MULTIPLICATIVE GEOMETRIC ARITHMETIC INDEX FOR VARIOUS GRAPHS

Pavithra. M

Faculty, Department of Studies in Mathematics,Karnataka State Open University, Mysuru-06
Email: sampavi08@gmail.com

Abstract

A topological index, also known as connectivity index, is a molecular structure descriptor calculated from a molecular graph of a chemical compound which characterizes its topology. Various topological indices are categorized based on their degree, distance and spectrum. In this study, the degree-based topological indices such as multiplicative geometric - arithmetic index ((MGA) index)isderived for various graphs.

Keywords: Graphs, Topological index, geometric index.

AMSC: 05C05, 05C12, 05C35

1. INTRODUCTION

A graph is an ordered pair $G=(V, E)$, where V is a non-empty finite set, called the set of vertices of G, and E is a set of unordered pairs of V, called the edges of G. If $x y \in E$ then x and y are called adjacent and they are incident with the edge $x y$.

For a graph $G=(V, E)$, the order is $|V|$, the number of its vertices. And the size is $|E|$, the number of its edges. The degree of a vertex $x \in V$, denoted by $d(x)$, is the number of edges incident with it. [1]

The complete graph on n vertices, denoted by K_{n}, is a graph on n vertices such that every pair of vertices is connected by an edge. The empty graph on n vertices, denoted by E_{n} is a graph on n vertices with no edges. Thecompletebipartitegraph $K_{m, n}$ on $n+m$ verticesasthe(unlabelled) graph, isomorphic to $(A \cup B=\{x y: x \in A, y \in B\}$), where $|A|=m$ and $|B|=n, A \cap B=\varnothing$. The order of a graph $G=(V, E)$ is $|V|$, the number of its vertices. The size of G is $|E|$, the number of its edges. [1,2]

The degree of a vertex v of G , denoted by $d(v)$ or $\operatorname{deg}(v)$, is the number of edges incident to v. A vertex of degree one in G is called a leaf or pendant vertex, and a vertex of degree 0 in G is called an isolated vertex. The minimum degree of G , denoted by $\delta(G)$, is the smallest vertex degree in G . The maximum degree of G , denoted by $\Delta(G)$, is the largest vertex degree in G . The graph G is called k -regular for a natural number k if all vertices have degree k . [2,6]

Let G_{1} and G_{2} be two graphs with disjoint vertex sets V_{1} and V_{2}, and edge sets E_{1} and E_{2}, respectively. Thenthe joinG $\mathrm{G}_{1}+\mathrm{G}_{2}$ is the graph consisting of $\mathrm{G}_{1} \cup \mathrm{G}_{2}$ with all edges joining V_{1} with V_{2}.[6]

The degree-based topological indices is the most investigated categories of topological indices, which is used in mathematical chemistry.

The topological index for a graph is defined in [5],

$$
T I(G)=\sum_{p q \in G} F(d(p), d(q))
$$

Multiplicative geometric - arithmetic index is defined as follows [7]

$$
M G A(G)=\prod_{p q \in E(G)}\left(\frac{2 \sqrt{\left(d_{p} \cdot d_{q}\right)}}{\left(d_{p}+d_{q}\right)}\right)
$$

In this paper, we calculated and analysed the degree-based topological indices such as multiplicative geometric - arithmetic index (MGA) index. Further investigated the (MGA) index in regular graph, complete graph, complete bipartite graph, union graphs and join graphs are derived. Further explain the theorem by examples.

2. THE MULTIPLICATIVE GEOMETRIC - ARITHMETIC (MGA) INDEX OF VARIOUS GRAPHS

In this section, the Multiplicative geometric - arithmetic index (MGA) index of regular graph, complete graph, complete bipartite graph and join of graphs are investigated.

Theorem 2.1: For a K regular graph, the Multiplicative geometric - arithmetic index (MGA) index) is unity.

