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ABSTRACT 

 The present paper deals with the recent development of the theory of thermoelasticity. The change of 

basic equations of thermoelasticity, for different type of thermoelastic parameters, under different 

condition has been shown in this paper to achieve Lord and Shulman theory and Green and Naghdi 

theories of generalized thermoelasticity. Relevant literatures on thermoelasticity are also re-examined. 

Keywords:  Conservation of Internal Energy, Homogeneous Medium, Isotropic Medium, Rayleigh 

Waves, Thermoelasticity.  

 

 

INTRODUCTION 

 The subject of study in this paper is thermoelasticity. Thermoelasticity deals with the interaction of 

temperature in an elastic solid. 

All natural materials have elastic properties, in more or less measure. The distortion is 

sometimes so small that they require very sensitive instruments for their detections. The theory of 

elasticity is a branch of solid mechanics which deals with the methods of computation of stresses and 

strains in deformable solids produced by external forces and / or changes in temperature. 

Due to the deformation of the body, the body temperature change is observed. Also if we 

impose some heat source from outside then we observed the change in body temperature and the 

deformation of the body. So the internal energy of the body becomes a function of deformation and 

temperature. In thermoelasticity we deal with these coupled processes, to find the expression of stress, 

stain and deformation in terms of heat source and the time. It has been seen that, this theory has great 

impact in several areas of engineering and technology like acoustic, aeronautics, chemical and nuclear 

engineering and in the analysis of stresses and displacements of structural or machine elements within 
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the elastic limit and thereby to check the sufficiency of the strength, stiffness and stability. 

The famous Hooke’s [1] law of proportionality of stress and strain, forms the basis equation of 

the mathematical theory of elasticity, known as classical elasticity theory. Later on the general 

equations of equilibrium and vibration of elastic solids was proposed by Navier [2]. Depending on the 

Navier work, Cauchy [3] formulate linear theory of elasticity which remains virtually unchanged to the 

present day. Several researchers made significant contributions towards the development of this 

theory. 

The classical theory which deals with the coupling between the strain and temperature fields 

was first studied by Duhamel [4] who derived the governing equations for the distribution of strain in 

an elastic medium subjected to temperature gradients. Neumann [5] and several others worked on 

Duhamel theory and solved a number of interesting problems. These authors postulated that the heat 

conduction equation should contain a term representing the time – rate of change of dilatation and that 

the theory should be based on coupled system of momentum and energy equations. 

Biot [6] was the first to give a satisfactory derivation of the linear theory of coupled 

thermoelasticity. Later, Chadwick [7] presented both linear and non – linear versions of the theory and 

solved a few important linear dynamical problems. He showed that, in dynamical problems, the 

interactions between the thermal and strain fields are such that the two effects cannot be treated 

separately. A proof of uniqueness of solution of coupled equations of thermoelasticity was given by 

Weiner [8]. Analysis of wave propagation, including Rayleigh waves in thermo-elastic bodies have 

been given by Chadwick and Sneddon [9] 

Extensions of coupled thermoelasticity have been made to cover more general type of solids 

like micro-elastic solids, electromagnetic solids, visco-elastic solids etc. These extensions are 

available in the work of Paria [10], Eringen [11], Perkus [12], Nowacki [13] and Dhaliwal and Singh 

[14]. 

In this paper we are illustrating the different type of mathematical models and their 

corresponding equations in the case of an isotropic and homogeneous thermo-elastic solid and then try 

to find out a generalized model to represents all types of models in a generalized form. 

 

THE BASIC EQUATIONS OF GENERALIZED THERMOELASTICITY 

 

The field equations of linear thermoelasticity for different models for isotropic and 

homogeneous thermo-elastic solid are as follows: 

 

1.1  Classical Thermoelasticity (CTE) : 

 

Constitutive relations :  

 𝜏  𝑖  𝑗 = 𝜆 Δ  𝛿  𝑖  𝑗 + 2𝜇 𝑒  𝑖  𝑗 − 𝛽 𝑇  𝛿  𝑖  𝑗   ;      𝑖, 𝑗 = 1,2,3  (1) 

 

where 𝜆 , 𝜇  are Lame constants, 𝛽 =  3 𝜆 + 2 𝜇 𝛼 𝑡  , 𝛼 𝑡  is the coefficient of the linear 

thermal expansion of the material, 𝜏 𝑖 𝑗  is the stress tensor, 𝑇 is the increase in temperature above the 
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reference temperature 𝑇 0 and Δ = 𝑢 𝑖 ,𝑖  (dilatation). 

