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Abstract: In this paper, we show that a pointwise symmetric semi isotonic­ semi closure­  function is uniquely determined by 

the pairs of sets it separates. We then show that when the semi closure­  function of the domain is semi isotonic­  and the 

semi closure­ function of the codomain is semi isotonic­  and pointwise semi symmetric,­ ­  functions that separate only those 

pairs of sets which are already separated,  are semi continuous.­  
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1. INTRODUCTION 

The most important legacy of Norman Levine  3  was the introduction of semi open­  sets which is one of 

thewell-known notions of generalized open sets. Throughout the present paper  X ,  and  Y ,  (or 

simply X and Y ) denote topologicalspaces. Let A be a subset of X .We denote the interior and the closure 

of a set A by  Int A and  Cl A , respectively. A X  is called a semi open­  set of X  3 if 

    A Cl Int A .  The complement of a semi open­  set is called semi-closed. The intersection of all semi-

closedsets containingaset A iscalledthe semi -cl osur e of A andisdenotedby  sCl A .  

Definition 1.  1  A  generalized semi-closure space is a pair  X , sCl  consisting of a set  X  and a semi-closure 

function sCl,  a function from the power set of X to itself. 

 2  The semi-closure of a subset A  of X , denoted by sCl,  is the image of A  under sCl.  

 3  The semi-exterior of A  is     –sExt A X sCl A ,   and the semi-interior of A  is  

    – –sInt A X sCl X A .  

 4 We say that A  is semi-closed if  A sCl A , A  is semi open­  if  A sInt A and N  is a 

semi neighborhood- of x  if  x sInt N .  
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Definition 2.We say that a semi-closure function sCl defined on X is: 

 1 semi grounded­  if   sCl .   

 2 semi isotonic­  if    sCl A sCl B whenever A B.  

 3 semi enlarging­   if  A sCl A for each subset A  of X .  

 4 semi idempodent­  if    sCl A sCl sCl A    for each subset A of X .  

 5 semi sub linear­ ­ if       sCl A B sCl A sCl B  forall A, B X .  

Definition 3.  1  Two subsets A and B of X aresaidtobe semi­closure­separated inageneralize semi closure­

space  X , sCl  or simply, sCl­separated  if   A sCl B  and   sCl A B , or equivalently, if 

  A sExt B   and  B sExt A .  

 2 semi exterior­  points are said to be semi closure separated­ ­ in a generalized semi closure­  space 

 X , sCl if for each A X  and each  x sExt A ,  x  and A  are sCl­separated.  

Theorem 1 1. . Let  X , sCl be a generalized semi closure­ space in which semi­exterior  points are 

sCl­separated  and let S be the pairs of sCl­separated  sets in X .  Then, for each subset A  of X , the

semi­closure of A is      sCl A x X : x ,A S .    

Proof . Inanygeneralized semi­closure space      sCl A x X : x ,A S .   Supposethat 

   y x X : x ,A S ,    that is,   y ,A S.  Then     y sCl A , andso  y sCl A .

Supposenowthat  y sCl A .Byhypothesis,   y ,A S, andhence,      y x X : x ,A S .  

2. SOME FUNDAMENTAL PROPERTIES 

Definition 4.  A semi closure­ function sCl defined on a set X  is said to be pointwise semi symmetric­  when 

for all x, y X , if   x sCl y , then    y sCl x .  

A generalized  semi­closure space  X , sCl  is said to be 
0semi R­  when for all x, y X ,  if x  is in each 

semi­neighborhood of  y,then y  is in each semi­neighborhood of x. 

Corollary 2 1. .Let  X , sCl a generalized semi closure­ space in which semi­exterior points are sCl­separated.

Then sCl is pointwise semi symmetric­  and  X , sCl is 
0semi R­ . 

Proof . Suppose that semi­exterior points are sCl­separated  in  X , sCl . If   x sCl y ,   then  x  and 

 y are not sCl­separated and hence,   y sCl x .   Hence, sCl  is pointwise semi symmetric­ . Suppose 

that x  belongs to every semi neighborhood­ of y,that is, x M  whenever  y sInt M .Letting  –A X M

and rewriting contrapositive,  y sCl A whenever x A. Suppose  x sInt N .   –x sCl X N , so x is

sCl­separated from –X N. Hence  sCl x N,  x x ,  so    y sCl x N. Hence  X , sCl  is 
0semi R­ .  