Proof: Let G be a K regular graph of ordern. This implies the degree of every vertex in G is K and n number of vertices in the graph G . In a K regular graph there are $\left(\frac{n K}{2}\right)$ edges in regular graph. Therefore (MGA) index for K regular graph is,

$$
\begin{aligned}
M G A(G) & =\prod_{p q \in E(G)}\left(\frac{2 \sqrt{\left(d_{p} \cdot d_{q}\right)}}{\left(d_{p}+d_{q}\right)}\right) \\
& =\prod_{p q E E(G)}\left(\frac{2 \sqrt{(K \cdot K)}}{(K+K)}\right) \\
M G A(G) & =\prod_{p q \in E(G)}\left(\frac{2 \sqrt{\left(K^{2}\right)}}{(K+K)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{p q \in E(G)}\left(\frac{2 K}{(K+K)}\right)= \\
& =\prod_{p q \in E(G)}(1)=(1)^{(n k / 2)} \\
M G A(G) & =1
\end{aligned}
$$

Hence the (MGA) index for K regular graph is equal to unity.

Example 2.1:

Figure 2.1: 3-Regular graph
The graph G is a 3- regular graph having 8 vertices. Therefore $d\left(u_{i}\right)=3, \forall u_{i} \in V$ $O(G)=n=8, S(G)=12$. Then $M G A(G)=1^{12}=1$.

Theorem 2.2: For a complete graph of n vertices, the $(A G)$ index is unity.
Proof: Let G be a complete graph of order n . This implies the degree of every vertex in G is $(\mathrm{n}-1)$. In a ($\mathrm{n}-1)$ regular graph there are $\frac{n(n-1)}{2}$ edges. Therefore, $(M G A)$ index

$$
\begin{aligned}
M G A(G) & =\prod_{p q \in E(G)}\left(\frac{2 \sqrt{\left(d_{p} \cdot d_{q}\right)}}{\left(d_{p}+d_{q}\right)}\right) \\
M G A\left(K_{n}\right) & =\prod_{p q \in E(G)}\left(\frac{2 \sqrt{(n-1)(n-1)}}{((n-1)+(n-1))}\right) \\
& =\prod_{p q \in E(G)}\left(\frac{2 \sqrt{(n-1)^{2}}}{((n-1)+(n-1))}\right) \\
& =\prod_{p q \in E(G)}\left(\frac{2(n-1)}{2(n-1)}\right)=(1)^{(n(n-1 / 2)} \\
\operatorname{MGA(K_{n})} & =1
\end{aligned}
$$

Example 2.3:

Figure 2.3: Complete graph K_{5}
The graph G is a complete graph K_{5} having 5 vertices. Therefore $d\left(u_{i}\right)=4, \forall u_{i} \in V$ and $O(G)=n=5$. Then, $\operatorname{MGA}\left(K_{5}\right)=1^{10}=1$.

Theorem 2.3:For a complete bipartite graph $K_{m, n}$ the $M G A(G)=\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right)^{m n}$.
Proof: Let G be a complete bipartite graph $K_{m, n}$, This implies the graph contains two disjoint vertex set V_{m} and V_{n} there is an edge between the vertex set V_{m} into vertex set V_{n}. Therefore degree of every vertex in V_{m} and V_{n} is n and m respectively, $d\left(v_{i}\right)=n, \forall v_{i} \in V_{m}$ and $d\left(v_{j}\right)=m, \forall v_{j} \in V_{n}$, there is mnedges in a complete bipartite graph $K_{m, n}$ of (m, n) vertices. Therefore (MGA) index

$$
\begin{aligned}
& M G A(G)=\prod_{p q \in E(G)}\left(\frac{2 \sqrt{\left(d_{p} \cdot d_{q}\right)}}{\left(d_{p}+d_{q}\right)}\right) \\
& M G A\left(K_{m \cdot n}\right)=\prod_{p q \in E(G)}\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right) \\
& \\
& =\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right) \cdot\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right) \cdot\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right) \ldots . . m n \text { times } \\
& M G A\left(K_{m . n}\right)=\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right)^{m n}
\end{aligned}
$$

Hence the $\operatorname{MGA}\left(K_{m . n}\right)=\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right)^{m n}$.

