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ABSTRACT 

The implication of fibre reinforced composite materials for biomedical purposes has been 

conceptualized. In modern age, the advancement in the area of polymer composite 

materials has led to scientific and technological progresses in current orthopedic 

medicine and prosthetic devices. Thus Fibre Reinforced Composites (FRC) 

characteristically possesses a superior strength to weight features compared to monolithic 

materials and shows exceptional biocompatibility. Consequently they became universally 

promising material for hard- and soft-tissue applications as well as in the design of 

prostheses. Future orthopedic medicine expects the development of modernized materials 

for tissue engineering and metallic implants. 
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1. INTRODUCTION 

Composite material based design of orthopedics and prosthetics has drawn immense 

attention nowadays. Combined fibre reinforced polymer composites can thus be 

effectively employed in orthopedics and as modern upper and lower limb prostheses with 

underlying polymer matrices [1-3]. Optimal composite performance depends on 

structural and surface compatibility alongwith other aspects like surgical technique and 

patients’ health [4]. Custom-made polymer matrix composites can mimic the properties 

of bone and can be substituted in place of conventional titanium and stainless steel based 

replacements [5-10]. Furthermore, Fibre reinforced polymer composites are responsive to 

apt update regarding fibre arrangement or variation in the volume fraction [11, 12]. Third 

generation composites achieved specific cellular responses on a molecular level forming 

biodegradable scaffolds and organised body architecture [8, 13, 14]. Frequent trials will 

commendably increase cost effective commercialisation of new devices particularly 

within surgical practices [3, 15]. Here the different usages of fibre reinforced polymer 

composite materials have been explored in relation to technological advances in modern 

orthopedics. 

 

2. APPLICATION OF FIBRE REINFORCED COMPOSITES IN VARIOUS 

AREA 

    The improvement of quality composite materials regarding safe biocompatible 

orthopedics and prostheses is an enduring practice of multidisciplinary research activities. 
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Thus materials are tested on the basis of selected criteria like toxicology, 

biocompatibility, biostability or biodegradability, mass transfer, surface properties, 

hygienic design, costs and other physical or biochemical properties.  

 

2.1 HARD-TISSUE USAGE 

       

      Hard-tissue applications are applicable in case of skull reconstruction, bone fracture 

repair and other joint replacements, as well as dental applications. An outline of the same 

is given below. 

 

2.1.1 APPLICATION IN BONE FRACTURE REPAIR 

          

      Here external fixation targets right alignment of bones through casts, splints, braces 

etc. These days traditional casting materials have been substituted by breathable casts to 

prevent skin irritation and/or weakening of the patient’s skin [3, 16, 24]. Modern light 

weight and low density carbon fibre reinforced plastic designs alleviates patient’s agility, 

gait and walking speed and reduces artefacts in radiographs [17, 18].   

In contrast, internal fixation employed resorbable bone plate which lowered stress 

shielding and a possible extermination of osteopenia. Completely resorbable composite 

implants made up of poly(l-lactic acid) (PLLA), poly(glycolic acid) (PGA) or their 

copolymers and poly(l-lactic-co-glycolic acid) (PLGA) are more satisfactory for human 

clinical purposes [19, 20]. Improved mechanical performance of such resorbable 

polymers has been attained by making them fibre-reinforced (partially-resorbable) [19].  

Former material combinations of carbon fibre/epoxy (CF/epoxy) and glass fibre/epoxy 

(GF/epoxy) have become less important now due to their toxicity. Meanwhile, 

researchers inclined towards thermoplastic composites and biologically inert carbon 

fibre/poly ether ether ketone (CF/PEEK) designs [3, 21]. Knitted and braided CF/PEEK 

compression plates have been fabricated further [21-23]. Recently, Carbon fibre 

reinforced liquid crystalline polymer (LCP/CF) and GF/PEEK material combinations 

have been systematically studied for long bone fractures [3, 24]. 

 

2.1.2 USAGE IN TOTAL KNEE REPLACEMENT 

 

     In recent times crosslinked polyethylene is of utmost importance over ultra-high 

molecular weight polyethylene based knee joints replacement [25, 27]. Additionally, total 

joint replacement materials attained expected characteristics like high strength, corrosion 

resistance, good surface finish yielding low friction, and above all good wetting at the 

bearing surface/synovial fluid interface for lubrication in the body [26, 27]. 