While these three axioms are not equivalent in general, they are equivalent when the semi-closure 

function is semi­isotonic :  

Theorem 2 2. . Let  X , sCl beageneralized semi closure­ spacewith sCl semi isotonic­ . Then the following 

statements areequivalent: 



ON A CLOSURE SPACE VIA SEMI-CLOSURE OPERATOR  

 

 

 5449 

 1 sExterior points are sCl­separtaed.  

 2 sCl is pointwise semi symmetric­ .  

 3  X , sCl is
0semi R­ . 

Proof . Suppose that  2 is true. Let A X , and suppose  x sExt A .  Then, as sCl is semi isotonic­ ,

foreach y A,   x sCl y , andhence,   y sCl x . Hence    A sCl x . Hence  2 implies  1 , and 

by the previous corollary,  1 implies  2 .Suppose now  that  2 is true and let x, y X  such that x  is in 

every semi neighborhood­  of y,that is, x N,whenever  y sInt N .  Then  y sCl A whenever x A,  and 

in particular, since  x x ,   y sCl x . Hence   x sCl y . Thus if y B, then       x sCl y sCl B ,  as

sCl s is semi isotonic­ .Henceif  x sInt C , then y C, thatis, y isinevery semi neighborhood­ of x. Hence,  2  

implies  3 .  

Finally, suppose that  X , sCl is 
0semi R­ and suppose that   x sCl y . Since sCl is semi isotonic­ ,

 x sCl B whenever y B,or, equivalently, y is in every semi neighborhood­ of x.Since  X , sCl is
0semi R­ ,

x N  whenever  y sInt N . Hence,  y sCl A whenever x A, and in particular, since  x x ,

  y sCl x .  Hence  3  implies  2 .  

Theorem 2 3. .Let S be a set of unordered pairs of subsets of a set X  such that, for all A, B, C  X .  

 1  If A B and B,C S, then A, C S  and  

 2  If   x ,B S  foreach x A  and   y ,A S  foreach y B, then A,B S.  

Then there exists a unique pointwise semi symmetric­ semi­isotonic semi closure­  function sCl  on X which

semi closure separates­ ­ theelementsof S.  

Proof . Define sCl by   sCl A    x X : x ,A S  forevery A X . If  A B X and  x sCl A , then

  x ,A S. Hence   x ,B S, thatis,  x sCl B . Thus sCl is semi isotonic­ . Also,   x sCl y

ifandonlyif     x , y S ifandonlyif   y sCl x , and thus sCl is pointwise semi symmetric­ . Supposethat

 A,B S.Then   A sCl B      A x X : x ,B S      x A : x ,A S . Similarly,   sCl A B .

Hence,if A,B S, then A and B are sCl­seprated. 

Nowsupposethat A and B are sCl­seprated. Then         x A : x ,B S A sCl B  and

        x B : x ,A S sCl A B . Hence,   x ,B S foreach x A and   y ,A S   for each y B,and 

thus,  A,B S.  

Furthermore,manypropertiesofsemi-closurefunctionscanbeexpressedintermsofthe sets theyseparate: 

Theorem 2 4. .Let S  be the pairs of sCl­separted  sets of a generalized semi-closure space  X , sCl in which 

sExterior points are semi closure separates­ ­ .Then sCl is 

 1 semi grouped­  if and only if for all x X ,   x , S.  

 2 semi enlarging­  if and only if for all  A,B S, A and B are disjoint. 
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 3 semi sub linear­ ­ ifandonlyif A,B C S whenever A,B S and A,C S.  

Moreover,if sCl is semi enlarging­ andforall A, B  X ,   x ,A S whenever   x ,B S  and   y ,A S  

for each y B,  then sCl   is semi idempodent­ . Also, if sCl  is semi isotonic­  and semi idempodent­ ,  then 

  x ,A S  whenever   x ,B S  and    y ,A S  for each y B.  

Proof .  Recall that by Theorem 1 1. ,        sCl A x X : x ,A S  for every A X .  Suppose that for all 

x X ,   x , S.  Then         sCl x X : x , S .    Hence sCl  is semi grounded­ .  Conversely, if 

        sCl x X : x , S ,    then   x , S ,  for all x X . Supposethatforall  A,B S, A and B

aredisjoint.Since   a ,A S if a A,  A sCl A for  each  A X . Hence,  sCl is  semi enlarging­ .

