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_____________________________________________________________________________________________________ 
 

Abstract. There are several factors that make forecasting a hydrologic time series a difficult endeavour, including a 

wide range of data, the lack of accurate data, and a lack of enough data. It has recently become common practise to 

use artificial neural networks (ANNs) for time series forecasting in numerous industries. Forecasting river flows using 

artificial neural networks is demonstrated in this research. A feed forward network and a recurrent neural network 

have been selected for the experiment. The recurrent neural network is trained utilising the method of ordered partial 

derivatives, while the feed forward neural network is taught with the usual back propagation approach. Both networks' 

architectures and training methods are described in detail. ANN models were used to train and estimate monthly flows 

of an Indian river with a catchment area of 5189 km2 up to the gauging station using the models that were chosen for 

this task Both single-step and multiple-step forecasts may be made using the trained networks. A comparison of the 

two networks reveals that feed forward networks were outperformed by recurrent neural networks. In addition, 

recurrent neural networks had smaller architectures and took less time to train. For both single-step and multiple-step 

forecasting, the recurrent neural network performed better. The use of recurrent neural networks in river flow 

forecasting is therefore strongly advocated. 
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_____________________________________________________________________________________________________ 
Introduction 

In order to make a good decision, you must first consider the context in which the decision was made. It is possible to 

make a better decision if you are able to forecast the uncontrolled components of these occurrences before making the 

decision. When making a choice, forecasting helps to minimise uncertainty. Several water resources initiatives, such 

as dam building, reservoir operation, flood control, and wastewater disposal, need data on stream flow at various 

points of interest. ARIMA (Auto Regressive Integrated Moving Average) models developed by Box and Jenkins 

(1976) are the most often utilised stochastic models for river flow forecasting (e.g. Mujumdar and Nagesh Kumar, 

1990). ASCE (2000a) and Govindaraju and Rao provide excellent introductions to the basic ideas of artificial neural 

networks (ANNs) (2000). ASCE provides a comprehensive collection of references to ANN applications in hydrology 

(2000b). Kang et al. (1993) predicted daily and hourly streamflows in a river basin in Korea using ANNs and 

autoregressive moving average models On the basis of data from stream gauge stations 30 kilometres upstream and 

20 kilometres downstream of the sample site, Karunanithi et al. (1994) calculated streamflows at an ungauged location. 

To estimate monthly streamflows at a gauging station in Southern Colorado, Markus et al. (1995) employed neural 

networks using the back-propagation method and inputs such as snow water equivalent and temperature. According 

to Raman and Sunilkumar (1995), they used artificial neural networks (ANNs) to simulate multivariate monthly 

hydrologic time series. ANNs were utilised by Thirumalaiah and Deo (1998) to predict river level. Hydrology and 

allied areas have made use of recurrent neural networks (RNNs). An RNN model was utilised by Gong et al. (1996) 

for storm event solid transport in sewage systems In order to estimate rainfall in Hong Kong, Chow et al. (1997) built 

a recurrent sigma-P neural network model. Predicting watershed runoff is easier using RNNs than other ANN designs, 

according to Anamala and Co. (2000). 

Even though we don't know exactly how an ANN works, we've seen promising preliminary outcomes. In addition, 

they provide the following benefits: 

Neural networks do not need prior understanding of how a system works. 

When conducting an examination of a process, it is not necessary to know everything about it. 

• ANNs are data-driven contrast to traditional techniques, which are model-driven. 
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1.1. WORKING OF AN ARTIFICIAL NEURAL NETWORK 

In most ANNs, there are three distinct levels of complexity (Vemuri, 1988). Input neurons are found in the top layer 

of the brain, and they are responsible for receiving information from the outside world. There may be one or more 

hidden layers above the input layer, with the higher levels getting information from the lower layers. This is the layer 

directly adjacent to the input layer. The output layer is the final layer of the network. The network's output is provided 

by the neurons at this layer. From other artificial neurons or from the outside environment, artificial neurons (ANs) 

obtain their information. An activation function's argument is the weighted sum of these inputs.. It is presumed that 

this function is nonlinear. The most commonly employed non linearities are hard limiting, such as the step or signum 

function threshold, and soft limiting, such as the sigmoidal. The activation function's output is the AN's output. 