  

Strain – Displacement relations :  

 e  i  j =  u i ,j  +  u j ,i /2 (2) 

  

Classical Fourier law :  

 

 Equations (1) and (2) are to be supplemented by Classical Fourier law connecting the heat flux 

vector q   with the temperature gradient ∇   T through the equation  

 q i = −K  T ,i   ,    i = 1, 2, 3 (3) 

 i.e., the heat flux vector is the instantaneous result of a temperature gradient. Here K > 0is the 

thermal conductivity of the solid. 

  

Law of conservation of internal energy :  

 − q i ,i + ρ Q = ρ c e   T   ,    i = 1, 2, 3 (4) 

  

 Where Q is the heat source and c e  is the specific heat of the solid at constant strain. A 

superposed dot denotes the partial derivative with respect to time. 

  

Classical heat transport equation :  

 

 Equation (3) and (4) together give the parabolic type of heat transport equation as:  

 K ∇2T + ρ Q = ρ c e   T  (5) 

  

Equations of motion : 

 

    Stress equations of motion :  

 τ ij  ,j + ρ fi = ρ u  i ,     i, j = 1,2,3  (6) 

  

 Where fi  are the body force components and τ ij  are given by equations (1). 

  

    Displacement equations of motion : 

  λ + μ u j ,ij + μ u i ,jj − β T  ,i + ρ fi = ρ u  i (7) 

  

 Equations (1), (5) and (6) [or (7)] constitute the complete mathematical model of the classical 

theory of thermoelasticity (CTE). 
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1.2  Classical Coupled Thermoelasticity (CCTE) : 

 

Law of conservation of internal energy :  

 − q i ,i + ρ Q = ρ c e   T + β T 0 e  k,k  (8) 

  

 where the term  β T 0 e  k,k  brings about the coupling between strain and temperature, vide, 

Biot [6]. 

  

Classical heat transport equation :  

Eliminating qi  between the equations (3) and (8), there results the classical heat transport 

equation as  

 K ∇2T + ρ Q = ρ c e   T   + β T 0 u  k,k  (9) 

 which is a parabolic type equation as in Biot [6]. 

The equations of motions (7) and the heat transport equation (9) along with the constitutive 

equation (1) constitute the complete mathematical model of the theory of Classical Coupled 

Thermoelasticity (CCTE). 

 

Modification of the Coupled theory of Thermoelasticity 

 

The classical uncoupled theory of thermoelsticity predicts two phenomena not compatible with 

physical observations. First, the equation of heat conduction of this theory does not contain any elastic 

term contrary to the fact that elastic changes produce heat effects. Second, the heat equation is of 

parabolic type predicting infinite speed of propagation for heat waves. 

In order to overcome this paradox, efforts were made to modify coupled theory of 

thermoelasticity, on different grounds, to obtain a wave type heat conduction equation. 

 

Kaliski [15] employed a heat conduction law on adhoc basis given by  

  1 + τ 
∂

∂t
  q i = −K T ,i (10) 

 where τ is a non – negative constant. This law is a generalization of the classical Fourier law 

given by (3) and qi  represents the heat flux within the material to the temperature gradient. 

 

1.3  Lord – Shulman (L – S) model   

 

[ Extended thermoelasticity ( ETE )] 

Using (10) in place of (3) we gets the following generalization of the heat conduction equation 

(9).  

 K ∇2T =  1 + τ 
∂

∂t
   ρ c eT + T 0β u  k,k − ρQ  (11) 

 Equation (11) is of hyperbolic type and so, thermoelasticity theory, for which (11) is the heat 

transport equation, is free from the paradox of infinite heat propagation speed. Equation (11) predicts 
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the speed of  K/(ρ c e  τ) for thermal signals. This wave – type thermal disturbance is sometimes 

referred to as ‘second sound’, vide, Suhubi [16]. 

