COMMON FIXED POINT THEOREMS FOR EIGHT OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN FUZZY METRIC SPACE

G.Narender Reddy ${ }^{\mathbf{1}}$, P.Srikanth Rao ${ }^{\mathbf{2}}$, M.Rangamma ${ }^{\mathbf{3}}$
${ }^{1}$ Assistant professor, Department of Mathematics, Government Degree College,Hayathnagar, Hyderabad, Telangana India. email Id: g.narenderreddy81@gmail.com
${ }^{2}$ Professor, Department of Mathematics, B V Raju Institute of Technology, Narsapur,Telangana, India. email Id: psrao9999@gmail.com
${ }^{3}$ Professor,Department of Mathematics,Osmania University, Hyderabad,Telangana India email Id: Rangamma1999@gmail.com
Article History: Received: 3 May 2019; Accepted: 19 January 2020; Published online: 27 February 2020

Abstract

In this paper, we prove common fixed point theorems for eight occasionally weakly Compatible (owc) mappings.

\section*{1. Introduction}

In 1965 L.A.Zadeh [7] introduced the concept of fuzzy sets. Later with the concept of fuzzy sets, O.Kramosil and J.Michalek [8] introduced fuzzy metric spaces afterwards the notion of fuzzy metric spaces was modified with the help of continuous t-norm by A.George and P.Veeramani [1]. S. Sessa [14] improved commutativity condition in fixed point theorem by introducing the notion of weakly commuting maps in metric space.R.Vasuki [11] proved fixed point theorems for R-weakly commuting mapping. The concept of compatible maps by [4] and weakly compatible maps by [5] in fuzzy metric space is generalized by A.Al.Thagafi and NaseerShahzad [2] by introducing the concept of occasionally weakly compatible mappings.In this paper we prove some fixed point theorems for Eight occasionally weakly compatible owcmappings which generalises the results of [10]

2. Preliminaries

Definition 2.1 [3]- A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t-norms if it satisfies following assertions:
a) * is commutative and associative;
b) * is continuous;
c) $\mathrm{a}^{*} 1=$ afor all $\mathrm{a} \in[0,1]$;
d) $\mathrm{a} * \mathrm{~b} \leq \mathrm{c} * \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$, and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Definition 2.2[3]- A 3-tuple ($\mathrm{X}, \mathrm{M}, *$) is said to be a fuzzy metric space if X is an arbitrary set, *is a continuous t -norm and M is a fuzzy set on $X^{2} x(0, \infty)$ satisfying the following conditions, $\forall x, y, z \in X, s, t>0$,
(f1) $M(x, y, t)>0$; for all $t>0$
(f2) $M(x, y, t)=1$ if and only if $x=y$.
(f3) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\mathrm{M}(\mathrm{y}, \mathrm{x}, \mathrm{t})$;
(f4) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t}) * \mathrm{M}(\mathrm{y}, \mathrm{z}, \mathrm{s}) \leq \mathrm{M}(\mathrm{x}, \mathrm{z}, \mathrm{t}+\mathrm{s})$
$(f 5) M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous.
Then M is called a fuzzy metric on X. Then $M(x, y, t)$ denotes the degree of nearness between x and y with respect to t.
Example 2.3 (Induced fuzzy metric [6]) Let (X,d) be a metric space. Denote $a * b=a b$ for $a l l a, b \in[0,1]$ and let M_{d} be fuzzy sets on $\mathrm{X}^{2} \mathrm{x}[0, \infty]$ defined as follows:
$\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\frac{\mathrm{t}}{\mathrm{t}+\mathrm{d}(\mathrm{x}, \mathrm{y})}$ Then $\left(\mathrm{X}, \mathrm{M}_{\mathrm{d}, *}\right.$) is a fuzzy metric space.
Definition 2.4 [6]: Two self mappings f and g of a fuzzy metric space ($X, M,{ }^{*}$) are called compatible if $\lim _{n \rightarrow \infty} M\left(f g x_{n}, g f x_{n}, t\right)=1$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=x$ for all $x \in X$.
Lemma 2.5: Let $(X, M, *)$ be fuzzy metric space. If there exists $q \in[0,1]$ such that $M(x, y, q t) \geq M(x, y, t)$ for allx, $y \in X a n d t$ >0, then $x=y$.
Definition 2.6: Let X be a set, f and g are self-mapping of X. A point $x \in X$ is called a coincidence point of f and g ifffx $=g x$. We shall call $w=f x=g x a$ point of coincidence of f and g.
Definition 2.7 [8]: A pair of maps S and T is called weakly compatible pair if they commute at coincidence points.
The concept of occasionally weakly compatible is introduced by A. Al-Thagafi and NaseerShahzad [2].It is stated as follows:
Definition 2.8: Two self maps f and g of a set X are called occasionally weakly compatible (owc) iff there is a point $x \in$ Xwhich is a coincidence point of f and g at which f and g commute.
Example 2.9 [2]: Let R be the usual metric space. Define $S, T: R \rightarrow R b y S x=2 x$ and $T x=x^{2}$ for all $x \in R$. Then $S x=T x f o r x \in$ 0,2 , but $\mathrm{ST} 0=\mathrm{TS} 0$, and $\mathrm{ST} 2 \neq \mathrm{TS} 2$. S and T are occasionally weakly compatible self maps but not weakly compatible.
Lemma 2.10 [5]:Let X be a set, f and g owcself maps of X. If f and g have a unique point of coincidence, $w=f x=g x$, thenw is the unique common fixed point of f and g.