Weighted connections are used to distribute this output to other ANs. A computer's memory is akin to a person's ability 

to establish a weight limit. ANNs are sometimes known as connectionist models of computing because of the 

importance of these weighted connections. 

 

1.2. ARTIFICIAL NEURAL NETWORKS MODELS 

A neural network's architecture, nodes, and training and learning rules all go into its construction. In order to optimise 

performance, these rules provide an initial set of weights and describe how those weights should be adjusted. 

Currently, there is a great deal of research being conducted on both the design and training algorithms. For pattern 

recognition, the Hopfield model was the first to be suggested in the field of artificial neural networks. The input and 

output layers of the single layer perceptron (Rosenblatt, 1959) are directly coupled. Between the input and output 

nodes, multi-layered perceptrons (Rosenblatt, 1959) are feed forward networks. There are hidden units or nodes in the 

extra levels that aren't connected to the input or output layers directly. Although multi-layered perceptrons have 

overcome many of the drawbacks of single-layered perceptrons, the lack of training algorithms prevented them from 

being widely employed in the past. The nonlinearities inside the nodes are what give multi-layered perceptrons their 

powers. More difficult issues may be handled using the network as the number of layers (or hidden layer nodes) 

between input and output nodes rises. It was invented by Fahlman and Lebiere, and it is a highly effective training 

method (1990). The training technique of this algorithm incorporates the notion of incremental architecture and 

learning. An input and output layer are all that's needed to begin training. The network keeps growing until the problem 

is solved. As a result, the cascade correlation method automatically builds an appropriate architecture for a particular 

issue (Karunanithi et al., 1994). ANN models just recently began to incorporate recurrent neural networks. 

 

2. Backpropagation Algorithm 

The most widely used ANN training algorithm is backpropagation (Rumelhart et al., 1986). Fundamentally, the BPA 

is a process for developing feed-forward models (FFMs). These models are known as FFMs, and they only allow 

outputs to be passed to the next layers. Figure 1 depicts a typical feed forward network. Carling (1995) divided 

architecture selection into three steps: (1) fixing the design, (2) preparing the network for use, and (3) testing the 

network. Documentation of these stages and the process of training the network is readily available (ASCE, 2000a). 

The standard Backpropagation method has been improved several times in the literature, and some of these changes 

are detailed in the next section and applied in this work. 

 

 
Figure 1. Typical Feed Forward Neural Network. 
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2.1. IMPROVING BPA TRAINING USING OPTIMUM LEARNING RATE AND MOMENTUM 

In order to enhance the BPA algorithm, this strategy involves altering the learning rate and momentum terms (Yu and 

Chen, 1997). After each iteration, new values for the learning rate and momentum rate are determined based on the 

error for each pattern. Differentiating the output values for each pattern with regard to the learning rate and the 

momentum yields the best possible values. 

 
where 

_p = (aoutp – foutp) taking μ = 0 and β = 0; 

aoutp = the actual output expected from the network for the pattern p; 

foutp = the computed final output from the network for the pattern p; 

Np = the number of patterns; 

μ = the learning rate generally in the range of 0 to 1; 

β = the momentum. 

3. Recurrent Neural Networks 

Depending on the amount of persistence components in a hydrologic time series, forecasting is dependent on the prior 

values (memory). This capability is provided by recurrent neural networks (RNNs), which include several feed-back 

loops. Any of the layers can supply input to or receive output from a generalised RNN in either direction. 

Consequently, not only do the network's outputs depend on its own internal state but also on that of its preceding time 

step, as well. Static neural networks may incorporate'memory' in a variety of ways (ASCE, 2000a). These are (in 

descending order of increasing difficulty and capability): 

There is explicit access to previous inputs in tap delay line models, allowing the network to decide its response in a 

certain moment in time (Mozer, 1989). 

Partial recursive models, which are also known as context models or context models, maintain the previous output of 

nodes rather than the past raw inputs. In these models, all nodes have full feedback and connections with each other 

(Almeida, 1988). 

