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Abstract: This research article mainly explores on problems and perspectives of mathematical and stochastic modeling. There 
is a large element of compromise in mathematical modelling. The majority of interacting systems in the real world are far too 
complicated to model in their entirely.In this research paper an extensive discussion has been made on linear models,nonlinear 
models,static models,dynamic models.A comparative study is done between the pairs explicit and implicit model,discrete and 

continuous model,deterministic and probabilistic model. In this talk a brief discussion on different types of models has been 

proposed and the concept of stages of model building is extensively discussed.Problems of stochastic model building are 
presented in a lucid manner and this literature is highly helpful for young researchers in stochastic modeling. 
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1.Introduction  

Modelling is a cyclic process of creating and modifying models of empirical situations to understand them better 

and improve decisions. The role of modelling and mathematical modelling has received increasing attention as 

generating authentic learning and revealing the ways of thinking that produced it. We review a subset of the 

related literature; discuss benefits and challenges in teaching and learning mathematical modeling activities and 

implications for instruction and assessment as well as for research. 

 

Models describe our beliefs about how the world functions. In mathematical modelling, we translate those 

beliefs into the language of mathematics. This has many advantages. 

 

(1) Mathematics is a very precise language. This helps us to formulate ideas and identify underlying 

assumptions. 

(2) Mathematics is a concise language, with well defined rules for manipulations. 

(3) All the results that mathematicians have proved over hundreds of years are at our disposal. 

(4) Computers can be used to perform numerical calculations. 

 

There is a large element of compromise in mathematical modelling. The majority of interacting systems in the 

real world are far too complicated to model in their entirely. Hence, the first level of compromise is to identify 

the most important parts of the system. The second level of compromise concerns the amount of mathematical 

manipulation which is worthwhile. Although mathematics has the potential to prove general results, these results 

depend critically on the form of equations used. Small changes in the structure of equations may require 

enormous changes in the mathematical methods. Using computers to handle the models equations may never 

lead to elegant results, but it is much more robust against alterations. 

 

2. METHODOLOGICAL MODELING PRINCIPLES  

 

 Mathematical modelling is a principled activity that has both principles behind it and methods that can be 

successfully applied. The principles are         over-arching or meta-principles phrased as questions about the 

intentions and purposes of mathematical modelling. These meta-principles are almost philosophical in nature. 

 

 Methodological modeling principles are also captured in the following list of questions and answers: 

 

 What are one looking for? Identify the need for the mode. 

 What do one wants to know? List the data we are seeking. 

 What do one knows? Identify the available relevant data. 

 What can one assume? Identify the circumstances that apply. 
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 How should one look at this model? Identify the governing physical principles. 

 What will model predict? Identify the equations that will be used, the calculations that will be made, and 

the answers that will results. 

 Are the predictions valid? Identify tests that can be made to validate the model, i.e., is it consistent with its 

principles and assumptions? 

 Are the predictions good? Identify tests that can be made to verify the model, i.e., is it useful in terms of 

the initial reason it was done? 

 Can one improve the model? Identify parameter values that are not adequately knows, variables that have 

been included, and / or assumptions / restrictions that could be lifted. Implement the iterative loop that 

one can call “model-validate-verify-improve-predict.” 

 How will one exercise the model? What will one do with the model? 

This list of questions and instructions is not an algorithm for building a good mathematical model. However, the 

underlying ideas are key to mathematical modelling, as they are key to problem formulation generally. Thus, one 

should expect the individual questions to recur often during the modeling process, and one should regard this list 

as fairly general approach to ways of thinking about mathematical modelling.  

  

Having a clear picture of why the model is wanted or needed is or prime importance to the model-building 

enterprise. Defining the task is the first essential step in model formulation. 

 

If one finds that the model is inadequate or that it fails in some way, then one may enter  an iterative loop in 

which one returns to an earlier stages of the model building and re-examine assumptions, known parameter 

values, the principles chosen, the equations used, the means of calculation, and so on. This iterative process is 

essential because it is the only way that models can be improved, corrected, and validated.  

