟1
=

𝑙2

𝑟2
= ⋯ =

𝑙𝑘

𝑟𝑘
, if 𝑔 is strictly convex. 

We have the inequality, for every 𝒍, 𝒓 ∈ 𝑇+
𝑘  and 𝑢𝑖 > 0  are the utilities attached to 
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probabilities with ∑ 𝑙𝑖
𝑘
𝑖=1 = ∑ 𝑟𝑖

𝑘
𝑖=1 , if 𝑔(1) = 0 i.e., 𝑔 is normalized, then 

𝑆𝑔(𝒍, 𝒓; ℧) ≥ 0.        (34) 

If 𝐥, 𝒓 ∈ 𝕊𝑘 in a particular case, then (34) is valid. This is the 𝑔 −divergence's well-known 

positivity characteristic. 

As follows, we try to generalize this notion in linear space to the functions defined on a cone. 

To begin, we note that if the following two criteria are fulfilled, the subset 𝑁 is a cone, in a 

linear space 𝒯: 

(i) we have 𝑥 + 𝑧 ∈ 𝑁, for any 𝑥, 𝑧 ∈ 𝑁; 

(ii) we have 𝛼𝑥 ∈ 𝑁, for any 𝑥 ∈ 𝑁 and any 𝛼 ≥ 0 

For the convex function 𝑔: 𝑁 → ℝ, we may define the following ‘useful’ 𝑔 −divergence of 

𝒚  with  𝒓  for a likelihood dispensation 𝒓 ∈ 𝕊𝑘 , and given 𝑘 − tuple of vectors 𝒚 =
(𝑦1, 𝑦2, … , 𝑦𝑘) ∈ 𝑁𝑘 , 𝑢𝑖 > 0 are the utilities attached to probabilities denoted by  ℧ with all 

entries are not zero. 

𝑆𝑔(𝒚, 𝒓; ℧) ≥
∑ 𝑢𝑖𝑟𝑖

𝑘
𝑖=1 𝑔(

∑ 𝑦𝑖
𝑘
𝑞=1

∑ 𝑟𝑖
𝑘
𝑞=1

)

∑ 𝑢𝑖𝑟𝑖
𝑘
𝑖=1

     (35) 

If 𝒯 = ℝ, 𝒙 = 𝒍 ∈ 𝕊𝑘, and 𝑁 = [0, ∞) then it is self-evident that we have the basic notion of 

the 𝑔 −divergence connected with a function 𝑔: [0, ∞) → ℝ. 

Now, a likelihood dispensation 𝒓 ∈ 𝕊𝑘 with all entries are not zero, for each nonvoid set 𝐸 

of {1,2, … , 𝑘}, for a given 𝑘 −tuple of vectors 𝒙 ∈ 𝑁𝑘 and utility distributions ℧ ∈ ℧𝑘, then 

𝒓𝐸 = (𝐾𝐸 , �̅�𝐸) ∈ 𝕊2, 𝒙𝐸 = (𝒯𝐸 , �̅�𝐸) ∈ 𝑁2 and ℧𝐸 ∈ ℧𝑘  

It is obvious that 

𝑆𝑔(𝒙𝐸 , 𝒓𝐸; ℧𝐸) = ℧𝐸𝐾𝐸𝑔 (
𝒯𝐸

𝐾𝐸
) + ℧̅𝐸�̅�𝐸𝑔 (

�̅�𝐸

�̅�𝐸
).  

Where 𝒯𝐸 = ∑ 𝑥𝑖𝑖∈𝐸  , and �̅�𝐸 = 𝒯𝐸 , as above. In a linear space, for the 𝑔 −divergence 

of 𝑘 −tuple of vectors the following inequality stands: 

Theorem 3. On the cone 𝑁, let 𝑔: 𝑁 → ℝ be a convex function. Then, for any nonempty 

subset 𝐸 of {1,2, … , 𝑘} and every 𝑘 −tuple of vectors 𝒙 ∈ 𝑁𝑘, utility distributions ℧ ∈ ℧𝑘 and 

a likelihood dispensation 𝒓 ∈ 𝕊𝑘 with all values are not zero, we get 

𝑆𝑔(𝒙, 𝒓; ℧) ≥ max
∅≠𝐸⊂{1,2,…,𝑘}

𝑆𝑔(𝒙𝐸 , 𝒓𝐸; ℧𝐸) ≥ 𝑆𝑔(𝒙𝐸 , 𝒓𝐸; ℧𝐸)  

≥ min
∅≠𝐸⊂{1,2,…,𝑘}

𝑆𝑔(𝒙𝐸 , 𝒓𝐸; ℧𝐸) ≥ 𝑔(𝒯𝑘)    (36) 

Where 𝒯𝑘 = ∑ 𝑥𝑖
𝑘
𝑖=1  

Proof. The proof is the same as Theorem 1. 