 

2.1.3 TOTAL HIP REPLACEMENT APPLICATION  

 

     Improvement in computational methods aided in simulation and analysis of the 

performance of unique carbon fibre/polyamide 12 (CF/PA12) and carbon fibre/polyamide 

12/hydroxyapatite (CF/PA12/ HAP) composite hip stems [28-31, 36]. Therefore the 

progress in application of composite materials in hip joint fixation reflects the approaches 

of cementing and bone in growth [32-35, 36]. 
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2.1.4 APPLICATIONS IN DENTAL ARENA 

 

    Composite resins mimicking biological tissue has now substituted conventional 

restorative material, namely amalgam, gold, alumina, zirconia etc. [37, 41]. The major 

shortcomings are their longevity, polymerisation shrinkage, thermal expansion mismatch 

and toxicity that need further introspection [37, 38, 41]. Incorporation of ceramic 

microwires of aluminium oxide into poly(methyl methacrylate) (PMMA) resulted into a 

higher diffusivity and hence minimizes the poor thermal conductivity in orthodontic 

prosthetic composites [39-41]. 

 

2.2 SOFT-TISSUE USAGE 

 

     The implication of composite material to replace soft-tissue needs careful attention 

over the inherent properties like molecular weight, charge, optimisation of porosity and 

acceptance by the host tissue etc. [42, 43].  

 

2.3 TISSUE ENGINEERING APPLICATIONS 

 

     In recent times application of biocompatible, osteoinductive, osteoconductive and 

mechanically compatible scaffolding constructs aided in prospective integration with 

native tissue which decrease implant failure [44, 45, 50]. Further, initial treatment with 

mesenchymal stem cells also cures diseased tissue which decreases the need for lifelong 

treatment. 

PGA and β-tricalcium phosphate (β-TCP) compounds based composite scaffolds imitates 

the natural bone components and therefore successful integration into the surrounding 

tissue is obvious [46, 50]. Afterward, fabrication of reproducible scaffolding networks 

were in action by combining poly(e-caprolactone) (PCL) and esters of hyaluronic acid 

[47, 50]. A number of nanometric bioactive glass particles or fibres such as 

poly(hydroxybutyrate-2-co-2-hydroxyvalerate)/biomimetically synthesised nano-sized 

bioactive glass (PHBV/BMBG) porous composites have recently drawn attention to 

produce extra flexibility [42, 43, 48-50]. 

 

2.4 FOCUSING ON PROFESSIONAL SPORTS 

 

     In 1981, Seattle foot first introduced carbon fibre reinforced polymer (CFRP) 

composite with enhanced flexibility and high strength [51-55, 57]. Further modification 

came by differing laminate lay-up, fibre orientation and/or laminate thickness. Current 

sprint prostheses possess an articulated long keel design [54, 57]. Interestingly, a fibre 

glass and nylon made arm prosthetic kit helped one Canadian athlete for active 

participation in 2008 Paralympic Games [56, 57]. Nowadays fibre composite materials 

have favourably influenced the progress of modern artificial limbs. 
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2.5 BIOMIMETICS, ACTUATORS AND ARTIFICIAL MUSCLE APPROACHES 

 

    Here ionic polymer-metal composites (IPMCs) draw utmost interest following 

characteristic properties like softness, flexibility, lightweight, exceptional 

biocompatibility, large bending deformation, low power consumption and high frequency 

operation [58-62, 65]. Several noteworthy applications in biomedical science are artificial 

ventricular, sphincter and ocular muscles, artificial smooth muscle actuators, correction 

of refractive index in the human eye, peristaltic pumps, incontinence assist devices, and 

surgical tools [62-65]. An alternative novel actuators based on sulfonated poly(ether ether 

ketone) (SPEEK) and poly(vinylidene fluoride) (PVDF) is of immense interest [58]. 

 

3. CONCLUSIONS 

 

    Fibre reinforced composite materials with exceptional strength and biocompatibility 

nowadays portrays massive commercialization in modern orthopedic medicine. Besides 

that it holds major technical advancement in the area of cosmetic dentistry and lower-

limb prostheses. Researchers now aim to develop value-added control over present-day 

prostheses by implementing sensory feedback systems to improvise natural response.    
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