3. Main Results

3.1 Theorem: Let $\left(\mathrm{X}, \mathrm{M},{ }^{*}\right)$ be fuzzy metric space and let $\mathrm{P}, \mathrm{Q}, \mathrm{S}, \mathrm{T}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ and D be self mappings of X . Let the pairs $(\mathrm{CP}, \mathrm{ST})$ and $(\mathrm{DQ}, \mathrm{AB})$ be occasionally weakly compatibleif there exist $\mathrm{q} \in(0,1)$ such that
(3.3.1) $M(C P x, D Q y, q t) \geq \min \{M(S T x, A B y, t), M(S T x, C P x, t)$,

```
aM(STx,CPx, t)+bM(DQy, ABy, t)+cM(CPx, ABy, t)
    a + b + cM(DQy,STx,t)
aM(CPx, DQy, t) + bM(DQy, STx,t) + cM(CPx, ABy, t)
    a+b+c
```

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{t}>0$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \geq 0$ with a and b (c and d) cannot be simultaneously zero, then there exist a unique common fixed point of CP, DQ, ST and AB in X. If (C, P), (D, Q), (A, B),
$(S, T),(D Q, B)$ and $(T, C P)$ are commuting pairs and $P x=P^{2} x, Q x=Q^{2} x$ for all $x \in X$ then A, B, C, D, S, T, P and Q have a unique common fixed point in X .
Proof: Let the pairs $(\mathrm{CP}, \mathrm{ST})$ and $(\mathrm{DQ}, \mathrm{AB})$ be occasionally weakly compatible, so there are points $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{CPx}=$ STxand DQy= ABy. We say that
$C P x=D Q y$. If not, by inequality (3.3.1)
$M(C P x, D Q y, q t) \geq \min \{M(S T x, A B y, t), M(S T x, C P x, t)$,

```
\(\underline{\mathrm{aM}(S T x, C P x, ~ t)+b M(D Q y, ~ A B y, ~ t)+c M(C P x, ~ A B y, ~ t)}\)
    \(a+b+c M(D Q y, S T x, t)\)
\(a M(C P x, D Q y, t)+b M(D Q y, S T x, t)+c M(C P x, A B y, t)\)
                    \(a+b+c\)
    \(\geq \min \{M(C P x, D Q y, t), M(C P x, C P x, t)\),
\(\underline{\mathrm{aM}(C P x, P C x, t)+b M(D Q y, D Q y, t)+c M(C P x, D Q y, t)}\)
    \(a+b+c M(D Q y, C P x, t)\)
\(\underline{a M(C P x, D Q y, ~ t)+b M(D Q y, C P x, t)+c M(C P x, D Q y, t)}\)
    \(a+b+c\)
    \(\geq \min \left\{\mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t}), 1, \frac{a+\mathrm{b}+\mathrm{cM}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{CPy}, \mathrm{DQx}, \mathrm{t})}\right.\),
\(\left.\frac{(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\right\}\)
    \(\geq \min \{\mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t}), 1,1, \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{T})\}\)
    \(=\mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})\).
```