  

3. CLASSIFICATION OF MATHEMATICAL MODELLING 

 

A model which uses a large amount of theoretical information generally describes what happens at one level in 

the hierarchy by considering processes at lower levels; these are called mathematical models because they take 

account of the mechanisms through which changes accur. In empirical models, no account is taken of the 

mechanism by which changes the system occur. Instead it is merely noted that they do occur, and the model tries 

to account quantitatively for changes associated with different conditions. 

 

The two divisions above namely deterministic and mechanistic / empirical represent extremes of a range of 

model types. In between lie a whole spectrum of model types. Also, the two methods of classification are 

complementary. For Example, a deterministic model may be either mechanistic or empirical (but not stochastic) 

 

One further type of model, the system model, is worthy of mention. This is built from a series of sub-models, 

each of which describes the essence of some interacting components. The above method of classification then 

refers moreproperly to the sub-models; different types of sub-models may be used in any one system model. 

 

Much of the modelling literature refers to ‘simulation models’ 

 

(a) Mathematical models may be classified according to the subject matter of the models. Thus one may have 

mathematical models (M.M) in chemistry (Theoretical Chemistry); M.M in Biology (Mathematical 

Biology), M.M in Medicine (Mathematical Medicine), M.M in economics (Mathematical Economics and 

Econometrics), M.M in Psychology (Mathematical psychology), M.M. in sociology (Mathematical 

Sociology), M.M. in Engineering (Mathematical Engineering) and so on. 

 

  One may have similarly M.M. of transportation, of urban and regional pollutions, of population, of 

environment, of oceanography, of blood flows, of genetics, of water resources, of optimal utilization of 

exhaustible and renewable resources, of political systems, of land distribution, of linguistics and so on. 

 

 In fact, every branch of knowledge has two aspects one of which is theoretical, mathematical, statistical, 

and computer based and the other of which is empirical, experimental and observational. Mathematical Modeling 

is essential to the first of these aspects. 

(b) One may also classify mathematical models according to the mathematical techniques used in 

solving them. Thus one may have mathematical modeling (M.M) through classical algebra, M.M. 

through linear algebra and matrices, M.M. through ordinary and partial differential equations, M.M 

through ordinary and partial difference equation, M.M. through functional equations, M.M. through 
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graphs, M.M. through mathematical programming, M.M. through calculus of variations, and M.M. 

through maximum principle and so on. 

 

(c) Mathematical models may be linear or Non-linear according as the basic equations describing them 

are linear or nonlinear. Mathematical models may also be classified according to the purpose we 

have for the model. Thus, one may have Mathematical Models (M.M.) for Description, M.M for 

Insight, M.M for prediction, M.M for optimization, M.M for control and M.M for Action. 

 

(d) Mathematical models may also be classified according to their nature,  

 

Mathematical models are usually composed of relationships among variables. Relationships can be described 

by operators, such as algebraic operators, functions, differential operators, etc. Variables are abstractions of 

system parameters of interest, that can be quantified. Several classification criteria can be used for mathematical 

models according to their structure: 

 

 Linear vs. Nonlinear Models: If all the operators in a mathematical model exhibit linearity, the resulting 

mathematical model is defined as linear. A model is considered to be nonlinear otherwise. The definition 

of linearity and nonlinearity is dependent on context, and linear models may have nonlinear expressions 

in them. For example, in a statistical linear model, it is assumed that a relationship is linear in the 

parameters, but it may be nonlinear in the predictor variables. Similarly, a differential equation is said to 

be linear if it can be written with linear differential operators, but it can still have nonlinear expressions 

in it. In a mathematical programming model, if the objective functions and constraints are represented 

entirely by linear equations, then the model is regarded as a linear programming model. If one or more of 

the objective functions or constraints are represented with a nonlinear equation, then the model is known 

as a nonlinear programming model. 