The constant τ that appears in the equation (10) represents the time required to establish the 

steady state of heat conduction and is known as ‘thermal relaxation parameter’. A table of values of τ 

for various metals has been given in Francis [17], Engelbracht [18] and relevant references therein. 

The theory based on equations (1), (7) and (11) contains only one such relaxation time 

parameter τ and is often referred to as extended thermoelasticity (ETE) or Lord and Shulman (L – S) 

theory of generalized thermoelasticity for homogeneous and isotropic solids. 

  

1.4  Green – Lindsay Model (G – L model).  

 

  [Temperature Rate dependent Thermoelasticity (TRDTE)] 

The generalized thermoelasticity theory, formulated by Green and Lindsay [19] and 

independently by Suhubi [16]. This theory is referred to as ‘temperature rate dependent 

thermoelasticity’ or briefly TRDTE. It has contained special features that contrast with L – S theory 

having one relaxation time parameter. In G – L model, Fourier law of heat conduction is unchanged 

whereas the classical energy equation and the stress – strain – temperature relations are modified. Two 

constitutive constants α and α0, having the dimension of time, appear in the governing equations in 

place of one relaxation time τ in L – S model. The equations as proposed in G – L model are as follows 

: 

  

Modified Energy Equation :  

 −q i,i + ρQ = ρ c e T + α 0T  + β T 0  u  i,i (12) 

 

Modified Constitutive Equation with Temperature Rate term :  

 τ i,j = λui,iδij + 2μeij − β T + αT  δij  ,    i, j = 1,2,3 (13) 

 

Fourier Law :  

 q i = −K T ,i  (14) 

 

Coupled Heat Transport Equation :  

 K∇2T + ρQ = ρ c e T + α 0T  + β T 0 u  i,i  (15) 

  

 The constitutive constants α, α 0 satisfy the relation α ≥ α 0 > 0. 

 Equations (12) – (15) constitute the (G – L) model of the generalized thermoelasticity. 

  

1.5  Green and Naghdi (G – N) model :  

 

Another generalization of the theory is presented by Green and Naghdi [20]. They developed 

three models for generalized thermoelasticity of homogeneous isotropic materials which are labelled 
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as model I, II and III. The nature of these theories are such that when the respective theories are 

linearized, model I reduces to the classical heat conduction equation theory based on Fourier law. The 

linearized versions of model II and III permit propagation of thermal waves at finite speed. 

 

1.5.1  Green – Naghdi (G – N) model II without energy dissipation (TEWOED) : 

  

The basic equations are as follows : 

  

Modified Energy Equation :  

 −q i,i + ρQ = ρ c e  T + β T 0 u  i,i  (16) 

 

Heat Conduction Law :  

 q i = −K∗ v ,i ,    v = T (17) 

  

 Equations (16) and (17) are combined together to give a hyperbolic equation as  

 K∗∇2T + ρQ = ρ c e  T + β T 0 u  i,i (18) 

 Here K∗ (> 0)is a material constant. Finite wave speed is clearly  K∗/(ρ c e). Model II, in 

particular, exhibits a feature that is not presented in the other established thermo-elastic models. It 

reveals that no damping term appears in the system of equations and therefore the G – N theory type II 

is known as the thermoelasticity without energy dissipation (TEWOED) [21]. It also provided the 

proof of the uniqueness of solution for the corresponding initial – boundary value problem. 

 

1.5.2  Green – Naghdi (G – N) model III with energy dissipation (TEWED) : 

 

In this model the basic equations are as follows : 

  

Modified Energy Equation :  

 −q i,i + ρQ = ρ c e  T + β T 0 u  i,i  (19) 

 

Heat Conduction Law :  

 q i = − K T ,i + K∗ v ,i  ,    v = T (20) 

  

 Equations (19) and (20) are combined together to give a hyperbolic equation as  

 K∇2T + K∗∇2T + ρQ = ρ c e  T + β T 0 u  i,i (21) 

 Equation (21) admits propagation of damped thermoelastic waves, where the damping being 

due to the term T  in the equation. 