 

The current study employs context models. Recurrent backpropagation is briefly described by Islam and Kothari 

(2000), who cover both the mathematical principles and the practical specifics. 

 

3.1. ADVANTAGES OF RNNs OVER FFNs 

The RNNs have crucial qualities, such as the ability to store and utilise data from previous calculations. Complex 

outputs can be generated from basic inputs that change over time. Despite the lack of any safeguards, it has been 

discovered that RNNs seldom settle in local minima (Carling, 1995). 

 

3.2. TRAINING METHODOLOGY IN RNNs 

RNNs can be trained in the same way as FFN models are. Using a basic example, we'll go over the training algorithm. 

Figure 2 depicts a simple network with just two input neurons, a hidden layer with three neurons, and a single output 

neuron. An additional neuron collecting input from the output layer and linked to the hidden layer has been included. 

Additional neurons are added to RNNs by this neuron. Initial weights are tiny and seemingly random. Just like with 

the FFN, the inputs are supplied to the input units, and the network's output is calculated. All of the designs are 

subjected to the same procedure. A approach known as ordered partial derivatives is used to discover the source of 

the system fault and then train the network using the steepest gradient method. 
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Figure 2. Typical Recurrent Neural Network. 

 

 
 

 
 

Smart water meter generated generates sine wave, collecting data and processing. 

sin(x) =  (-1)k x2k+1 / (2k+1)!------------(1) 

The equation (1) can be expanded like the below. 

= x - (1/3!)x3 + (1/5!)x5 - (1/7!)x7 and so on 

The input for the equation is expecting radians only. The given degrees are converted to radian by multiplying the 

given input x with pi value 3.14 divided by 180, and then these input passed to the above equation and the expecting 

results lies between [0,1] both are inclusive.  

 

1.1 Optimal method 

We know to calculate factorial of a number; you should multiply all numbers from 1 to itself, for example:  

1000!=1*2*3* -------999*1000 

1000! = 1*2*3*……*998*999*1000  
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There is no variable in any programming language that can store the result of this multiplication exactly; except storing 

in scientific notation. Because of sequential multiplication's huge result, finding a new strategy or mechanism is 

necessary.  

In my recommended algorithm, the number is not looked at as a number, instead it is treated as sequential digits where 

each one has its own numerical value. In fact, an array of digits is available. Each time, the second number is multiplied 

by each digit of the first number (index of array) and then added with carry number up from the previous 

multiplication.  

This process is shown, for example 12!:12!=12*11! But we know11!=39916800. 

 
1.2 Algorithm for Optimal method  

Procedure Optimal_Facrorial() 

{ 

MAX  :=100; 

Integer  I,j,c,ia[MAX],tot,coeft,; 

 Ia[MAX-1] :=1; 

WRITE  “Enter number to find the factorial”; 

READ n 

FOR  j:=0 to MAX-1 do step by 1  

 Ia[j]=0; 

END FOR 

 Coeft:=0; 

FOR  c:=2 to n do step   by 1  

 I:=MAX-1; 

 WHILE(i>0) 

 BEGIN 

  Tot:=ia[i]*c+coeft; 

  IF(tot>9) 

   Ia[i]:=tot%10; 

   Coeft:=tot%10; 

  ELSE 

  Ia[i]:=tot; 

  Coeft:=0; 

  END IF 

 I:=i-1; 

ENDWHILE 

ENDFOR 

FOR c:=2 to MAX-1 

WRITE ia[c]; 

ENDFOR 

END Procedure   
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1. Data Engineering 

In order to apply feature engineering in data Science, the performance of the model is depending on data preprocessing 

and data handling. Suppose if we build a model without Handling data, we got an accuracy of around 70%. By applying 

the Feature engineering on the same model there is a chance to increase the performance from 70% to more. Simply, 

by using Feature Engineering we improve the performance of the model. 

