
 Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 2100-2105

 Research Article

2100

nCODET: A Tool For Novice Developer To Detect Untestable Code

Saiful Bahri Hisamudin
1*

, Salmi Baharom
2
, Jamilah Din

3

1,2,3
Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia 43400, Serdang, Selangor Darul Ehsan

saifulbahriey@gmail.com
1

Article History: Received: 10 November 2020; Revised: 12 January 2021; Accepted: 27 January 2021;

Published online: 05 April 2021

Abstract: Uncontrollability is troublesome for unit testing. It causes a non-deterministic behavior where the same input can

produce different results based on different executions. The non-deterministic characteristic makes it impossible to test the

internal logic of a method because it suffers from tight coupling, a single responsibility principle violation, being an

untestable code, being non-reusable or hard to maintain. This paper describes a tool, namely the non-deterministic Code

Detection Tool (nCODET) that aims to assist novice developers to write testable codes by avoiding the non-deterministic

characteristic in their codes. Our research focuses on the unit testability of classes; particularly the effort involved in

constructing unit test cases.

Keywords: testable code, testability, non-deterministic code, controllability

1. Introduction

Software testing has always been perceived as a time-consuming process, costly and less significant. But in

reality, it is important to produce high quality software products. Meanwhile, software testability is the degree to

which a software artifact supports software testing in a given test context. If the testability of a software artifact

is high, it indicates that the software is easy to test. There are several factors that affect software testability, such

as controllability, observability, containing built-in test capabilities, understandability and complexity. Widely-

discussed controllability can improve testability. Binder (1994) stated the importance of controllability; If users

cannot control the inputs of components, they cannot be sure what caused a given output. In addition, Devietti et

al. (2009) described, due to inability to control the input, software defect can only be detected after it is executed

a hundred times.

The software is developed in units and every unit is expected to have a defined functionality. Software testing

covers a wide range of activities, from unit testing to user acceptance testing. In unit testing, each unit is tested

independently from other units to ensure that the unit satisfies its functional specification. However, sometimes,

it can be quite difficult to generate test cases for some units. Uncontrollability is one of the reasons why a unit is

hard to test. Uncontrollability leads to non-deterministic behavior where same inputs can produce different

outputs on different execution. The non-deterministic characteristics of a code makes it impossible to test the

internal logic of a unit from a unit testing’s perspective. To ensure high testability, a testable code has to be

created. Since unit is the basis of complete software, it is crucial to develop testable units before we can develop

a testable system. Study by Hayes et al. (2015) and Hussain et al. (2016) shows that the effectiveness of testing

can be improved by designing testable artefacts such as software requirements, a document and the source code

of the software. Thus, the developer has to be guided to develop testable codes.

In this paper we describe our on-going research that addresses the problem of untestable code focusing on

non-deterministic characteristic introduced by the developer in a code. The essence of the study is on unit

testability of a class. The aim of our project is to investigate the strategies and techniques that will improve test

efforts when constructing unit test cases.

The remainder of the paper is organized as follow. Section 2 describes the issue with a non-deterministic

characteristic. We explain our framework and a proposed tool in Section 3. Section 4 discusses the result, and

finally, the concluding remark is given in Section 5.

2. Non-Deterministic Characteristic

Controllability is widely discussed to affect software testability. Better controllability reflects to better

testability in software program. Inability to control the input during program execution leads to non-deterministic

behavior of software program where the same input can produce different outputs on different executions.

Aviram et al. (2012) explained that non-determinism can be caused by multiple sources such as timer, random

numbers and incoming messages from a web server. To explain the issue of non-deterministic, let’s take a look

at a method that displays daily prayer types (i.e. Fajr, Dhuhr, Asr, Maghrib, Isha) as in Figure 1. The method

Saiful Bahri Hisamudin*, Salmi Baharom, Jamilah Din

2101

checks the current time that would need to be retrieved from the server’s time.