Conversely,  suppose  that sCl  is semi enlarging­ and  A,B S.  Then    A B sCl A B .  Suppose 

that   A,B C S  whenever  A,B S. and  A,C S.  Let  x X  and  B,C X  such that 

  x ,B C S.  Then   x ,B S  or   x ,C S.  Hence       sCl B C sCl B sCl C ,  and therefore, 

sCl is semi sub linear­ ­ . Conversely, suppose that sCl is semi sub linear­ ­ andlet  A,B ,  A,C S. Then we 

obtain    sCl B C A       sCl B sCl C A       sCl B A sCl C A    and 

     B C sCl A        B sCl A C sCl A  .  Suppose that sCl is semi enlarging­  and suppose that 

  x ,A S  whenever   x ,B S  and   y ,A S  for every y B. Then     sCl sCl A sCl A . If 

  x sCl sCl A ,  then     x ,sCl A S.   y ,A S,  for each  y sCl A ; hence   x ,A S.  And since 

sCl  is semi enlarging­ ,     sCl A sCl sCl A .  Thus     sCl sCl A sCl A , for each A X .  Finally, 

suppose that sCl is semi isotonic­  and  semi idempodent­ .  Let x X  and A, B  X suchthat   x ,B S

and,foreach y B,   y ,A S.   Then  x sCl B andforeach y B,  y sCl A , that is,  B sCl A .  

Hence,         x sCl B sCl sCl A sCl A .  

Definition 5. Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi closure­  spaces. Then a function 

f : X Y  is said to be 

 1 semi closure preserving­ ­  if            X Y
f sCl A sCl f A for each A X .  

 2 semi continuous­  if              
1 1

X Y
sCl f B f sCl B for each B Y. 

In general, neither condition implies the other. However, we easily obtain the following result: 

Theorem 2 5. .  Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi closure­  spaces and let f : X Y.  

 1 If f  is semi closure preserving­ ­  and  
Y

sCl is semi isotonic­ , then f  is semi continuous­ .  

 2 If f  is semi continuous­ and  
X

sCl is semi isotonic­ ,  then f  is semi closure preserving­ ­ .  

Proof . Suppose that f is semi closure preserving­ ­ and  
Y

sCl is semi isotonic­ .   Let B Y.  Then

                  
   

1 1

X Y Y
f sCl f B sCl f f B sCl B and therefore we obtain       

1

X
sCl f B

                
1 1 1

X Y
f f sCl f B f sCl B .  Supposethat f is semi continuous­ and  

X
sCl is semi isotonic­ .

Let A X .                      
1 1

X X Y
sCl A sCl f f A f sCl f A  and hence 

                       
1

X Y Y
f sCl A f f sCl f A sCl f A .  
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Definition 6. Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi closure­  spaces and let f : X Y  be a 

function. If for all A, B  X ,  f A  and  f B are not  
Y

sCl ­separated whenever A  and B are not 

 
X

sCl ­separated , then we say that f is non semi separating­ ­ .  

Note that f  is non semi separating­ ­ if and only if A  and B are  
X

sCl ­separted  whenever  f A   

and  f B are  
Y

sCl ­separated.  

Theorem 2 6. .  Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi closure­  spaces and let  f : X Y  be a 

function.  

 1 If  
Y

sCl is semi isotonic­ and f  is non semi continuous­ ­ ,  then  1f C and  1f D are  
X

sCl ­separated  

whenever C  and D  are  
Y

sCl ­separated.  

 2 If  
X

sCl is semi isotonic­ and  1f C and  1f D are  
X

sCl ­separated  whenever C  and D  are 

 
Y

sCl ­separated ,  then f  is non semi separating­ ­ .  

Proof . Let C  and D be  
Y

sCl ­separatedsubsets,where  
Y

sCl is semi isotonic­ . Let   1A f C  andlet

  1B f D .  f A C and  f B D andsince  
Y

sCl is semi isotonic­ ,  f A and  f B are also 

 
Y

sCl ­separated. Hence, A  and B  
X

sCl ­separated in X . Supposethat  
X

sCl is semi isotonic­ andlet A,

B  X suchthat  C f A and  D f B are  
X

sCl ­separated. Then   1f C and  1f D are

 
X

sCl ­separated andsince  
X

sCl is semi isotonic­ ,        
1 1A f f A f C  and 

       
1 1B f f B f D are  

X
sCl ­separated.aswell. 

Theorem 2 7. .  Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi closure­  spaces and let f : X Y  be a 

function. If f  is semi closure preserving­ ­ ,  then f is non semi separating­ ­ .  