We conclude that 𝑔(𝒯𝑘) ≥ 0 is a necessary stipulation for the validity of 𝑆𝑔(𝒙, 𝒓; ℧) about 

any likelihood dispensation 𝒓 ∈ 𝕊𝑘 with all values are not zero for every 𝑘 −tuple of vectors 

𝒙 ∈ 𝑁𝑘 . If 𝒙 = 𝒍 ∈ 𝕊𝑘  in the scalar case, then 𝑔(1) ≥ 0  is a necessary stipulation for the 

positiveness of the ‘useful’ 𝑔 −divergence 𝑆𝑔(𝒍, 𝒓; ℧). 
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Corollary 5. Consider a normalized convex function to be 𝑔: [0, ∞) → ℝ, and 𝑢𝑖 > 0 are the 

utilities attached to probabilities. Therefore, we have for any 𝒍, 𝒓 ∈ 𝕊𝑘 and ℧ ∈ ℧𝑘 

𝑆𝑔(𝒍, 𝒓; ℧) ≥ max
∅≠𝐸⊂{1,2,…,𝑘}

[𝐾𝐸𝑔 (
℧𝐸𝛹𝐸

𝐾𝐸
) + (1 − 𝐾𝐸)𝑔 (

1−℧𝐸𝛹𝐸

1−𝐾𝐸
)] ≥ 0  (37) 

We have given lower bounds for several 𝑔 −divergences utilized in Statistics, Probability 

Theory, including Information Theory in the following sections. 

The convex function 𝑔(𝑠) = |𝑠 − 1|, 𝑠 ∈ ℝ  defines the ‘useful’ total variation distance, 

which is given in: 

𝑊(𝒍, 𝒓; ℧) =
∑ 𝑢𝑞𝑟𝑞|

𝑢𝑞𝑙𝑞

𝑢𝑞𝑟𝑞
−1|𝑘

𝑞=1

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

=
∑ |𝑢𝑞𝑙𝑞−𝑢𝑞𝑟𝑞|𝑘

𝑞=1

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

.   (38) 

For the total variation distance, the following improvement of the optimism disparity can be 

stated such as. 

Proposition 1. For any 𝒍, 𝒓 ∈ 𝕊𝑘 and utility distributions ℧ ∈ ℧𝑘, we have the inequality: 

𝑊(𝒍, 𝒓; ℧) ≥ 2 max
∅≠𝐸⊂{1,2,…,𝑘}

|℧𝐸𝛹𝐸 − 𝐾𝐸|     (39) 

Proof. The inequality (37) for 𝑔(𝑠) = |𝑠 − 1|, 𝑠 ∈ ℝ completes the proof. 

For the convex function 𝑔(𝑠) = (𝑠 − 1)2, 𝑠 ∈ ℝ, then ‘useful’ K. Pearson 𝜒2 −divergence 

is acquired and given by 

𝜒2(𝒍, 𝒓; ℧) =
∑ 𝑢𝑞𝑟𝑞(

𝑢𝑞𝑙𝑞

𝑢𝑞𝑟𝑞
−1)

2
𝑘
𝑞=1

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

=
∑ (𝑢𝑞𝑙𝑞−𝑢𝑞𝑟𝑞)

2𝑘
𝑞=1

(𝑢𝑞𝑟𝑞) ∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

    (40) 

Proposition 2. For any 𝒍, 𝒓 ∈ 𝕊𝑘 and utility distributions ℧ ∈ ℧𝑘, we have the inequality: 

𝜒2(𝒍, 𝒓; ℧) ≥ max
∅≠𝐸⊂{1,2,…,𝑘}

{
(℧𝐸𝛹𝐸−𝐾𝐸)2

𝐾𝐸(1−𝐾𝐸)
}  

≥ 4 max
∅≠𝐸⊂{1,2,…,𝑘}

(℧𝐸𝛹𝐸 − 𝐾𝐸)2 (≥ 0)  (41) 