Example 2.3:

Figure 2.3: Complete bipartite graph $K_{5,3}$
The graph G is a complete bipartite graph $K_{5,3}$ having vertex sets V_{5} and V_{3}. Therefore $\quad d\left(u_{i}\right)=3, \forall u_{i} \in V_{5}$ and $\quad d\left(u_{j}\right)=5, \forall u_{j} \in V_{3}$. The $\quad(M G A)$ index $M G A(G)=\left(\frac{2 \sqrt{(m \cdot n)}}{(m+n)}\right)^{m n} M G A\left(K_{5,3}\right)=\left(\frac{2 \sqrt{(15)}}{(8)}\right)^{15}=\left(\frac{\sqrt{(15)}}{(4)}\right)^{15}$.

Theorem 2.4:For a join of two graphs $G_{1} \& G_{2}$, then the ($M G A$) index

$$
\begin{aligned}
M G A\left(G_{1}+G_{2}\right)= & \prod_{p q \in E\left(G_{1}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+n\right)\right)}}{\left(\left(d_{p}+d_{q}+2 n\right)\right)}\right) \prod_{p q \in E\left(G_{2}\right.}\left(\frac{\left.2 \sqrt{\left(d_{p}+m\right) \cdot\left(d_{q}+m\right)}\right)}{\left(\left(d_{p}+d_{q}+2 m\right)\right)}\right) \\
& \prod_{p q \in E\left(G_{1}+G_{2}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+m\right)\right)}}{\left(\left(d_{p}+d_{q}+m+n\right)\right)}\right)
\end{aligned}
$$

Proof: Let a join of two graphs G_{1} and G_{2} be of order m and n respectively. By the definition of join of two graphs G_{1} and G_{2} there is an edge between every vertex in G_{1} and G_{2}. This implies the degree of vertices in $\left(G_{1}+G_{2}\right)$ are $\left(d\left(v_{i}\right)+n\right), \forall v_{i} \in V_{1}$ and $\left(d\left(v_{j}\right)+m\right), \forall v_{j} \in V_{2}$. Therefore (MGA) index for join of graphs is

$$
\begin{aligned}
& M G A(G)=\prod_{p q \in E(G)}\left(\frac{2 \sqrt{\left(d_{p} \cdot d_{q}\right)}}{\left(d_{p}+d_{q}\right)}\right) \\
& \left.M G A\left(G_{1}+G_{2}\right)=\prod_{p q \in E\left(G_{1}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+n\right)\right)}}{\left(\left(d_{p}+n\right)+\left(d_{q}+n\right)\right)}\right)_{p q \in E\left(G_{2}\right)} \frac{2 \sqrt{\left.\left(d_{p}+m\right) \cdot\left(d_{q}+m\right)\right)}}{\left(\left(d_{p}+m\right)+\left(d_{q}+m\right)\right)}\right) \\
& \prod_{p q \in E\left(G_{2}+G_{2}\right)}\left(\frac{2 \sqrt{((m+n) \cdot(m+n)})}{((m+n)+(m+n))}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M G A\left(G_{1}+G_{2}\right)=\prod_{p q \in E\left(G_{1}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+n\right)\right)}}{\left(\left(d_{p}+d_{q}+2 n\right)\right)}\right)_{p q \in E\left(G_{2}\right.}\left(\frac{\left.2 \sqrt{\left(d_{p}+m\right) \cdot\left(d_{q}+m\right)}\right)}{\left(\left(d_{p}+d_{q}+2 m\right)\right)}\right) \\
& \prod_{p q \in E\left(G_{2}+G_{2}\right)}\left(\frac{2 \sqrt{\left((m+n)^{2}\right)}}{(2(m+n))}\right) \\
& M G A\left(G_{1}+G_{2}\right)=\prod_{p q \in E\left(G_{1}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+n\right)\right)}}{\left(\left(d_{p}+d_{q}+2 n\right)\right)}\right)_{p q \in E\left(G_{2}\right.}\left(\frac{2 \sqrt{\left.\left(d_{p}+m\right) \cdot\left(d_{q}+m\right)\right)}}{\left(\left(d_{p}+d_{q}+2 m\right)\right)}\right) \prod_{p q \in E\left(G_{2}+G_{2}\right)}(1) \\
& M G A\left(G_{1}+G_{2}\right)= \\
& \left.\prod_{p q \in E\left(G_{1}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+n\right)\right)}}{\left(\left(d_{p}+d_{q}+2 n\right)\right)}\right)_{p q \in E\left(G_{2}\right.} \frac{2 \sqrt{\left.\left(d_{p}+m\right) \cdot\left(d_{q}+m\right)\right)}}{\left(\left(d_{p}+d_{q}+2 m\right)\right)}\right)(1)^{m n} \\
& M G A\left(G_{1}+G_{2}\right)= \\
& \prod_{p q \in E\left(G_{1}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+n\right)\right)}}{\left(\left(d_{p}+d_{q}+2 n\right)\right)}\right) \prod_{p q \in E\left(G_{2}\right.}\left(\frac{2 \sqrt{\left.\left(d_{p}+m\right) \cdot\left(d_{q}+m\right)\right)}}{\left(\left(d_{p}+d_{q}+2 m\right)\right)}\right) \\
& \prod_{p q E E\left(G_{1}+G_{2}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+m\right)\right)}}{\left(\left(d_{p}+d_{q}+m+n\right)\right)}\right)
\end{aligned}
$$