Proof . Suppose that f  is semi closure preserving­ ­ and A, B  X are not  
X

sCl ­separated. Suppose 

that     
X

sCl A B . Then                           
X X Y

f sCl A B f sCl A f B sCl f A f B .

Similarly,if     
X

A sCl B ,  then        
Y

f A sCl f B . Hence  f A  and  f B are not 

 
Y

sCl ­separated.  

Corollary 2 8. . Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi­closure  spaces with  
X

sCl

semi isotonic­ and let f : X Y  be a function.  If f  is semi­continuous, then f is non semi separating­ ­ .  

Proof . If f  is semi continuous­ and  
X

sCl  is semi isotonic­ ,  then by  Theorem 2 5 2. f  is 

semi closure preserving­ ­ .Hence by Theorem 2 7. , f  is non semi separating­ ­ .  

Theorem 2 9. . Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi closure­  spaces with semi xterior­e   

points are  
Y

sCl ­separated in Y  and let f : X Y be a function. Then f is semi closure preserving­ ­  if and 

only if f  is non semi separating­ ­ .  

Proof . By Theorem 2 7. , if f  is semi closure preserving­ ­ ,  then f  is non semi separating­ ­ .  

Supposethat f is non semi separating­ ­ andlet A X . If   
X

sCl , then

          
X Y

f sCl A sCl f A . Suppose     
X

sCl A . Let 
XS  and 

YS denote the pairs of 

 
X

sCl ­separated subsets of X   and the pairs of   
Y

sCl ­separated  subsets of  Y , respectively. Let 
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      X
y f sCl A and let       1 

X
x sCl A f y . Since    

X
x sCl A ,    Xx ,A S andsince f   is 

non semi separating­ ­ ,      Yy , f A S . Since semi xterior­e pointsare  
Y

sCl ­separated ,       Y
y sCl f A .  

Thus               X Y
f sCl A sCl f A for each A X .  

Corollary 2 10. . Let   
X

X , sCl  and   
Y

Y , sCl be generalized semi closure­  spaces with 

semi isotonic­  closure functions and with  
Y

sCl ­ pointwise­semi­symmetric  and let f : X Y  be a 

function. Then f  is semi continuous­  if and only if f  is non semi separating­ ­ .  

Proof . Since  
Y

sCl is semi isotonic­ and pointwise semi symmetric­ ­ , semi Exterior­ points are 

semi isotonic­ separated in   
Y

Y , sCl   Theorem 2 2 1. .  Since both semi closure­   functions are 

semi isotonic­ , f  is semi closure preserving­ ­  Theorem 2 5.  if and only if f  is semi continuous­ . Hence, 

we can apply Theorem 2 9. .  

 

3. SEMI-CONNECTED GENERALIZED SEMI-CLOSURE SPACES 

Definition 7. Let  X , sCl beageneralized semi closure­ space. Then X issaidtobe semi connected­ if X

isnotaunionofdisjointnontrivialsemi-closure-separatedpairofsets. 

Theorem 3 1. . Let  X , sCl be a generalized semi closure­  space with semi grounded semi isotonic­

semi enlarging­ sCl. Then, the following statements are equivalent: 

 1  X , sCl  is semi connected­ .  

 2 X cannot be a union of non-empty disjoint semi open­ sets.  

Proof .    1 2 : Let X beaunionofnon-emptydisjoint semi open­  sets A and B. Then,  X A B

andthisimpliesthat  –B X A  and A isa semi open­ set.Thus, B is semi closed­  andhence

    A sCl B A B . Byusing a similarway,weobtain   sCl A B . Hence, A and B  are 

semi closure separated­ ­  and hence X  is not semi connected­ .This is a contradiction. 

   2 1 :  Suppose that X  is not semi connected­ . Then  X A B,  where A, B  are disjoint

semi closure separated­ ­ sets,i.e.      A sCl B sCl A B . Wehave   –sCl B X A B. Since sCl is

semi enlarging­ ,weobtain   sCl B B andhence, B is semi closed- .  By using   sCl A B  and similar 

way, it is obvious that A  is semi closed- .  This is a contradiction.  

Definition 8.  Let  X , sCl  be a generalized semi closure­  space with semi-grounded semi isotonic­ sCl.  Then, 

 X , sCl  is called 1T semi grounded­ ­ semi isotonic­  space if    sCl x x   for all x X . 