Figure 1. Method to display daily prayer time

The method is written in a way that a proper state-based unit test is impossible to be performed.

LocalTime.now() is a hidden input and yet cannot be controlled. The input value might change during each test

execution and thus it will produce a different output. Such non-deterministic behavior makes it impossible to test

the internal logic of the getPrayerTime() method because the method suffers from tightly coupling, single

responsibility principle violation, untestable code, non-reusable and hard to maintain.

3. Materials And Methods

This section presents a framework of the proposed tool in order to detect non-deterministic characteristic of a

code. A library is used to keep the patterns of non-deterministic characteristics where an untestable code is

recognized based on these patterns. Figure 2 shows the framework of the proposed tool. It consists of three

phases which are pre-processing, processing and post-processing.

 Phase 1-Pre-processing of the sample code: In this phase, a user can upload or paste a code sample into the

system that may contain non-deterministic characteristic The tool will not allow an empty input field where an

error message will be prompted to the user.

 Phase 2-Processing of the code: Once the code sample is uploaded, this phase processes the code sample to

detect the non-deterministic characteristic using a library that consists of predefined dictionary of non-

deterministic words. The tool classifies and matches every word in the uploaded code with the predefined words

in the dictionary. The predefined dictionary of non-deterministic words as shown in Figure 3.

 Phase 3-Post processing of the code: This phase presents the output of the processed code. We use red font

to differentiate the detected words with non-detected words. The number of detected words is calculated for each

non-deterministic characteristic. The result is simplified in the form of table. Additionally, the result also shows

the explanation on each characteristic detected in the code sample as a quick reference.

Figure 4 illustrates the architecture of the proposed tool. The requirement for developing tool consists of

Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), PHP programming language, Apache web

server, MySQL for the database and Macromedia Dreamweaver for text editing.

 nCODET: A Tool For Novice Developer To Detect Untestable Code

2102

Figure 2. Framework of the Proposed Tool

Figure 3. Representation of Predefined Dictionary of Non-Deterministic Characteristic

Saiful Bahri Hisamudin*, Salmi Baharom, Jamilah Din

2103

Figure 4. Tool Architecture

We conducted a preliminary experimental study to evaluate the ability of the proposed tool to detect non-

deterministic characteristics of a code. Two sources of code samples were collected. They were obtained from

GitHub, online websites and students’ submissions. Several researchers including Shi et al. (2016) and Suwa et

al. (2017) used this online website as their source of codes. A total of five code samples that contained at least

one non-deterministic characteristic were randomly-picked from GitHub. Meanwhile, for the students’

submissions, we acquired help from a class of 17 Software Engineering undergraduate students who have

already learned Java programming. Each student is given three questions where the student was required to write

three Java codes based on three different libraries. Figure 5 shows one of the questions that are given to the

students.

Figure 5. Sample Question

A total of 51 code samples were collected based on the three questions. As the tool is still under

development, the ability of the proposed tool is determined by comparing the results obtained from the proposed

tool with manual detection. An overview of the experimental study is shown in Figure 6.

4. Results and Discussion

Table 1 shows the data collection from manual and nCODET detections based on code samples obtained

from the students’ submissions. The result from the manual detection shows a total of 16, 10 and 13 students use

non-deterministic characteristics in their codes to answer Question 1, Question 2 and Question 3 respectively. In

order to evaluate the ability of nCODET in detecting non-deterministic charateristics, we run the same sample

codes with nCODET. From the experiment, nCODET detects the same number of detections as the manual

 nCODET: A Tool For Novice Developer To Detect Untestable Code

2104

detection for Question 1 and Question 2. However, for Question 3, nCODET is unable to detect non-

deterministic characteristics from three code samples because these code samples use a generalized or simplified

library such as java.io.* which is not considered by the algorithm of nCODET. The tool, nCODET only

considers a full library name such as java.io.file, and not of java.io.*. On average, the nCODET detected 71% of

the 51 code samples from the students’ submissions.