 

1.6  Unified system of equations : 
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It has been seen that the basic equations of generalized thermoelasticity for an isotropic elastic 

body can be written in the form :  

 τ  i  j = λ uk,k   δ  i  j + 2μ e  i  j − β  T + α T  δ  i  j (22) 

  

 K∇2T = ρ c e T + α0T  +  1 + τ
∂

∂t
  ξβ T 0 u  k,k − ρ Q  (23) 

  

 μ  ∇2ui + (λ + μ)  uk,ki − β  (T + αT ),i + ρfi = ρ  u i (24) 

  

It is observed that when 

 (i) α = 0, α0 = τ, ξ = 1; the above equations reduce to the basic equations as in L – S model 

 (ii) τ = 0, ξ = 1 ;   the above equations reduce to the basic equations as in G – L model 

 (iii) α = α0 = τ = ξ = 0; the equations reduce to the classical equations of thermoelasticity. 

Thus, the CTE, the ETE ( L – S model ) and TRDTE ( G – L model) can be studied in a unified 

way on the basic of equations (22), (23), and (24). 

 

A unified version of the equation of generalized thermoelasticity in the case of Classical theory 

of thermoelasticity (CTE), Classical coupled theory of thermoelasticity (CCTE), Temperature rate 

dependent thermoelasticity (TRDTE), Thermoelasticity with energy dissipation (TEWED) may be 

presented as follows: 

The constitutive relations in the generalized theory of thermoelasticity are  

 τ  i  j = λ ui,i  δ  i  j + 2μ e  i  j − β  T + δ 1 k  α T  δ  i  j (25) 

 

The generalized heat conduction equation is  

  δ1k + δ2k
∂

∂t
 K∇2T + δ2kK∗∇2T +  δ1k + δ2k

∂

∂t
 ρ Q = 

  

                     ρ c e δ1kT + (δ1kα0 + δ2k)T  + β T 0  ξδ1k + δ2k
∂

∂t
  u  i,i  (26) 

 

The equations of motion are  

 μ  ∇2ui + (λ + μ)  uj,ji − β  (T + αT ),i + ρfi = ρ  u i  (27) 

 

 where τij  is the stress tensor, λ, μ   are Lame constants, β = (3λ + 2μ)αt , αt  being the 

coefficient of linear thermal expansion of the material, ρ is the density, K is the thermal conductivity, 

K∗ is the additional material constant, ce  is the specific heat of the solid at constant strain, T is the 

temperature increase over the absolute reference temperature T0, α and α0 are the relaxation times, fi  

are the components of the body forces, Q is the heat source and δij  is the Kronecker delta. 

 In the expression (25) – (27), we see that 

 (i) If α = 0, α0 = 0, k = 1 and ξ = 0, then they reduce to the equations of Classical theory 

of thermoelasticity (CTE). 
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 (ii) If α = 0, α0 = 0 , k = 1  and ξ = 1 , then they reduce to the equations of Classical 

coupled theory of thermoelasticity (CCTE). 

 (iii) If k = 1 and ξ = 1, then they reduce to the equations of Temperature rate dependent 

thermoelasticity (TRDTE). 

 (iv) If k = 2 and α = 0, then they reduce to the equations of Thermoelasticity with energy 

dissipation (TEWED). 

 The thermal relaxation times satisfy the inequality α ≥ α0 > 0. 

 

Conclution:  

 

Generalized estimating equations are a convenient and general approach to the analysis of 

several kinds of wide-ranging correlated data. Starting from Hook’s Law, scientists have proposed 

different model equation to mathematically explain the diverse thermoelastic behaviour of different 

materials. Here we have derived a unified system to represents all types of models in a generalized 

form, for isotropic and homogeneous thermoelastic solids. By this way, from a optimal model, 

anybody can find out their required solution. It will minimize the time and cost of calculation in every 

aspect, and above all it will be learners friendly. 
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