 

 Static vs. Dynamic Models: A dynamic model accounts for time-dependent changes in the state of the 

system, while a static (or steady-state) model calculates the system in equilibrium, and thus is time-

invariant. Dynamic models typically are represented by differential equations. 

 

 Explicit vs. Implicit Models: If all of the input parameters of the overall model are known, and the output 

parameters can be calculated by a finite series of computations (known as linear programming, not to be 

confused with linearity as described above), the model is said to be explicit. But sometimes it is 

the output parameters which are known, and the corresponding inputs must be solved for by an iterative 

procedure, such as Newton's method (if the model is linear) or Broyden's method (if nonlinear).  

 

 Discrete vs. continuous Models: A discrete model treats objects as discrete, while a continuous 

model represents the objects in a continuous manner. 

 

 Deterministic vs. probabilistic (stochastic) Models: A deterministic model is one in which every set of 

variables states is uniquely determined by parameters in the model and by sets of previous states of these 

variables; therefore, a deterministic model always performs the same way for a given set of initial 

conditions. Conversely, in a stochastic model-usually called a "statistical model"-randomness is present, 

and variable states are not described by unique values, but rather by probability distributions. 

 

 Deductive, Inductive, or Floating Models: A deductive model is a logical structure based on a theory. 

An inductive model arises from empirical findings and generalization from them. The floating model 

rests on neither theory nor observation, but is merely the invocation of expected structure.  

 

Linear, static and deterministic models are usually easier to handle than non-linear, dynamic and stochastic 

models and in general in any discipline these are the first to be considered. 

 

 

4. STAGES OF MODEL BUILDING 

 

    The various steps involving in the model building can be characterized as: 

 

(i) examining the situation and setting up the goals to be accomplished; 

(ii) identifying variables in the situation and selecting those that represent essential features; 

https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Operator_(mathematics)
https://en.wikipedia.org/wiki/Parameter_(computer_programming)
https://en.wikipedia.org/wiki/Numeric_data
https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Linear_model
https://en.wikipedia.org/wiki/Differential_operator
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Linear_equation
https://en.wikipedia.org/wiki/Nonlinearity
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Broyden%27s_method
https://en.wikipedia.org/wiki/Discrete_modeling
https://en.wikipedia.org/wiki/Continuous_model
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(iii) formulating a model by creating and selecting geometric, graphical, tabular, algebraic or statistical 

representations that describe relationships between the variables; 

(iv) analyzing and performing operations on these relationships to draw conclusions, if the implementation of 

the performed operations cannot be complete, then revise the selection of the variables used to 

formulate the models; 

(v) interpreting the results of the mathematics in terms of the original situation; 

(vi) validating the conclusions by comparing them with the situation and then either improving the model or 

if it is acceptable; and  

(vii)  Applying the model to similar situations for evaluation and refinement.  

 

The process of developing sufficiently useful models for a specific purpose usually involves a series of iterative 

testing and revision cycles. Also choices, assumptions and approximations are present throughout the modeling 

cycle. 

 

           This characterization of the model building is illustrated in figure. 

 

Setup the goal(s) identify 

variables and relationships 

between variables 

formulate a model 

 

Perform operations 

                   No                                            The identified 

      Relationship 

 

 

                                             Yes 

 

 

 

 

Interpret the mathematical solution 

in terms of the original problem evaluate 

and refine the formulated model. 

5. PRINCIPLES FOR EFFICIENT MODEL BUILDING 

 

 As much as all steps that are taken during a modelling cycle are important, it makes an important 

difference whether it is a good model or a bad one if a mathematical model is used to improve decisions. The 

model one has available may not be good enough to use, or there may be more efficient models available for use 

in a given situation. The forefront of the thinking about mathematical modelling and suggests six principles to go 

by in taking the measure of a model: Accuracy, descriptive, realism, precision, robustness, generality and 

fruitfulness. 

