
Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

896

Research Article

A Study of CPU Scheduling Techniques in Comparison
Pinaki Pratim Acharjya

1
, Santanu Koley

2
, Subhabrata Barman

3
, Rajesh Mukherjee

4

1, 2, 3, 4
Department of Computer Science and Engineering, Haldia Institute of Technology,

Haldia, India

ABSTRACT

Due to the requirement to alter and test operating system kernel code and assess the resulting

performance on a consistent workload of real applications, developing CPU scheduling

methods and understanding their impact in practice can be challenging and time consuming.

Because the processor is such a valuable resource, CPU scheduling is critical for achieving

the operating system (OS) design goals. The goal should be to keep as many processes active

as possible at all times in order to get the most out of the CPU. The primary goal of CPU

scheduling is to improve the computer's performance. The amount of time spent waiting has a

significant impact on the performance and execution time of a computer system. It's much

easier to grasp what's going on inside the system with this representation, and why a different

collection of processes is a candidate for CPU allocation at different periods. The study's goal

is to examine the highly efficient CPU scheduler's impact on the design of high-quality

scheduling algorithms that meet the scheduling goals. It is mostly focused on reducing

waiting times and turn-around times in order to improve a computer system's level of

performance. Many CPU scheduling methods exist, however due to high context switch rates,

long waiting times, long response times, long turnaround times, and low throughput; they

cannot be applied in real-time operating systems.

Keywords - Average Waiting Time, Average Turned around Time, Response Time, Pipeline.

I. INTRODUCTION

CPU scheduling [1-3] is a process which allows one process to use the CPU while the

execution of another process is on hold (in waiting state) due to unavailability of any resource

like I/O etc., thereby making full use of CPU. The aim of CPU scheduling is to make the

system efficient, fast and fair.

Whenever the CPU becomes idle, the operating system must select one of the processes in the

ready queue to be executed. The selection process is carried out by the short-term scheduler

(or CPU scheduler). The scheduler selects from among the processes in memory that are

ready to execute, and allocates the CPU to one of them.

Pipelining [10-11] is a technique in which a process is divided into sub operations and each

sub operation is executed in a special dedicated segment that operates concurrently with all

other segments. Concurrent data processing helps in achieving faster execution [10].

CPU scheduling is one of the most important activities performed by operating system which

helps in increasing the throughput of the computer system therefore if the performance of

scheduling will improve then our computer system will become more productive. On

combining pipelining with CPU scheduling, performance of CPU scheduling improves.

II. TYPES OF CPU SCHEDULING

CPU scheduling decisions may take place under the following four circumstances:

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

897

Research Article

1. When a process switches from the running state to the waiting state (for I/O request

or invocation of wait for the termination of one of the child processes).

2. When a process switches from the running state to the ready state (for example,

when an interrupt occurs).

3. When a process switches from the waiting state to the ready state (for example,

completion of I/O).

4. When a process terminates.

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process (if one

exists in the ready queue) must be selected for execution. There is a choice, however in

circumstances 2 and 3. When Scheduling takes place only under circumstances 1 and 4, we

say the scheduling scheme is non-preemptive; otherwise the scheduling scheme is

preemptive.

a. Non-Preemptive Scheduling

Under non-pre-emptive [4-5] scheduling, once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by terminating or by switching to the

waiting state. This scheduling method is used by the Microsoft Windows 3.1 and by the

Apple Macintosh operating systems.

Fig.1 Types of CPU Scheduling.

It is the only method that can be used on certain hardware platforms, because It does not

require the special hardware (for example: a timer) needed for preemptive scheduling.

b. Preemptive Scheduling

In this type of Scheduling [4-5], the tasks are usually assigned with priorities. At times it is

necessary to run a certain task that has a higher priority before another task although it is

running. Therefore, the running task is interrupted for some time and resumed later when the

priority task has finished its execution.

III. SCHEDULING CRITERIA

There are many different criteria [6-9],[12] to check when considering the "best" scheduling

algorithm, they are:

a. CPU Utilization

To make out the best use of CPU and not to waste any CPU cycle, CPU would be working

most of the time (Ideally 100% of the time). Considering a real system, CPU usage should

range from 40% (lightly loaded) to 90% (heavily loaded.)

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

898

Research Article

b. Throughput

It is the total number of processes completed per unit time or rather say total amount of work

done in a unit of time. This may range from 10/second to 1/hour depending on the specific

processes.

c. Turnaround Time

It is the amount of time taken to execute a particular process, i.e. the interval from time of

submission of the process to the time of completion of the process (Wall clock time).

d. Waiting Time

The sum of the periods spent waiting in the ready queue amount of time a process has been

waiting in the ready queue to acquire get control on the CPU.

e. Load Average

It is the average number of processes residing in the ready queue waiting for their turn to get

into the CPU.

f. Response Time

Amount of time it takes from when a request was submitted until the first response is

produced. Remember, it is the time till the first response and not the completion of process

execution (final response).