Therefore $\mathrm{CPx}=\mathrm{DQyi} . e ., \mathrm{CPx}=\mathrm{STx}=\mathrm{DQy}=\mathrm{ABy}$. Suppose that there is another point z such that $\mathrm{CPz}=\mathrm{STzthen}$ by inequality (3.3.1) we have
$\mathrm{CPz}=\mathrm{STz}=\mathrm{DQy}=\mathrm{AByso} \mathrm{CPx}=\mathrm{CPzand} \mathrm{w}=\mathrm{CPx}=\mathrm{STx}$ is the unique point of coincidence of CP and ST . By Lemma 2.10 wis the only common fixed point of $C P$ and ST. Similarly there is a unique point $z \in X$ such that $z=D Q z=A B z$.
Assume that $\mathrm{w} \neq \mathrm{z}$. We have, by inequality (3.3.1)

$$
\mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{qt})=\mathrm{M}(\mathrm{CPw}, \mathrm{DQz}, \mathrm{qt})
$$

$$
\mathrm{M}(\mathrm{CPw}, \mathrm{DQz}, \mathrm{qt}) \geq \min \{\mathrm{M}(\mathrm{STw}, \mathrm{ABz}, \mathrm{t}), \mathrm{M}(\mathrm{STw}, \mathrm{CPw}, \mathrm{t})
$$

$\mathrm{aM}(\mathrm{STw}, \mathrm{CPw}, \mathrm{t})+\mathrm{bM}(\mathrm{DQz}, \mathrm{ABz}, \mathrm{t})+\mathrm{cM}(\mathrm{CPw}, \mathrm{ABz}, \mathrm{t})$

$$
\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{DQz}, \mathrm{STw}, \mathrm{t})
$$

$\mathrm{aM}(\mathrm{CPw}, \mathrm{DQz}, \mathrm{t})+\mathrm{bM}(\mathrm{DQz}, \mathrm{STw}, \mathrm{t})+\mathrm{cM}(\mathrm{CPw}, \mathrm{ABz}, \mathrm{t})$

$$
a+b+c
$$

$$
\geq \min \left\{\mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{w}, \mathrm{w}, \mathrm{t}), \frac{\mathrm{aM}(\mathrm{w}, \mathrm{w}, \mathrm{t})+\mathrm{bM}(z, z, \mathrm{t})+\mathrm{cM}(\mathrm{w}, \mathrm{z}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{cM}(z, \mathrm{w}, \mathrm{t})}\right.
$$

$$
\left.\frac{\mathrm{aM}(\mathrm{w}, \mathrm{z}, \mathrm{t})+\mathrm{bM}(\mathrm{z}, \mathrm{w}, \mathrm{t})+\mathrm{cM}(\mathrm{w}, \mathrm{z}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\right\}
$$

$$
\begin{aligned}
& \geq \min \left\{M(w, z, t), 1, \frac{a+b+c M(w, z, t)}{a+b+c M(z, w, t)}, \frac{(a+b+c) M(w, z, t)}{a+b+c}\right\} \\
& =\min \{M(w, z, t), 1,1, M(w, z, t)\}
\end{aligned}
$$