  

The main aim of feature selection is nothing but a selection of required independent features. Selecting the important 

independent features which have more relation with the dependent feature will help to build a good model. There are 

some methods for feature selection: 

Correlation Matrix with Heatmap is a graphical representation of 2D (two-dimensional) data. Each data value 

represents in a matrix. Firstly, plot the pair plot between all independent features and dependent features. It will give 

the relation between dependent and independent features. The relation between the independent feature and the 

dependent feature is less than 0.2 then choose that independent feature for building a model. 

 

In this Univariate Selection model, Statistical tests can be used to select the independent features which have the 

strongest relationship with the dependent feature. SelectKBest() method can be used with a suite of different statistical 

tests to select a specific number of features. Which feature has the highest score will be more related to the dependent 

feature and choose those features for the model. 

 the ExtraTreesClassifier method will help to give the importance of each independent feature with a dependent 

feature. Feature importance will give you a score for each feature of your data, the higher the score more important or 

relevant to the feature towards your output variable.  

Handling Missing Values: 

In some datasets, we got the NA values in features. It is nothing but missing data. By handling this type of data there 

are many ways:In the missing value places, to replace the missing values with mean or median to numerical data and 

for categorical data with mode. Drop NA values entire rows through df.dropna(how=’all) method. Drop NA values 

entire features. (it helps if NA values are more than 50% in a feature) Replace NA values with 0 through the method 

df.fillna(0) utility. If you choose to drop options, there is a chance to lose important information from them. So better 

to choose to replace options. 

 Handling imbalanced data: 

We need to handle imbalanced data,  because of to reduce over fitting and under fitting problem. suppose a feature 

has a factor level2(0 and 1). The imbalanced data consists of true’s is ten percentage and false values is ninety 

percentage. It is called imbalanced data. 

Under-sampling the majority class will resample the majority class points in the data to make them equal to the 

minority class. Oversampling minority class will resample the minority class points in the data to make them equal to 

the majority class.Over Sampling minority class using Synthetic Minority Oversampling Technique (SMOTE) 

In this method, synthetic samples are generated for the minority class and equal to the majority class. 

 Handling outliers 

firstly, calculate the skewness of the features and check whether they are positively skewed, negatively skewed, or 

normally skewed. Another method is to plot the boxplot to features and check if any values are out of bounds or not. 

if there, they are called outliers. 

  

how to handle these outliers: – 

first, calculate quantile values at 25% and 75%. 

  

• next, calculate the Interquartile range 

IQR = Q3 – Q1 

  

• next, calculate the upper extreme and lower extreme values 

lower extreme=Q1 – 1.5 * IQR 

upper extreme=Q3– 1.5 * IQRe 

  

• lastly, check the values will lie above the upper extreme or below the lower extreme. if it presents then 

remove them or replace them with mean, median, or any quantile values. 

 Binning 
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Binning is nothing but any data value within the range is made to fit into the bin. It is important in your data exploration 

activity. We typically use it to transform continuous variables into discrete ones. Suppose if we have AGE feature in 

continuous and we need to divide the age into groups as a feature then it will be useful. 

 Encoding: 

Why this will apply? because in datasets we may contain object datatypes. for building a model we need to have all 

features are in integer datatypes. hence and One Hot Encoder and Label Encoder are used to convert object datatype 

to integer datatype. 

• Label Encoding 

  

Before applying Label Encoding the height values are tall, medium and short.  

After applying label encoding then apply the column transformer method to convert labels to 0,1and 2.one Hot 

Encoding: By applying get_dummies we convert directly categorical to numerical 

Feature scaling: we need to apply this approach, because to reduce the variance effect and to overcome the fitting 

problem. there are two types of scaling methods:Standardization: When this method is used?.when all features are 

having high values, not 0 and 1. It is a technique to standardize the independent features that present in a fixed range 

to bring all values to the same magnitudes. Z=X-µ/sigma, in standardization, the mean of the independent features is 

0 and the standard deviation is 1.After encoding feature labels are in 0 and 1. This may affect standardization. To 

overcome this, we use Normalization. 

Normalization also makes the training process less sensitive by the scale of the features. This results in getting better 

coefficients after training. In Min Max Scaler the norm is calculated using thisformula: Norm(x) is equal to x-min(x)/ 

max(x)-min(n). It is a method to rescales the feature to a hard and fast range of [0,1] by subtracting the minimum 

value of the feature then dividing by the range. 