 

Definitions of the six principles: 

A model is said to be 

 

(i) Accurate, if the output of the model (the answer it gives) is correct or very near to correct. 

(ii) Descriptively realistic, if it is based on assumptions which are correct. 

(iii) Precise, if its predictions are definite numbers (or other definite kinds of mathematical entities; functions, 

geometric figure, etc.). By contrast, if a model’s prediction is a range of numbers (or a set of 

functions a set of figures, etc.) the model is imprecise. 

(iv) Robust, if it is relatively immune to errors in the input data. 

(v) General, if it applies to a wide variety of situations. 

(vi) Fruitful, if its conclusions are useful or it inspires or points the way to other models. 

 

6. PROBLEMS OF MODEL BUILDING  

 

 Based on the completeness and ambiguity of the information composing a problem, modeling problems 

can be categorized into three types with third type being the most authentic type as follows: 

 

Mathematical problem Real world problem 

Mathematical 

solution 

Real world solution Validati

on 

Report 
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1. Problems under this category are already carefully defined so there is little ambiguity about 

what needs to be done and how to do it. They contain all the information necessary to formulate 

a model. They either specifically call for a certain procedure to be used or its use is evident on 

prior instruction or placement of the task. Researchers are expected to search for the needed 

information that is hidden in the problem, recall the (implicitly or explicitly) called for 

procedure and carry it out correctly. There is no need to collect additional data to formulate a 

model. 

2. Problems under this type still have little ambiguity about what needs to be done and how to do 

it. However they do not provide all the information needed to successfully complete the task. 

Although researchers may be given a direction of what data is needed, they need to devise a 

meaningful way to gather the needed data and test if the gathered data would produce a 

reasonable answer. 

3. These type problems are comprised of information that is pen-ended, incomplete and/or 

redundant. There is not a well-rehearsed approach or pathway explicitly suggested by the task. 

Researchers are expected to analyze the task to find what needs to be done and actively examine 

tasks constraints that may limit or suggest possible solution strategies and solutions. 

 

7. PROBLEMS OF STOCHASTIC MODEL BUILDING 

 Following are some important problems of stochastic model building which can be frequently arise in the 

specification stochastic models: 

 

(a) Selection of Stochastic Model 

(b) Mis-specification of Stochastic Model 

(c) Variables selection for Stochastic Model 

 

(a) Selection of Stochastic Model: 

In general, Stochastic Models may be two types namely, 

(i) Nested Stochastic Model: If a stochastic model can be described as a particular case of another stochastic 

model, then the first model is said to be ‘Nested Stochastic Model’ within second stochastic Model. 

(ii) Non-Nested Stochastic Models: Two stochastic models are known as ‘Non- Nested Stochastic Models if 

stochastic model one cannot be derived as a particular case of another stochastic model. 

 

The various diagnostic tests can be used for the selection of good stochastic models. These diagnostic tests have 

been available in the literature separately for Nested and Non-Nested Stochastic Models. Some of them are given 

by: 

 

(i) F-test for Nested statistical models. 

(ii) Exhaustive search methods. 

(iii) Stepwise, Backward and Forward selection Techniques. 

(iv) R2 or coefficient of multiple Determinations as Model Selection Criterion. 

(v) Adjusted R2 or 
2R as a Model selection criterion. 

(vi) Conditional mean Squared Prediction Error criterion (Cp-Criterion) for Model Selection. 

(vii) Amemiya’s unconditional MSE criterion. 

(viii) Ullah criteria for model selection. 

(ix) Stopping Rules for model selection using Mean squared error of prediction. 

(x) Cox Modified Likelihood Ratio test for model selection. 

(xi) Davidson and Mac Kinnon J- test for model selection. 

(xii) Fisher and Mc Aleer JA test for model selection. 

(xiii) Davidson, Godfrey and Mac Kinnon omitted variables test for model selection. 