So, $M(w, z, q t) \geq M(w, z, t)$
Therefore by lemma 2.5 we have $\mathrm{z}=\mathrm{w}$.
z is a common fixed point of $\mathrm{CP}, \mathrm{DQ}, \mathrm{AB}$ and ST .
To prove uniqueness let u be another common fixed point of $\mathrm{CP}, \mathrm{DQ}, \mathrm{ST}$, and AB . then
$\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{qt})=\mathrm{M}(\mathrm{CPz}, \mathrm{DQu}, \mathrm{qt})$
$\mathrm{M}(\mathrm{CPz}, \mathrm{DQu}, \mathrm{qt}) \geq \min \{\mathrm{M}(\mathrm{STz}, \mathrm{ABu}, \mathrm{t}), \mathrm{M}(\mathrm{STz}, \mathrm{CPz}, \mathrm{t})$,
$\underline{\mathrm{aM}(\mathrm{STz}, \mathrm{CPz}, \mathrm{t})+\mathrm{bM}(\mathrm{DQu}, \mathrm{ABu}, \mathrm{t})+\mathrm{cM}(\mathrm{CPz}, \mathrm{ABu}, \mathrm{t})}$
$\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{DQu}, \mathrm{ST} z, \mathrm{t})$
$\underline{\mathrm{aM}(\mathrm{CPz}, \mathrm{DQu}, \mathrm{t})+\mathrm{bM}(\mathrm{DQu}, \mathrm{STz}, \mathrm{t})+\mathrm{cM}(\mathrm{CPz}, \mathrm{ABu}, \mathrm{t})}$

$$
a+b+c
$$

$\geq \min \{\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})$,
$\frac{\mathrm{aM}(z, z, \mathrm{t})+\mathrm{bM}(\mathrm{u}, \mathrm{u}, \mathrm{t})+\mathrm{cM}(z, \mathrm{u}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{u}, z, \mathrm{t})}$,
$\left.\frac{a M(z, u, t)+b M(u, z, t)+c M(z, u, t)}{a+b+c}\right\}$
$\geq \min \left\{M(z, u, t), 1, \frac{a+b+c M(z, u, t)}{a+b+c M(u, z, t)}, \frac{(a+b+c) M(z, u, t)}{a+b+c}\right\}$

$$
=\min \{\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t}), 1,1, \mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t})\}
$$

So, $M(\mathrm{z}, \mathrm{u}, \mathrm{qt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t})$.
Therefore by lemma $2.5 \mathrm{z}=\mathrm{u}$.
Therefore z is a unique common fixed point of $\mathrm{CP}, \mathrm{DQ}, \mathrm{AB}$ and ST in X . By using the commutativity of the pairs (C, P), $(D, Q),(A, B),(S, T)(D Q, B)$ and $(T, C P)$ and $P x=P^{2} x, Q x=Q^{2} x$ for all $x \in X$ then we can easily prove that z is a unique common fixed point of A, B,C, D, S, T, P and Q in X.
We get the result for seven self maps by taking $Q=I_{X}\left(\operatorname{or} P=I_{X}\right)$ identity map in X , for six self maps by taking $Q=P=$ I_{X} for five self maps by taking $Q=P=I_{X}=T\left(\operatorname{or} B=I_{X}=P=Q\right)$ in the theorem 3.1.

If $B=T=C=D=I_{X}$ is taken as an identity mapping of X in theorem 3.1 then we get the result for four self maps. The results for three self maps is obtained by taking $P=Q, T=B=C=D=I_{X}$ and also by taking $\mathrm{S}=\mathrm{A}$, $\mathrm{T}=\mathrm{B}=I_{X}$. Similarly for two self maps is obtained by taking $P=Q, A=S, T=B=I_{X}$ in theorem 3.1.
3.4 Corollary: Let $(X, M, *)$ be complete fuzzy metric space and let P, Q, S, T, A, B, C and D be self-mappings of X.Let the pairs (CP, ST) and (DQ, AB) be occasionally weakly compatible mappings if there exist $q \in(0,1)$ such that (3.4.1) $\mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{qt}) \geq \varphi[\min \{\mathrm{M}(\mathrm{STx}, \mathrm{ABy}, \mathrm{t}), \mathrm{M}(\mathrm{STx}, \mathrm{CPx}, \mathrm{t})$,

```
aM(STx, CPx, t) + bM(DQy, ABy, t) + cM (CPx \(, ~ A B y, ~ t) ~\)
    \(a+b+c M(D Q y, S T x, t)\)
aM(CPx, DQy, t) + bM(DQy, STx, t) + cM (CPx, ABy, t)
    \(a+b+c\)
```