 

 

 

2. Matrix representation 

Adjacency matrix, adjacency list and adjacency set 

 
In graph theory, an adjacency matrix is a dense way of describing the finite graph structure. It is the 2D matrix that is 

used to map the association between the graph nodes. If a graph has n number of vertices, then the adjacency matrix 

of that graph is n x n, and each entry of the matrix represents the number of edges from one vertex to another. An 

adjacency matrix is also called as connection matrix. Sometimes it is also called a Vertex matrix. 

Adjacency Matrix Representation 

If an Undirected Graph G consists of n vertices then the adjacency matrix of a graph is n x n matrix A = [aij] and 

defined by - 

aij = 1 {if there is a path exists from Vi to Vj} 

aij = 0 {Otherwise} 

Let's see some of the important points with respect to the adjacency matrix. 

• If there exists an edge between vertex Vi and Vj, where i is a row, and j is a column, then the value of aij = 1. 

• If there is no edge between vertex Vi and Vj, then the value of aij = 0. 

• If there are no self loops in the simple graph, then the vertex matrix (or adjacency matrix) should have 0s in the 

diagonal. 

• An adjacency matrix is symmetric for an undirected graph. It specifies that the value in the ith row and jth column 

is equal to the value in jth row ith 

• If the adjacency matrix is multiplied by itself, and if there is a non-zero value is present at the ith row and jth column, 

then there is the route from Vi to Vj with a length equivalent to 2. The non-zero value in the adjacency matrix 

represents that the number of distinct paths is present. 

How to create an adjacency matrix? 
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Suppose there is a Graph g with n number of vertices, then the vertex matrix (or adjacency matrix) is given by - 

A =    a11 a12 . . . . . a1n 

       a21 a22 . . . . . a2n 

       .     .          . 

       .     .          . 

       .     .          . 

       an1 an2 . . . . . ann 

Where the aij equals the number of edges from the vertex i to j. As mentioned above, the Adjacency matrix is 

symmetric for an undirected graph, so for an undirected graph, aij = aji. 

When the graphs are simple and there are no weights on the edges or multiple edges, then the entries of the adjacency 

matrix will be 0 and 1. If there are no self-loops, then the diagonal entries of the adjacency matrix will be 0. 

Adjacency matrix for an undirected graph 

In an undirected graph, edges are not associated with the directions with them. In an undirected graph, if there is an 

edge exists between Vertex A and Vertex B, then the vertices can be transferred from A to B as well as B to A. Let us 

consider the below-undirected graph and try to construct the adjacency matrix of it. 

In the graph, we can see there is no self-loop, so the diagonal entries of the adjacent matrix will be 0. In a directed 

graph, edges form an ordered pair. Edges represent a specific path from some vertex A to another vertex B. Node A 

is called the initial node, while node B is called the terminal node. 

• An adjacency matrix is a matrix that contains rows and columns used to represent a simple labeled graph with the 

numbers 0 and 1 in the position of (VI, Vj), according to the condition of whether or not the two Vi and Vj are 

adjacent. 

• For a directed graph, if there is an edge exists between vertex i or Vi to Vertex j or Vj, then the value of A[Vi][Vj] 

= 1, otherwise the value will be 0. 

• For an undirected graph, if there is an edge that exists between vertex i or Vi to Vertex j or Vj, then the value of 

A[Vi][Vj] = 1 and A[Vj][Vi] = 1, otherwise the value will be 0. 

 

 
3. Distance vector routing algorithm and application of test bed network. 

Algorithm 

At each node x, 

Initialization 

 

for all destinations y in N: 

Dx(y) = c(x,y)     // If y is not a neighbor then c(x,y) = ∞ 

for each neighbor w 

Dw(y) = ?     for all destination y in N. 

for each neighbor w 

send distance vector Dx = [ Dx(y)  : y in N ] to w 

loop 

  wait(until I receive any distance vector from some neighbor w) 

  for each y in N: 

  Dx(y) = minv{c(x,v)+Dv(y)} 

If Dx(y) is changed for any destination y 

Send distance vector Dx = [ Dx(y) : y in N ] to all neighbors 

forever 

 

 

4. Eccentricity of the Graph and Prime nodes and centric points. 
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Highest eccentricity nodes becomes to prime nodes, it need to be take more care about that smart water meter nodes 

form external factors.  