III. SCHEDULING ALGORITHMS

Scheduling algorithms are useful in multiprogramming [15], to decide which process to

execute first and which process to execute last to achieve maximum CPU utilization [14],

computer scientists have defined some algorithms, and they are:

1. First Come First Serve (FCFS) Scheduling

2. Shortest-Job-First(SJF) Scheduling

3. Priority Scheduling

4. Round Robin(RR) Scheduling

Fig.2 List of Scheduling Algorithms.

https://www.studytonight.com/operating-system/first-come-first-serve
https://www.studytonight.com/operating-system/shortest-job-first
https://www.studytonight.com/operating-system/priority-scheduling
https://www.studytonight.com/operating-system/round-robin-scheduling

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

899

Research Article

i. First Come First Serve Scheduling

In the "First come first serve" scheduling algorithm, as the name suggests, the process which

arrives first, gets executed first, or we can say that the process which requests the CPU first,

gets the CPU allocated first.

First Come First Serve is just like FIFO (First in First out) Queue data structure, where the

data element which is added to the queue first, is the one who leaves the queue first.

This is used in Batch Systems. It's easy to understand and implement programmatically, using

a Queue data structure, where a new process enters through the tail of the queue, and the

scheduler selects process from the head of the queue. A perfect real life example of FCFS

scheduling is buying tickets at ticket counter.

a. Calculating Average Waiting Time

For every scheduling algorithm, Average waiting time is a crucial parameter to judge its

performance. Average Waiting Time (AWT) is the average of the waiting times of the

processes in the queue, waiting for the scheduler to pick them for execution. Lower the

Average Waiting Time, better the scheduling algorithm. Consider the processes P1, P2, P3,

P4 given in the below table, arrives for execution in the same order, with Arrival Time 0,and

given Burst Time, let's find the average waiting time using the FCFS scheduling algorithm.

Table 1. List of processes and burst time for FCFS.

The average waiting time will be = (0 + 21 + 24 + 30)/4=18.75.

Table 2. GANTT Chart for FCFS.

This is the GANTT chart for the above process. The average waiting time will be 18.75 ms.

For the above given processes, first P1 will be provided with the CPU resources. Hence,

waiting time for P1 will be 0. P1 requires21 msfor completion, hence waiting timefor P2 will

be 21 ms. Similarly, waiting time for process P3 will be execution time of P1 + execution

time for P2, which will be (21 + 3) ms = 24 ms. For process P4 it will be the sum of

execution times of P1, P2 and P3.

b. Problems with FCFS Scheduling

 It is Non Pre-emptive algorithm, which means the process priority doesn't matter. If

a process with very least priority is being executed, more like daily routine backup

process, which takes more time, and all of a sudden some other high priority process

arrives, like interrupt to avoid system crash, the high priority process will have to

wait, and hence in this case, the system will crash, just because of improper process

scheduling.

https://www.studytonight.com/operating-system/types-of-os

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

900

Research Article

 Not optimal Average Waiting Time.

 Resources utilization in parallel is not possible, which leads to Convoy Effect, and

hence poor resource (CPU, I/O etc.) utilization.

ii. Shortest Job First (SJF) Scheduling

 Shortest Job First scheduling [13] works on the process with the shortest burst time

or duration first. This is the best approach to minimize waiting time. This is used in

Batch Systems. It is of two types: Non Pre-emptive and Pre-emptive To successfully

implement it, the burst time/duration time of the processes should be known to the

processor in advance, which is practically not feasible all the time. This scheduling

algorithm is optimal if all the jobs/processes are available at the same time. (Either

Arrival time is 0 for all, or Arrival time is same for all).

 Non Pre-emptive Shortest Job First

 Consider the below processes available in the ready queue for execution, with arrival

time as 0 for all and given burst times.

Table 3. List of processes and burst time for SJF.

In Short Job First Scheduling, the shortest Process is executed first.

Hence, the GANTT chart will be following:

As you can see in the Gnatt chart above, the process P4 will be picked up first as it has the

shortest burst time, then P2, followed by P3 and at last P1.

We scheduled the same set of processes using the First come first serve algorithm in the

previous tutorial, and got average waiting time to be 18.75 ms, whereas with SJF, the average

waiting time comes out 4.5 ms.

a. Problem with Non Pre-emptive SJF

 If the arrival time for processes are different, which means all the processes are not

available in the ready queue at time 0, and some jobs arrive after some time, in such

situation, sometimes process with short burst time have to wait for the current

process's execution to finish, because in Non Pre-emptive SJF, on arrival of a process

with short duration, the existing job/process's execution is not halted/stopped to

execute the short job first.