Hence the (MGA) index of the join graph is

$$
\begin{aligned}
\operatorname{MGA}\left(G_{1}+G_{2}\right)= & \prod_{p q \in E\left(G_{1}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+n\right)\right)}}{\left(\left(d_{p}+d_{q}+2 n\right)\right)}\right) \prod_{p q \in E\left(G_{2}\right.}\left(\frac{\left.2 \sqrt{\left(d_{p}+m\right) \cdot\left(d_{q}+m\right)}\right)}{\left(\left(d_{p}+d_{q}+2 m\right)\right)}\right) \\
& \prod_{p q \in E\left(G_{1}+G_{2}\right)}\left(\frac{2 \sqrt{\left.\left(d_{p}+n\right) \cdot\left(d_{q}+m\right)\right)}}{\left(\left(d_{p}+d_{q}+m+n\right)\right)}\right)
\end{aligned}
$$

Conclusion:

In this study, the expression for multiplicative geometric - arithmetic index (MGA) index is derived forregular graph, complete graph, complete bipartite graph and join of graphs. Further suitable examples are considered to explain the theorem.

REFERENCES:

[1]. Bollobas, Modern Graph Theory, Springer Science and Business Media, Berlin, Germany, 2013.
[2]. Chartrand, G \& Zhang, P, Introduction to Graph Theory, McGraw Hill International Edition, 2005.
[3]. M. Eliasi and A. Iranmanesh, "On ordinary generalized geometric-arithmetic index," Applied Mathematics Letters, 24(4), 582-587, 2011.
[4]. J. L. Gross and T. W. Tucker, Topological Graph Theory, Courier Corporation, Chelmsford, MA, USA, 2001.
[5]. I. Gutman, "Degree-based topological indices," Croatica Chemica Acta, vol. 86, no. 4, pp. 351-361, 2013.
[6]. Harary, F 1973, Graph Theory, Reading, MA.
[7]. V.R.Kulli, Multiplicative Connectivity indices of certain n anotubes, Annals of Pure and Applied Mathematics, 12(2), 169-176, 2016.
[8]. V. S. Shegehalli and R. Kanabur, "Arithmetic-Geometric indices of some class of Graph," Journal of Computer and Mathematical Sciences, vol. 6, no. 4, pp. 194-199, 2015.
[9]. Y. Yuan, B. Zhou, and N. Trinajstic, "On geometric-arithmetic ' index," Journal of Mathematical Chemistry, vol. 47, no. 2, pp. 833-841, 2010.
[10]. L. Zhong, "The harmonic index for graphs," Applied Mathematics Letters, vol. 25, no. 3, pp. 561-566, 2012.