Graph representation of Smart water meter Grid: 

 
Eccentricity of N10:   3 

Cost of min path from n4 to n10 is: 3 

Cost of min path from n9 to n10 is: 2 

 

Eccentricity of N9:   1 

Cost of min path from n4 to n9 is: 1 

 

Eccentricity of N8:   3 

Cost of min path from n3 to n8 is: 3 

Cost of min path from n7 to n8 is: 2 

 

Eccentricity of N7:   1 

Cost of min path from n3 to n7 is: 1 

 

Eccentricity of N6:   3 

Cost of min path from n2 to n6 is: 3 

Cost of min path from n5 to n6 is: 2 

 Eccentricity of N5:   1 

Cost of min path from n2 to n5 is: 1 

 

Eccentricity of N4:   2 

Cost of min path from n1 to n4 is: 2 

Cost of min path from n2 to n4 is: 1 

 

Eccentricity of N3:   3 

Cost of min path from n1 to n3 is: 3 

Cost of min path from n2 to n3 is: 2 

Cost of min path from n4 to n3 is: 1 

 

Eccentricity of N2:   1 

Cost of min path from n1 to n2 is: 1 

 

 

Model Application 

4.1. TESTING WITH SYNTHETIC DATA 

First, an ARMA model is used to evaluate FFNs and RNNs using synthetically created data. Mujumdar and Nagesh 

Kumar determined that an ARMA (1,2) was the best model for monthly flow data from the Hemavathi River using 

the maximum likelihood criteria (1990). Synthetic generation made use of this model and its associated parameters. 

Synthetic data will allow the ANN models to be tested without the noise or observational mistakes that may be present 
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in the actual data. Seven years of testing are involved in this process (84 months). Comparison between FFN 

predictions with synthetic data is depicted in Figure 3. Figure 4 shows RNN predictions compared to synthetic data. 

When comparing ANN predictions to real data, the root mean square error (RMSE) and R2 values are utilised as 

statistics. Figures 3 and 4 illustrate the statistics for FFN and RNN predictions, respectively. These two graphs show 

that RNNs are substantially better at preserving monthly data variance than FFNs. 

 

4.2. CASE STUDY 

In Karnataka state, India, the monthly Hemavathi flow has been projected using the FFN and RNN models. An Indian 

tributary that flows into the Cauvery River is called Hemavathi. Akkihebbal in Karnataka state is the location of the 

gauging site. This gauging point is located in a 5189-square-mile catchment area. From 1916–17 through 1972–1973, 

monthly flow data from the location, spanning 57 years, is available. Monthly flow fluctuates from 1.84 M.cu.m. in 

the summer months to 2894.81 M.cu.m. in the monsoon months, depending on the season's rainfall. Table I shows the 

monthly average and standard deviation for the 57-year data set. Data from the first 50 years is utilised for training, 

while data from the latter 7 years is used for testing. 

. 

 

 

 
Figure 5. Variation of mean pattern error for RNN and FFN with number of iterations. 

 

Conclusions 

Compared to more traditional methods, neural networks have significant advantages. What matters most is their 

capacity for developing a generalised solution to an issue from a given collection of instances and for incorporating 

additional variations in the problem into that answer. It is because of this quality of generalisation that they may be 

used to solve a wide range of issues and still come up with viable answers despite data or description mistakes. Feed 

Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) were used to predict monthly streamflows 

of the Hemavathi River in India. When it came to predicting monthly river flows, RNNs outperformed other methods. 

In order to lessen the effects of extreme weather events like flooding and droughts on human activities, it is necessary 

to monitor the environmental impact of hydrology and build real-time forecasting models. This project is expected to 

help achieve this goal. 
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