 This leads to the problem of Starvation, where a shorter process has to wait for a

long time until the current longer process gets executed. This happens if shorter jobs

keep coming, but this can be solved using the concept of aging.

https://www.studytonight.com/operating-system/first-come-first-serve
https://www.studytonight.com/operating-system/first-come-first-serve

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

901

Research Article

iii. Pre-emptive Shortest Job First

In Preemptive Shortest Job First Scheduling, jobs are put into ready queue as they arrive, but

as a process with short burst time arrives, the existing process is preempted or removed

from execution, and the shorter job is executed first.

Table 5. List of processes, burst time and arrival time for preemptive SJF.

The GANTT Chart for Preemptive Shortest Job First Scheduling will be

Table 6. GANTT Chart for preemptive SJF.

The Average Waiting Time will be, ((5 - 3) + (6 - 2) + (12 – 1))/4=4.25. The average waiting

Time for Preemptive Shortest Job first Scheduling is less than both, non-preemptive SJF

Scheduling and FCFS Scheduling. As it can be seen in the GANTT chart above, as P1

arrives first, hence it's execution starts immediately, but just after 1ms, processP2arrives with

a burst time of 3 ms which is lessthan the burst time of P1, hence the process P1(1 ms done,

20 ms left) is preempted and process P2 is executed.

As P2 is getting executed, after 1 ms, P3 arrives, but it has a burst time greater than that of

P2, hence execution of P2 continues. But after another millisecond, P4 arrives with a burst

time of 2 ms, as a result P2 (2 ms done, 1 ms left) is preempted and P4 is executed.

After the completion of P4, process P2 is picked up and finishes, then P2 will get executed

and at last P1. The Pre-emptive SJF is also known as Shortest Remaining Time First,

because at any given point of time, the job with the shortest remaining time is executed first.

iv. Priority Scheduling

Priority is assigned for each process. Process with highest priority is executed first and so on.

Processes with same priority are executed in FCFS manner.

Priority can be decided based on memory requirements, time requirements or any other

resource requirement.

Table 7. List of processes, burst time and priority for priority scheduling.

The GANTT Chart for the following Processes Based on Priority Scheduling Will be:

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

902

Research Article

Table 8. GANTT chart for Priority Scheduling.

The Average Waiting time will be, (0 + 3 + 24 + 26 +)/4=13.25.

v. Round Robin Scheduling

A fixed time is allotted to each process, called quantum, for execution. Once a process is

executed for given time period that process is preemptied and other process executes for

given time period. Context switching is used to save states of preempted processes.

Table 9. List of processes, burst time and priority for RR scheduling.

The GANTT Chart for Round Robin Scheduling will be

Table 10. GANTT chart for RR Scheduling.

IV. PROPOSED TECHNIQUE

Pipelining concept can also be used in CPU scheduling to improve its performance. When

CPU scheduler takes the decision of selecting the next process from the main memory,

fetching and decoding of this next process takes some time and this time latency can be

avoided by using pipelining.

Let us understand this with an example where we have three processes and we are using

priority scheduling. Let us consider that process P1 has the highest priority, then process P2

and P3 has the least priority.

i. Without Pipelining

Table 9. CPU scheduling without pipelining.

i. With Pipelining

Table 10. GANTT chart for Pipelining.

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

903

Research Article

Pipelining concept can also be used in CPU scheduling to improve its performance. When

CPU scheduler takes the decision of selecting the next process from the main memory,

fetching and decoding of this next process takes some time and this time latency can be

avoided by using pipelining. The analysis [16] can reveal some new ideas to deliver.

V. RESULT ANALYSIS

Now, let us consider a k segment pipeline with a clock cycle time Tp used to execute n

processes. The first process P1 will require (k*Tp) time to complete its operation and the

remaining (n-1) processes will egress at the rate of one process per clock cycle which is very

clearly evident in Fig.1. Process P1 is completing its execution in the 3rd clock cycle, process

P2 in the 4th clock cycle and further process P3 in the 5 th one. Therefore, to complete n

processes, a k-segment pipeline requires (k + (n-1)) clock cycles. A non-pipeline unit will

take (n*Tn) time to complete n tasks where Tn is the time to complete each process.