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{t}>0$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \geq 0$ with a and $\mathrm{b}(\mathrm{c}$ and d) cannot be simultaneously zero , $\varphi:[0,1] \rightarrow[0,1]$ such that $\varphi(\mathrm{t})$ $>t$ for all $0<t<1$, then there is a unique common fixed point of $\mathrm{CP}, \mathrm{DQ}, \mathrm{ST}$ and AB in X . If $(\mathrm{C}, \mathrm{P}),(\mathrm{D}, \mathrm{Q}),(\mathrm{A}, \mathrm{B}),(\mathrm{S}, \mathrm{T})$ $(\mathrm{DQ}, \mathrm{B})$ and $(\mathrm{T}, \mathrm{CP})$ are commuting pairs and $\mathrm{Px}=\mathrm{P}^{2} \mathrm{x}, \mathrm{Qx}=\mathrm{Q}^{2} \mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$ then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q have a unique common fixed point in X .
Proof: The Proof follows from theorem 3.1.
3.5 Theorem: Let ($\mathrm{X}, \mathrm{M}, *$) be complete fuzzy metric space and let $\mathrm{P}, \mathrm{Q}, \mathrm{S}, \mathrm{T}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ and Dbe self-mappings of X .Let the pairs (CP, ST) and (DQ, AB) be occasionally weakly compatible mappings if there exist $\mathrm{q} \in(0,1)$ such that (3.5.1)M (CPx, DQy, qt) $\geq \varphi$ \{ $\mathrm{M}_{(\mathrm{STx}, \mathrm{ABy}, \mathrm{t}), \mathrm{M}(\mathrm{STx}, \mathrm{CPx}, \mathrm{t}), \mathrm{M}(\mathrm{DQy}, \mathrm{STx}, \mathrm{t}) \text {, }}^{\text {(}}$

$$
\frac{\mathrm{aM}(\mathrm{STx}, \mathrm{CPx}, \mathrm{t})+\mathrm{bM}(\mathrm{DQy}, \mathrm{ABy}, \mathrm{t})+\mathrm{cM}(\mathrm{CPx}, \mathrm{ABy}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{DQy}, \mathrm{STx}, \mathrm{t})}
$$

```
aM (CPx, DQy, t\()+\mathrm{bM}(\mathrm{DQy}, \mathrm{STx}, \mathrm{t})+\mathrm{cM}(\mathrm{CPx}, \mathrm{ABy}, \mathrm{t})\)
    \(a+b+c\)
```

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{t}>0$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \geq 0$ with a and b cannot be simultaneously zero,
$\varphi:[0,1]^{5} \rightarrow[0,1]$ such that $\varphi(t, 1, t, 1, t)>t$ for all $0<t<1$, then there is a unique common fixed point of $\mathrm{CP}, \mathrm{DQ}, \mathrm{ST}$ and AB . Moreover If $(\mathrm{C}, \mathrm{P}),(\mathrm{D}, \mathrm{Q}),(\mathrm{A}, \mathrm{B}),(\mathrm{S}, \mathrm{T})(\mathrm{DQ}, \mathrm{B})$ and $(\mathrm{T}, \mathrm{CP})$ are commuting pairs and $\mathrm{Px}=\mathrm{P}^{2} \mathrm{x}, \mathrm{Qx}=\mathrm{Q}^{2} \mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$ then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q have a unique common fixed point in X .
Proof: Let the pairs $(\mathrm{CP}, \mathrm{ST})$ and $(\mathrm{DQ}, \mathrm{AB})$ be occasionally weakly compatible mappings, so there are points $x, y \in X$ such that $\mathrm{CPx}=\mathrm{STx}$ and $\mathrm{DQy}=\mathrm{ABy}$. We state that $\mathrm{CPx}=\mathrm{DQy}$. If not, by inequality (3.5.1)
M (CPx, DQy, qt $) \geq \varphi\{(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t}), \mathrm{M}(\mathrm{CPx}, \mathrm{CPx}, \mathrm{t}), \mathrm{M}(\mathrm{DQy}, \mathrm{CPx}, \mathrm{t})$,