Proof. For the function 𝑔(𝑠) = (𝑠 − 1)2, 𝑠 ∈ ℝ on applying the inequality (37), we get 

𝜒2(𝒍, 𝒓; ℧) ≥ max
∅≠𝐸⊂{1,2,…,𝑘}

{(1 − 𝐾𝐸)𝑔 (
1−℧𝐸𝛹𝐸

1−𝐾𝐸
− 1)

2

+ 𝐾𝐸 (
℧𝐸𝛹𝐸

𝐾𝐸
− 1)

2

}  

= max
∅≠𝐸⊂{1,2,…,𝑘}

{
(℧𝐸𝛹𝐸−𝐾𝐸)2

𝐾𝐸(1−𝐾𝐸)
}. 

Since 

𝐾𝐸(1 − 𝐾𝐸) ≤
1

4
[𝐾𝐸 + (1 − 𝐾𝐸]2 =

1

4
 

then 

(℧𝐸𝛹𝐸−𝐾𝐸)2

𝐾𝐸(1−𝐾𝐸)
≥ 4(℧𝐸𝛹𝐸 − 𝐾𝐸)2  

for each 𝐸 ⊂ {1,2, … , 𝑘}, that establishes the last portion of (41). 

For 𝑔: (0, ∞) → ℝ, 𝑔(𝑠) = 𝑠 ln 𝑠, the ‘useful’ Kullback-Leibler (KL-divergence) and denote 

it by 𝐷(𝒍, 𝒓; ℧) may be calculated as follows: 
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𝐷(𝒍, 𝒓; ℧) =
∑ 𝑟𝑞.

𝑢𝑞𝑙𝑞

𝑟𝑞
ln(

𝑢𝑞𝑙𝑞

𝑟𝑞
)𝑘

𝑞=1

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

=
∑ 𝑢𝑞𝑙𝑞 ln(

𝑢𝑞𝑙𝑞

𝑟𝑞
)𝑘

𝑞=1

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

    (42) 

Proposition 3. We have the inequality, for any 𝒍, 𝒓 ∈ 𝕊𝑘 and utility distributions ℧ ∈ ℧𝑘: 

𝐷(𝒍, 𝒓; ℧) ≥ [ max
∅≠𝐸⊂{1,2,…,𝑘}

{(
1−℧𝐸𝛹𝐸

1−𝐾𝐸
)

1−𝛹𝐸

. (
℧𝐸𝛹𝐸

𝐾𝐸
)

℧𝐸𝛹𝐸

}] ≥ 0   (43) 

Proof. Corollary 5 demonstrates the first inequality by utilizing the harmonic mean and 

geometric mean inequality, 

𝑤𝛾𝑥1−𝛾 ≥
1

𝛾

𝑥
+

1−𝛾

𝑧

, 𝑤, 𝑥 > 0, 𝛾 ∈ [0,1]  

for 𝑤 =
℧𝐸𝛹𝐸

𝐾𝐸
 , 𝑥 =

1−℧𝐸𝛹𝐸

1−𝐾𝐸
 and 𝛾 = ℧𝐸𝛹𝐸, we have 

(
1−℧𝐸𝛹𝐸

1−𝐾𝐸
)

1−℧𝐸𝛹𝐸

. 𝐾𝐸 (
℧𝐸𝛹𝐸

𝐾𝐸
)

℧𝐸𝛹𝐸

≥ 1  

for any 𝐸 ⊂ {1,2, … , 𝑘}, implying that the second portion of (43). 

The ‘useful’ Jeffreys divergence (UJD) is another important divergence measure in 

Information Theory, for the function 𝑔(𝑠) = 𝑠 ln 𝑠 , 𝑠 > 0. 

𝑈𝐽𝐷(𝒍, 𝒓; ℧) =
∑ 𝑟𝑞.(

𝑢𝑞𝑙𝑞

𝑟𝑞
−1) ln(

𝑢𝑞𝑙𝑞

𝑟𝑞
)𝑘

𝑞=1

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

=
∑ (𝑢𝑞𝑙𝑞−𝑟𝑞) ln(

𝑢𝑞𝑙𝑞

𝑟𝑞
)𝑘

𝑞=1

∑ 𝑢𝑞𝑟𝑞
𝑘
𝑞=1

,   (44)  

Proposition 4. For any 𝒍, 𝒓 ∈ 𝕊𝑘  and utility distributions ℧ ∈ ℧𝑘 , then we have the 

inequality: 