Therefore, the speedup ratio of pipeline processing over an equivalent non-pipeline

processing can be defined as: S= ((n)*(Tn)) /((k+n-1)* Tp) [10] Performance Evaluation: Let

us calculate the improvement in the performance by calculating the speed up ratio. As Tn is

the time to complete each process in non-pipeline unit and (k*Tp) is the time taken by

process P1 to complete its operation. So, let us consider that Tn =(k*Tp). Let us assume

Tp=30 ns. Figure.1 shows that k=3. Therefore, Tn= (3*30) ns and (n*Tn)= (3*3*30) ns. So,

non-pipeline system will take 270ns to complete and pipeline system will take ((3+3-1)*30)

ns i.e. 150ns. Therefore speed-up ratio is: S= (270/150) =1.8 Performance Improvement =

((270-150)/270)*100 = 44.44%.

The proposed technique has been compared with the latest research done in the field of

improving the performance of CPU scheduling algorithm to prove its effectiveness and

efficiency.

Average waiting time for improved RR scheduling algorithm = 19

Average waiting time for existing RR scheduling algorithm = 32.5

Performance Improvement = ((32.5-9)/32.5)*100=41.53% The performance improvement

provided by our proposed technique is 44.44% (From (1)) which is greater than the

performance improvement provided by the latest research done in this field.

VI. CONCLUSION

According to the results of the preceding investigation, the proposed technique enhances the

performance of existing CPU scheduling algorithms by 40-50%. This technique can be used

in a variety of real-time applications because concurrent processing always speeds up

execution. Any form of simulation for any CPU scheduling strategy is recommended to have

restricted accuracy. The only way to evaluate a scheduling algorithm is to code it and include

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

904

Research Article

it in an operating system; only then can the algorithm's correct working capabilities be

determined in real-time systems.

REFERENCES

[1] Bashir Alam (2013), “Fuzzy Round Robin CPU Scheduling Algorithm”, Journal of

Computer Science, pp. 1079- 1085.

[2] Devendra Thakor, Apurva Shah (2011), “D_EDF: An efficient Scheduling Algorithm

for Real-Time Multiprocessor System”, IEEE, pp. 1044-1049.

[3] Saeede Bibi, Farooque Azam, Yasir Chaudhry (2010), “Combinatory CPU

Scheduling Algorithm”.

[4] Sindhu M, Rajkamal R, Vigneshwaran P (2010), “An Optimum Multilevel CPU

Scheduling Algorithm”, International Conference on Advances in Computer

Engineering, pp. 90-94.

[5] Radhakrishna Naik, R.R. Manthalkar, Mukta Dhopeshwarkar (2010), “Modified IUF

Scheduling Algorithm for Real Time Systems”, IEEE, pp. 712-716.

[6] Apurva Shah, Ketan Kotecha (2009), “Adaptive Scheduling Algorithm for Real Time

Multiprocessor Systems”, IEEE, pp. 35-39.

[7] E.O. Oyetunji, A.E. Oluleye (2009), “Performance Assessment of some CPU

Scheduling Algorithms”.

[8] Ruben Gran, Enric Morancho, Àngel Olive, Jose M. Llaberia (2006), “An

Enhancement for a Scheduling Logic Pipelined over two Cycles”, IEEE.

[9] Shantanu Dutt, “Pipeline Basics”, www.ece.uic.edu /~dutt/courses/ece366/lect14-

pipe1.pdf

[10] M. Morris, Mano, “Pipeline and Vector Processing”, Computer System

Architecture, 3rd Edition, Dorling Kindersley (India) Pvt. Ltd., pp.301-330.

[11] Toan Nguyen, “Pipelining”,

www.cs.sjsu.edu/~lee/cs147/Pipelining%20Toan.ppt.

[12] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, “CPU Scheduling”,

Operating System Concepts, 6th Edition, John Wiley &Sons, p.151-183.

[13] Lupetti, Simone, Dmitrii Zagorodnov (2006), “Data Popularity and Shortest-

Job-First Scheduling of Network Transfers”, International Conference on Digital

Telecommunications, IEEE, pp. 26–26.

[14] Lingyun Yang, Schopf Jennifer M, Ian Foster T. (2003), “Conservative

Scheduling: Using Predicted Variance to Improve Scheduling Decisions in Dynamic

Environments”, Proceedings of the ACM/IEEE SC2003 Conference (SC) 1-58113-

695-1/03 $ 17.00 © 2003 ACM.

[15] Liu CL, Layland James W. (1973), “Scheduling Algorithm for

Multiprogramming in a Hard-Real-Time Environment”, J ACM. Jan 1973; 20(1): pp.

46–61.

[16] M.R. Reddy, V.V. Ganesh, S. LakshmiandY. Sireesha (2019),

“Comparative Analysis of CPU Scheduling Algorithms and Their Optimal

Turkish Journal of Computer and Mathematics Education Vol.11 No.02 (2020), 896-905

905

Research Article

Solutions,”Proceedings of the Third International Conference on Computing

Methodologies and Communication (ICCMC 2019) IEEE Xplore Part Number:

CFP19K25-ART, pp. 255-260.