$$
\begin{aligned}
& \text { aM(CPx }, C P x, t)+b M(D Q y, D Q y, t)+c M(C P x, D Q y, t) \\
& a+b+c M(D Q y, C P x, t) \\
& \left.\frac{\mathrm{aM}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})+\mathrm{bM}(\mathrm{DQy}, \mathrm{CPx}, \mathrm{t})+\mathrm{cM}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\right\} \\
& =\varphi\{\mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t}), 1, \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t}) \text {, } \\
& \begin{aligned}
& \frac{\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})},\left.\frac{(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\right\} \\
&=\varphi\{\mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t}), 1, \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t}), 1, \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{t})\}
\end{aligned}
\end{aligned}
$$

So, $\quad \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{qt}) \geq \mathrm{M}(\mathrm{CPx}, \mathrm{DQy}, \mathrm{qt})$
a contradiction, therefore $\mathrm{CPx}=\mathrm{DQy}$, i.e. $\mathrm{CPx}=\mathrm{STx}=\mathrm{DQy}=\mathrm{ABy}$. Suppose that there is another point z such that $\mathrm{CPz}=\mathrm{STzthen}$ by (3.5.1), $\mathrm{CPz}=\mathrm{STz}=\mathrm{DQy}=\mathrm{ABy}$, so $\mathrm{CPx}=\mathrm{CPzand} \mathrm{w}=\mathrm{CPx}=\mathrm{ABxis}$ the unique point of coincidence of CP and AB. By lemma 2.10 w is a unique common fixed point of CP and ST . Similarly there is a unique point $\quad z \in X$ such that

$$
\mathrm{z}=\mathrm{DQz}=\mathrm{ABz} .
$$

Assume that $\mathrm{w} \neq \mathrm{z}$. We have, by inequality (3.3.1)
$\mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{qt})=\mathrm{M}(\mathrm{CPw}, \mathrm{DQ} \mathrm{z}, \mathrm{qt})$
M (CPw, DQz, qt) $\geq \varphi\left\{\begin{array}{l}\text { (} \mathrm{STw}, ~ A B z, ~ t), ~ M ~(S T w, ~ C P w, ~ t), ~ M ~(D Q z, ~ S T w, ~ t), ~\end{array}\right.$
$\operatorname{aM}(\mathrm{STw}, \mathrm{CPw}, \mathrm{t})+\mathrm{bM}(\mathrm{DQz}, \mathrm{ABz}, \mathrm{t})+\mathrm{cM}(\mathrm{CPw}, \mathrm{ABz}, \mathrm{t})$

$$
\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{Qz}, \mathrm{STw}, \mathrm{t})
$$

$\mathrm{aM}(\mathrm{CPw}, \mathrm{DQz}, \mathrm{t})+\mathrm{bM}(\mathrm{DQz}, \mathrm{STw}, \mathrm{t})+\mathrm{cM}(\mathrm{CPw}, \mathrm{ABz}, \mathrm{t})$

$$
a+b+c
$$

$=\varphi\{\mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{w}, \mathrm{w}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{w}, \mathrm{t})$,
$\underline{a M(w, w, t)+b M(z, z, t)+c M(w, z, t)}$
$\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{z}, \mathrm{w}, \mathrm{t})$
$\mathrm{aM}(\mathrm{w}, \mathrm{z}, \mathrm{t})+\mathrm{bM}(\mathrm{z}, \mathrm{w}, \mathrm{t})+\mathrm{cM}(\mathrm{w}, \mathrm{z}, \mathrm{t})$

$$
a+b+c
$$

$=\varphi\{\mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t})$,
$\left.\frac{a+b+c M(w, z, t)}{a+b+c M(z, w, t)}, \frac{(a+b+c) M(w, z, t)}{a+b+c}\right\}$

$$
=\min \{\mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{w}, \mathrm{z}, \mathrm{t})\}
$$