Theorem 3 2. .Let  X , sCl be a generalized semi closure­ space with grounded­ semi isotonic­ sCl. Then, the 

following statements are equivalent: 

 1  X , sCl is semi connected­ .  

 2 Any semi continuous­  function  f : X Y  is constant for all 1T semi grounded­ ­ semi isotonic­ spaces 

 0 1Y , .  

Proof .    1 2 : Let X be semi connected­ . Supposethat f : X Y is semi continuous­  andit is not 

constant.Then there exists aset U X such that   1 0U f  and   1 1–X U f . Since f is

semi continuous­ and Y is 1T grounded­ ­ semi isotonic­ space,thenwe have
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       1 10 0         Cl U sCl f f sCl   1 0f U  andhence      –sCl U X U . Byusing a 

similarwaywehave    –U sCl X U .  Thisisacontradiction.Thus, f isconstant.  

   2 1 : Suppose that X  is not semi connected­ .Then there exist semi closure separated­ ­ sets U and V

such that U V X . We have  sCl U U and  sCl V V and –X U V. Since sCl is semi­isotonic  and U ,

V are semi closure separated­ ­ ,  then      – –sCl X U sCl V X U.  If we consider the space   Y , sCl by 

 Y 0,1 ,   sCl ,      sCl 0 0     sCl 1 1  and   sCl Y Y ,  then space  Y , sCl is a 

1T semi grounded­ ­ semi isotonic­  space. We define the function  f : X Y  as    0f U and  

   1–f X U .   Let  A   and A Y.  If A Y ,  then  1 f A X   and hence     1 sCl X sCl f A

    1 1  X f A f sCl A . If   0A , then  1 f A U  and hence    1    sCl U sCl f A U

   1 1    f A f sCl A . If   1A , then  1  –f A X U and hence     1    – –sCl X U sCl f A X U

   1 1    f A f sCl A .Hence, f is semi continuous­ .  Since f is not constant, this is acontradiction. 

Theorem 3 3. . Let    f : X , sCl Y , sCl and    g : Y , sCl Z , sCl be semi continuous­  functions. Then, 

   g f : X , sCl Z , sCl is semi continuous­ .  

Proof . Supposethat f and g are semi continuous­ . Forall A Z wehave

      
1 1 1      

  
sCl g f A sCl f g A          

11 1 1 1             
f sCl g A f g sCl A g f sCl A .

Hence, g f : X Z is semi continuous­ .  

Theorem 3 4. . Let  X , sCl and  Y , sCl be generalized semi closure­  spaces with semi grounded­

semi isotonic­ sCl  and    f : X , sCl Y , sCl be a semi continuous­ function onto Y .   If X  is 

semi connected­ ,  then Y is semi connected­ .  

Proof . Supposethat  0 1, isageneralized semi closure­ spacewith semi grounded­ semi isotonic­ sCl and 

 0 1g :Y , is a semi continuous­ function. Since f  is semi continuous­ , by Theorem 3 3. ,  0 1g f : X ,  

is semi continuous­ . Since X is semi connected­ , g f is constant and hence g is constant. By 

Theorem 3 2. , Y  is semi connected­ .  

Definition 9. Let  Y , sCl be a generalized semi-closure space with semi-grounded semi- isotonic sCl and 

more than one element. A generalized semi-closure space  X , sCl with semi-grounded semi isotonic­ sCl

iscalled Y semi connected­ ­ ifany semi continuous­ function f : X Y isconstant. 

Theorem 3 5. . Let  Y , sCl  be a generalized semi closure­  space with semi grounded­ semi isotonic­

semi enlarging­ sCl  and more than one element. Then every Y semi connected­ ­  generalized semi closure­  

space with semi grounded­ semi isotonic­  is semi connected­ .  

Proof . Let  X , sCl be a Y semi connected­ ­  generalized semi closure­  space with semi grounded­

semi isotonic­ sCl.Suppose that  0 1f : X , is a continuous­  function, where  0 1,  is 1T semi grounded­ ­

semi isotonic­ space.Since Y isageneralized semi closure­ space with semi grounded­ semi isotonic­

semi enlarging­ sCl and more than one element, thenthere exists a λ-continuous injection  0 1 g : , Y.

By Theorem 3 3. , g f : X Y  is semi continuous­ .  Since X  is Y­semi­connected,  then g f is constant. 

Thus, f  is constant and hence, by Theorem 3.2, X  issemi-connected. 
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Theorem 3 6. . Let  X , sCl and  Y , sCl begeneralized semi closure­ spaceswithsemi-grounded semi isotonic­

sCl and    f : X , sCl Y , sCl be a semi continuous­ function onto Y .  If X  is Z semi connected­ ­ ,  then 

Y  is Z semi connected­ ­ .  