(xiv) Wu t- test for Model Selection based on Recursive residuals. 

(xv) Cross-validation Technique for linear model selection. 

(xvi) Berger and pericchi Intrinsic Bayes Factor of model selection. 

(xvii) Akaike Bayesian Information criterion for model selection. 

(xviii) Fisher Information criterion for model selection. 

(xix) The chow Forecast Test of parameter constancy for model selection. 

(xx) The Hansen test of parameter Instability for model selection. 

(xxi)  CUSUM and CUSUMSQ Residuals Test of constancy for Linear Model Selection. 

(xxii) Chow test of structural change for Model Selection. 
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(b) Mis-Specification of Stochastic Model: 

 

 In general, researcher faces frequently the problems of mis-specification of stochastic model. This 

problem creates many consequences with regard to the estimates of the regression efficients of the stochastic 

model. 

 

 Mis-specification can arise either because of omission of a variable specified by the truth, the case of the 

left out variables or because of inclusion of a variable not specified by the truth, the case of irrelevant variables. 

 

 Following are some important mis-specification tests for stochastic model available in the literature. 

 

(i) Ramsey Regression Specification Error Test (RESET). 

(ii) Utts Rainbow Test. 

(iii) Plosser, Schwart and White (PSW) Differencing Test. 

 

(iv) White’s Information Matrix (IM) Test. 

(v) Hausman’s Misspecification Test. 

(vi) J-Test. 

(vii) Fisher and Mc Aleer JA Test. 

(viii) The Rank Specification Error Test (KOMSET). 

(ix) The Kolmogorov Specification Error Test (KOMSET). 

(x) Bartkett’s M Specification Error Test (BAMSET). 

(xi) Harvey and Collier Test for functional misspecification in Regression analysis. 

(xii) Farebrother Grouping Test for Misspecification. 

(xiii) Davids on an Mac Kinnon specification Error Test. 

(xiv) Bera and Mc Aleer Exact Tests for specification error. 

(xv) White test for functional form. 

(xvi) Chow Test for Model specification. 

(xvii) Ramsey and Schmidt modified RESET. 

(xviii) Mac Kinnon, White and Davidson Projection Extended (PE) Test for Misspecification. 

(xix) Ullah’s Modified LR, World and LM Tests. 

 

    (c) Variables selection for Stochastic Model: 

 

 The goodness of prediction in the applied regression analysis has been based on the selection of relevant 

regressors for specification of stochastic model. 

 

 In practice, a large number of regressors usually are introduced at the initial stage of modeling and 

researchers use stepwise deletion and subset selection. 

 

 The various criteria of variables selection for stochastic model existing in the literature are: 

 

(i) The R2 and 
2R criteria. 

(ii) Mallows Cp Criterion. 

(iii) Amemiya’s unconditional MS predication Errors criterion. 

(iv) Breiman and Friedman Sp criterion. 

(v) Akaike Information criterion. 

(vi) Sawa’s BIC criterion. 

(vii) Reformulated Akaike Informtion criterion. 

(viii) Jeffreys – Bayes posterior odds Ratio criterion. 

(ix) Stein – Rule Formulation criterion. 

(x) General Stein Rule criterion. 

(xi) The BIVAR criterion. 

(xii) Stopping Rule for selection of Regressions. 

(xiii) Stepwise, Forward and Backward selection criterion. 

(xiv) Average Estimated variance (AEV) criterion 

(xv) Mx Cabe U – Statistics for variable selection in Discriminant analysis. 

(xvi) Influence measures for selection of criterion. 
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(xvii)  Regression Diagnostics based on PRESS criterion. 

(xviii)  Quan Press and Q2 statistics for selection of regressors. 

8.Conclusion 

In the above talk a brief discussion on different types of models has been proposed and the concept of stages of 

model building is extensively discussed.Problems of stochastic model building are presented in a lucid manner 

and the above literature is highly helpful for young researchers in stochastic modelling 
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