$$
M(w, z, q t) \geq M(w, z, t)
$$

Therefore we have $\mathrm{z}=\mathrm{w}$, by Lemma 6.5,
z is a common fixed point of $\mathrm{CP}, \mathrm{DQ}, \mathrm{ST}$ and AB .
To prove uniqueness let u be another common fixed point of $C P, D Q, S T$ and $A B$. Then $\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{qt})=\mathrm{M}(\mathrm{CPz}, \mathrm{DQu}, \mathrm{qt})$
$\mathrm{M}(\mathrm{CPz}, \mathrm{DQu}, \mathrm{qt}) \geq \min \{\mathrm{M}(\mathrm{STz}, \mathrm{ABu}, \mathrm{t}), \mathrm{M}(\mathrm{STz}, \mathrm{CPz}, \mathrm{t}), \mathrm{M}(\mathrm{DQu}, \mathrm{CPz}, \mathrm{t})$,
$\underline{\mathrm{aM}(\mathrm{STz}, \mathrm{CPz}, \mathrm{t})+\mathrm{bM}(\mathrm{DQu}, \mathrm{ABu}, \mathrm{t})+\mathrm{cM}(\mathrm{CPz}, \mathrm{ABu}, \mathrm{t})}$

$$
\mathrm{a}+\mathrm{b}+\mathrm{cM}(\mathrm{DQu}, \mathrm{STz}, \mathrm{t})
$$

```
\(\mathrm{aM}(\mathrm{CPz}, \mathrm{DQu}, \mathrm{t})+\mathrm{bM}(\mathrm{DQu}, \mathrm{STz}, \mathrm{t})+\mathrm{cM}(\mathrm{CPz}, \mathrm{ABu}, \mathrm{t})\)
            \(a+b+c\)
    \(=\min \{\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{u}, \mathrm{z}, \mathrm{t})\),
\(\frac{a M(z, z, t)+b M(u, u, t)+c M(z, u, t)}{a+b+c M(u, z, t)}\),
\(\underline{\operatorname{aM}(z, u, t)+b M(u, z, t)+c M(z, u, t)}\)
        \(\mathrm{a}+\mathrm{b}+\mathrm{c}\)
    \(=\min \left\{M(z, u, t), 1, M(z, u, t), \frac{a+b+c M(z, u, t)}{a+b+c M(u, z, t)}\right.\),
\(\left.\frac{(a+b+c) M(z, u, t)}{a+b+c}\right\}\)
    \(=\min \{\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t}), 1, \mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t}), 1, \mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t})\}\)
```

So $M(z, u, q t) \geq M(z, u, t)$.

Therefore by lemma 2.5 we have $\mathrm{z}=\mathrm{u}$.
Therefore z is a unique common fixed point of $\mathrm{CP}, \mathrm{DQ}, \mathrm{ST}$ and AB in X . By using the commutativity of the pairs (C, P), $(\mathrm{D}, \mathrm{Q}),(\mathrm{A}, \mathrm{B}),(\mathrm{S}, \mathrm{T})(\mathrm{DQ}, \mathrm{B})$ and $(\mathrm{T}, \mathrm{CP})$ and $\mathrm{Px}=\mathrm{P}^{2} \mathrm{x}, \mathrm{Qx}=\mathrm{Q}^{2} \mathrm{x}$ for all $x \in X$. We can easily prove that z is a unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{P}, \mathrm{Q}, \mathrm{S}$ and T in X .