Proof . Suppose that g :Y Z  is a semi continous­  function. Then g f : X Z  is semi continuous­ .  

Since X  is Z semi connected­ ­ ,  then g f  is constant. This implies that g  is constant. Thus, Y  is 

Z semi connected­ ­ .  

Definition 10. Ageneralized semi closure­ space  X , sCl isstrongly semi connected­ ifthere is no countable 

collection of pairwise semi closure separated­ ­ sets {An} such that X =∪An. 

Theorem 3 7. .Everystrongly semi connected­ generalized semi closure­ spacewith semi grounded­ semi isotonic­

sCl is semi connected­ .  

Theorem 3 8. .Let  X , sCl and  Y , sCl begeneralized semi closure­ spaceswith semi grounded­ semi isotonic­

sCl and    f : X , sCl Y , sCl be a semi continuous­ functiononto Y . If X  is strongly semi connected­ ,

then Y  is strongly semi connected­ .  

Proof . Suppose that Y  is not strongly semi-connected. Then, there exists a countable collection of pairwise 

semi closure separated­ ­  sets  nA such that   nY A .  Since    1 1    n mf A sCl f A

   1 1    n mf A f sCl A  for all n m,   then the collection   1

nf A is pairwise semi-closure-

separated. This is a contradiction. Hence, Y  isstrongly  semi connected­ .  

Theorem 3 9. . Let    
X

X , sCl and   
Y

Y , sCl aregeneralizedsemi-closurespaces.Then the following 

statements are equivalent for a function f : X Y :  

 1 f  is semi continuous­ .  

 2          
1 1f sInt B sInt f B foreach B Y. 

Theorem 3 10. . Let  X , sCl  be a generalized semi closure­  space with semi grounded­ semi isotonic­ sCl.  

Then  X , sCl  is strongly semi connected­  if and only if  X , sCl  is Y semi connected­ ­  for any countable 

1T semi grounded­ ­ semi isotonic­  space  Y , sCl .  

Proof .   :   Let  X , sCl be strongly semi connected­ .   Suppose that  X , sCl is not   Y­semi­connected

forsomecountable 1T semi grounded­ ­ semi isotonic­ space  Y , sCl .There exists a semi continuous­ function 

f : X Y  which is not constant and hence  K f X  is a countable set with more than one element. 

For each ny K, there exists nU X such that    1

n nU f y and hence   nY U .  Since f is 

semi continuous­  and Y  is semi grounded­ , thenforeach n m,  n mU sCl U 

                   1 1 1 1 1 1         n m n m n mf y sCl f y f y f sCl y f y f y . This contradicts 

with the strong semi connectedness­ of X .  Thus, X  is Y semi connected.­ ­  

  : Let X be Y semi connected­ ­ for any countable 1T semi grounded­ ­ semi isotonic­ space  Y , sCl .

Suppose that X  is not strongly semi-connected. There exists a countable collection ofpairwise

semi closure separated­ ­  sets  nU suchthat   nX U . Wetakethespace  Z , sCl , where Z  

isthesetofintegersand    sCl : P Z P Z isdefinedby  sCl K K for each K Z. Clearly  Z , sCl is a 

countable 1T semi grounded­ ­ semi isotonic­  space. Put   k nU U . Wedefineafunction f : X Z by



ON A CLOSURE SPACE VIA SEMI-CLOSURE OPERATOR  

 

 

 5455 

   kf U x and    – kf X U y where x, y Z  and x y. Since   k nsCl U U  forall n k,  then

   


 k nn k
sCl U U   and hence  k ksCl U U . Let  K Z. If x, y K , then  1 f K X and

 1   sCl f K      1 1      sCl X X f K f sCl K . If x, K and y K, then  1  kf K U and 

       1 1 1            k ksCl f K sCl U U f K f sCl K . If y K and x K, then  1  – kf K X U .  Since

  sCl K K foreach K Z,  then   sInt K K foreach K Z. Also,

   


  – – –k n k kn k
X U U X sCl U sInt X U . Thus,  1     – kf sInt K X U    1  – kf K sInt X U

 1   sInt f K . Henceweobtainthat f is semi continuous­ . Since f  is not constant, this is a 

contradiction with the Z semi connectedness­ ­  of X .Hence, X is strongly semi connected­ .  
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