Figure 6. Evaluation Framework

Table 1. Data Collection from Students’ Submissions

Code Sample Respondent Manual Detection nCODET Detection

Question 1 17 16 16

Question 2 17 10 10

Question 3 17 13 10

Table 2 shows the data collection of manual and nCODET detections based on code samples obtained from

GitHub. We randomly chose sample codes and only codes that contain non-deterministic characteristics are

considered in the experimental study. Then, we run the chosen sample codes using nCODET. From the

experiment, it shows that the nCODET detects non-deterministic characteristics except for Code 5. This is due to

the use of a generalized library name which was explained earlier. On average, the nCODET detected 80% of the

5 code samples from GitHub.

Saiful Bahri Hisamudin*, Salmi Baharom, Jamilah Din

2105

Table 2. Data Collection from GitHub Code Sample

Sample No. Manual Detection nCODET Detection

Code 1 1 1

Code 2 1 1

Code 3 1 1

Code 4 1 1

Code 5 1 0

Thus, the overall average of nCODET detection is 76% based on 56 sample codes from two different sources

which are students’ submissions and GitHub online website.

5. Conclusion

This research contributes to software testability by developing a tool with a dictionary to detect non-

deterministic characteristics in a code. The tool is developed to guide novice programmer to write testable code

during software development. However, the proposed tool has to be improved as it has a number of limitations.

Currently, the developed tool is only able to detect non-deterministic characteristics from code samples with

complete library names. In the future, the tool can be improved by enhancing the algorithm in the proposed tool

so that it can detect non-deterministic characteristics in code samples with more libraries. Meanwhile, the scope

of this tool is limited to non-deterministic characteristics based on a software library. In the future, the

capabilities of this tool can be improved by adding other sources of non-deterministic.

6. Acknowledgment

The authors would like to acknowledge the Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia for the financial support.

References

1. Aviram, Amittai, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2012. “Efficient System-Enforced

Deterministic Parallelism.” Commun. ACM 55 (5): 111–119.

https://doi.org/10.1145/2160718.2160742.

2. Binder, Robert V. 1994. “Design for Testability in Object-Oriented Systems.” Commun. ACM 37

(9): 87–101. https://doi.org/10.1145/182987.184077.

3. Devietti, Joseph, Brandon Lucia, Luis Ceze, and Mark Oskin. 2009. “DMP: Deterministic Shared

Memory Multiprocessing.” SIGARCH Comput. Archit. News 37 (1): 85–96.

https://doi.org/10.1145/2528521.1508255.

4. Hayes, J H, W Li, T Yu, X Han, M Hays, and C Woodson. 2015. “Measuring Requirement

Quality to Predict Testability.” In 2015 IEEE Second International Workshop on Artificial

Intelligence for Requirements Engineering (AIRE), 1–8.

https://doi.org/10.1109/AIRE.2015.7337622.

5. Hussain, A., Mkpojiogu, E.O.C., Kamal, F.M. (2016). Mobile video streaming applications: A

systematic review of test metrics in usability evaluation. Journal of Telecommunication, Electronic

and Computer Engineering, 8 (10), pp. 35-39.

6. Shi, A, A Gyori, O Legunsen, and D Marinov. 2016. “Detecting Assumptions on Deterministic

Implementations of Non-Deterministic Specifications.” In 2016 IEEE International Conference on

Software Testing, Verification and Validation (ICST), 80–90.

https://doi.org/10.1109/ICST.2016.40.

7. Suwa, H, A Ihara, R G Kula, D Fujibayashi, and K Matsumoto. 2017. “An Analysis of Library

Rollbacks: A Case Study of Java Libraries.” In 2017 24th Asia-Pacific Software Engineering

Conference Workshops (APSECW), 63–70. https://doi.org/10.1109/APSECW.2017.25.