We get results for seven self mappings by taking $Q=I_{X}\left(\operatorname{or} P=I_{X}\right)$, for six self maps by taking $P=Q=I_{X}$, for five self maps by taking $P=Q=I_{X}=T\left(\operatorname{Or} B=I_{X}=P=Q\right)$, for four self maps by taking $T=B=C=D=I_{X}$ identity map in X, for three self maps by taking $P=Q, T=B=C=D=I_{X}$ and also by taking $S=A, T=B=$ $C=D=I_{X}$, for two self maps by taking $P=Q, A=S, B=T=C=D=I_{X}$ in theorem 3.5.
3.6 Example : Let $(X, M, *)$ be a fuzzy metric space, where $X=[3,14)$, with
$t-n o r m *$ is defined by $a * b=a b$ for all $a, b \in[0,1]$ and $M(x, y, t)=\left\{\begin{array}{c}\frac{t}{t+|x-y|} \text { ift }>0 \\ 0 \quad \text { ift }=0\end{array}\right.$ for all $x, y \in X$.
Define the self mappings A, B, C, D, P, Q, SandT by
$C x=\left\{\begin{array}{lr}3, & \text { if } x \in\{3\} \cup(8,14) \\ 11, & \text { if } x \in(3,8]\end{array}\right.$;
$D x=\left\{\begin{array}{cr}3, & \text { if } x \in\{3\} \cup(8,14) \\ 5 & \text { if } x \in(3,8]\end{array} ;\right.$
$A x=\left\{\begin{array}{lr}3 & \text { if } x=3 \\ 13 & \text { if } x \in(3,8] ; \\ & \frac{x+1}{3} \text { if } x \in(8,14)\end{array}\right.$
$S x=\left\{\begin{array}{lr}3 & \begin{array}{r}\text { ifx }=3 \\ 10\end{array} \\ & \text { ifx } \in(3,8]\end{array} ;\right.$
$P \mathrm{P}=\mathrm{Qx}=\mathrm{Bx}=\mathrm{Tx}=$ xforall $\mathrm{x} \in[3,14)$,
Also $\mathrm{CP}(\mathrm{X})=\{3,11\} \nsubseteq[3,11)=\mathrm{ST}(\mathrm{X})$ and

$$
\mathrm{DQ}(\mathrm{X})=\{3,5\} \nsubseteq[3,5) \cup\{13\}=\mathrm{AB}(\mathrm{X})
$$

And (CP, ST) and (DQ, AB) are occasionally weakly compatible, all the conditions of theorem 3.1 are satisfied and 3 is the common fixed point of the pairs (CP, ST) and (DQ, AB) which also remains a point coincidence and 3 is the unique common fixed point of A, B, C, D, P, Q, S and T.

References

[1].A. George, P.Veeramani, "On some results in Fuzzy Metric Spaces", Fuzzy Sets and System, 64 (1994),395-399.
[2].A.Al -Thagafi and NaseerShahzad, "Generalized I-NonexpansiveSelfmaps and Invariant Approximation",ActaMathematicaSinica, English Series May,2008, Vol.24, No.5, pp. 867876.
[3].B.SchweizeransA.Sklar, "Statistical metric spaces", Pacific J. Math. 10(1960), 313-334
[4].C.T.Aage, J.N.Salunke, "On fixed point theorem in Fuzzy Metric Spaces Using A Control Function", Submitted.
[5].G.Jungck and B.E. Rhoades, "Fixed Point for Occasionally Weakly Compatible Mappings", Erratum, Fixed Point Theory,Volume 9, No. 1,2008,383-384.
[6].G.Jungck,"Compatible Mappings and Common Fixed Point", International Journal of Math. Sci. 9 (1986),771-779
[7].L.A.Zadeh," Fuzzy sets", Inform and Control 8 (1965), 338-353.
[8].O.Kramosil and J.Michalek, " Fuzzy Metric and statistical metric spaces", Kybernetika, 11 (1975), 326-334.
[9].P.Balasubramaniam,S. muralisankar, R.P. Pant, "Common fixed points of four mappings in a fuzzy metric space", J. Fuzzy Math. 10(2) (2002), 379-384.
[10].P.L.Sanodia,Hari Om Dubey,V.P.Pandey, "Common fixed point Theorems for Four Mappings in fuzzy metric spaces"IJAESTR International Journal Vol. 4I(1),(2017),453-459
[11].R .Vasuki, "Common fixed points for R-weakly commuting maps in fuzzy metric spaces", 30(1999),419-423.
[12].R.P. Pant ,"A remark on Common fixed point of Four Mappings in a fuzzy metric space", Indian J. Pure Appl. Math. (2004), 433-437.
[13].R.P. Pant ,"Common fixed point of Four Mappings", Bull. Cal. Math. Soc. 90 (1998), 281-286.
[14].S.Sessa," on a weak commutative condition in fixed point consideration "', Publ. Inst. Math(Beograd), 23(46)(1982), 146153.