𝑈𝐽𝐷(𝒍, 𝒓; ℧) ≥ ln ( max
∅≠𝐸⊂{1,2,…,𝑘}

 {[
1−℧𝐸𝛹𝐸

1−𝐾𝐸
]

(𝐾𝐸−℧𝐸𝛹𝐸)

})  

≥ max
∅≠𝐸⊂{1,2,…,𝑘}

[
(𝐾𝐸−℧𝐸𝛹𝐸)2

𝐾𝐸+℧𝐸𝛹𝐸−2𝐾𝐸.℧𝐸𝛹𝐸
] ≥ 0   (45) 

Proof. Using the inequality (37) for 𝑔(𝑠) = (𝑠 − 1) ln 𝑠, we arrive at 

𝑈𝐽𝐷(𝒍, 𝒓; ℧) ≥ max
𝑡∈{1,2,…,𝑘}

{(1 − 𝐾𝐸) [(
1−℧𝐸𝛹𝐸

1−𝐾𝐸
− 1) ln (

1−℧𝐸𝛹𝐸

1−𝐾𝐸
)]  

+𝐾𝐸 (
℧𝐸𝛹𝐸

𝐾𝐸
− 1) ln (

℧𝐸𝛹𝐸

𝐾𝐸
)}  

   = max
𝑡∈{1,2,…,𝑘}

{(𝐾𝐸 − ℧𝐸𝛹𝐸) ln (
1−℧𝐸𝛹𝐸

1−𝐾𝐸
) − (𝐾𝐸 − ℧𝐸𝛹𝐸) ln (

℧𝐸𝛹𝐸

𝐾𝐸
)}  

= max
𝑡∈{1,2,…,𝑘}

{(𝐾𝐸 − ℧𝐸𝛹𝐸) ln [
(1−℧𝐸𝛹𝐸)𝐾𝐸

(1−𝐾𝐸)℧𝐸𝛹𝐸
]},  

We use the basic disparity with positive numbers as a starting point, for proving the first 

inequality in (45). 

ln 𝑐−ln 𝑑

𝑐−𝑑
>

2

𝑐+𝑑
, 𝑐, 𝑑 > 0  

We have 

(𝐾𝐸 − ℧𝐸𝛹𝐸) [ln (
1−℧𝐸𝛹𝐸

1−𝐾𝐸
) − ln (

℧𝐸𝛹𝐸

𝐾𝐸
)]  
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= (𝐾𝐸 − ℧𝐸𝛹𝐸).
ln(

1−℧𝐸𝛹𝐸
1−𝐾𝐸

)−ln(
℧𝐸𝛹𝐸

𝐾𝐸
)

1−℧𝐸𝛹𝐸
1−𝐾𝐸

−
℧𝐸𝛹𝐸

𝐾𝐸

. [
1−℧𝐸𝛹𝐸

1−𝐾𝐸
−

℧𝐸𝛹𝐸

𝐾𝐸
]  

=
(𝐾𝐸−℧𝐸𝛹𝐸)2

𝐾𝐸(1−𝐾𝐸)
.

ln(
1−℧𝐸𝛹𝐸

1−𝐾𝐸
)−ln(

℧𝐸𝛹𝐸
𝐾𝐸

)

1−℧𝐸𝛹𝐸
1−𝐾𝐸

−
℧𝐸𝛹𝐸

𝐾𝐸

  

≥
(𝐾𝐸−℧𝐸𝛹𝐸)2

𝐾𝐸(1−𝐾𝐸)
.

2
1−℧𝐸𝛹𝐸

1−𝐾𝐸
−

℧𝐸𝛹𝐸
𝐾𝐸

=
2(𝐾𝐸−℧𝐸𝛹𝐸)2

𝐾𝐸+℧𝐸𝛹𝐸−2𝐾𝐸.℧𝐸𝛹𝐸
≥ 0  

Given the second inequality in (45), for each 𝐸 ⊂ {1,2, … , 𝑘}.  

5.Conclusion 

In both theory and practice, the classical Jensen's inequality is extremely essential. Using the 

generalized functional, we were able to refine Jensen's inequality (10) – (21) in real linear space. 

In addition, we discovered new and sharp bounds of Shannon's entropy as well as various 

𝑔 − divergence metrics in information theory. We will continue to investigate potential 

applications of the newly discovered inequalities in future research.  
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