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Abstract: Right now, breast cancer is considered as a most important health problem among women over the world. The 

detection of breast cancer in the beginning stage can reduce the mortality rate to a considerable extent. Mammogram is an 
effective and regularly used technique for the detection and screening of breast cancer. The advanced deep learning (DL) 
techniques are utilized by radiologists for accurate finding and classification of medical images. This paper develops a new 
deep segmentation with residual network (DS-RN) based breast cancer diagnosis model using mammogram images. The 
presented DS-RN model involves preprocessing, Faster Region based Convolution Neural Network (R-CNN) (Faster R-CNN) 

with Inception v2 model based segmentation, feature extraction and classification. To classify the mammogram images, 
decision tree (DT) classifier model is used. A detailed simulation process is performed to ensure the betterment of the presented 
model on the Mini-MIAS dataset. The obtained experimental values stated that the DS-RN model has reached to a maximum 
classification performance with the maximum sensitivity, specificity, accuracy and F-Measure of 98.15%, 100%, 98.86% and 
99.07% respectively. 
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1. Introduction  

Breast cancer is a familiar type of disease that exists in female. Usually, breast cancer consumes maximum 

time for developing and signs expressed latter. There is no medicine for complete recovery of cancer, but the 

lifetime can be extended only if it is detected in the earlier stage. Hence, the previous prediction of breast cancer 

is suggested by America Cancer Society (ACS) which has stated that, the screening test is highly essential for 

extending the lifetime [1]. Recently, digitalized diagnostic systems widely applied mammogram screening 

models for classifying the breast lesions. Typically, Computer Aided Diagnosis (CAD) model depends upon 

Machine Learning (ML) methods for detecting tumors present in computerized mammogram images. These 

methods should be determined with diverse and descriptive features for classifying images into several classes.  

Several developers have proposed mammogram images for 2-class (normal and abnormal) classification and 

accomplished effective simulation outcome. Mazurowski et al. [2] projected a template on the basis of prediction 

model for breast tumor. The data set depends upon massive Digital Database for Screening Mammography 

(DDSM) images and attained highest accuracy.  Wei et al. [3] projected a relevance feedback learning approach 

and perform classification with the application of SVM radial kernel using a data set of enormous photographs. 

Tao et al. [4] related the function of 2 classification models, termed as curvature scale space as well as local linear 

embedded metric with the application of a database of and accuracy of 2 classifiers. Abirami et al. [5] employed 

a wavelet features for 2-class classification of digital mammograms which has gained maximum accuracy for 

Mammographic Images Analysis Society (MIAS) data set.  

Elter and Halmeyer [6] processed classification under the application of Artificial Neural Network (ANN) 

and Euclidean metric classification, correspondingly, and attained a performance to greater extent. The 

developers have applied 2-class classification; however 2-class classification is insufficient to eliminate unwanted 

biopsy as in abnormal cases the tumor might be benign or malignant. Suckling [7] presented Extreme Learning 

Machine (ELM) model for classifying mammograms of MIAS database. The newly developed has surpassed the 

alternate models using the similar database. Jasmine et al. [8] carried out 2-class classification with the projected 

model on the basis of wavelet analysis using Artificial Neural Network (ANN). This process is computed under 

the application of MIAS database and reached better accuracy. Xu et al. [9] related the function of 3 NNs and 

recommended Multilayer Perceptron (MLP) function as count of features enhanced. This model accomplished 

accuracy to a greater limit with the application of mammogram images.  

In last decades, Deep Learning (DL) under the application of NN which is facilitated as state-of-the-art 

outcomes in massive computer vision models, like object prediction as well as classification. DL methods are 

used in diverse clinical imaging applications like tissue classification in histopathology as well as histology 

images. Therefore, limited studies are accessible under the application of DL for mammogram images 

categorization. In [10], Convolutional Neural Network (CNN) have been applied for segmenting the breast tissue 
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of mammographic texture. Multi-scale features as well as auto-encoders (AE) have been used for determining 

breast density measure. CNNs are employed for classifying micro-calcifications; however, the data set is small 

sized. Mert et al. [11] developed a radial basis function neural network (RBFNN) with independent component 

analysis (ICA) for 2-class categorization. A maximum accuracy has been accomplished on WBDC data set with 

enormous images. In recent times, for 2-class classification, Dheeba et al. [12] applied particle swarm 

optimization (PSO) related based Wavelet Neural Network (PSO-WNN) as well as deep belief network (DBN), 

correspondingly, and attained effective results on data set with images.  

This paper develops a novel deep segmentation with residual network (DS-RN) related breast cancer analyzing 

method with the help of mammogram images. The projected DS-RN method is composed of preprocessing, Faster 

Region based Convolution Neural Network (R-CNN) (Faster R-CNN) with Inception v2 model based 

segmentation, feature extraction as well as classification. For classifying the mammogram images, decision tree 

(DT) and random forest (RF) classification methods have been employed. A brief simulation process is carried 

out to approve the advancement of the proposed method on the Mini-MIAS dataset. 

2. Proposed method 

Fig. 1 reveals the processes involved in the presented model. As depicted in figure, the input mammogram 

image is preprocessed and then segmented using Faster RCNN model. Besides, ResNet model is applied as a 

feature extraction model to determine the useful set of feature vectors from the segmented image. At last, the 

classification process is done by DT model.  

2.1. Preprocessing 

In this method, the preprocessing stage is applied to improve the result of classification process. First, the 

input image is fed into mean shift filtering approach to avoid the noise from the image. Next, thresholding is 

performed to transfer the extracted image to binary format. Then, a contour drawn phase is done to retrieve the 

contours over the objects in images. Afterwards, the higher contour mask is applied to maintain high sized object 

by mask generation. Besides, the noise in mask is removed and computes the contrast enhancement using Contrast 

Limited Adaptive Histogram Equalization (CLAHE) approach. At last, contrast is enhanced in which 

preprocessed image is fed to image segmentation. 

2.2. DL based Segmentation Process  

Here, a DL based Faster RCNN with Inception v2 method is utilized for classifying as well as preprocessed 

images. Initially, this model undergoes training with human modeled images for training the ROI. Based on the 

training phase, segmentation model has been utilized to find the affected area on new test image. RCNN is 

considered as an   object prediction method in which it is developed using 2 objectives. Deep fully convolutional 

network is assumed as first  stage which means the regions whereas Fast R-CNN predictor utilizes the previous 

regions. In case of object prediction, the complete method is grouped in single network. Fast R-CNN approach 

transforms the data regarding RPN using NN units. 

 
Fig. 1. Block diagram of presented model 
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2.3. ResNet 50 based feature extraction 

CNN has completely dominated the vision space recently. A CNN is composed of input layer, output layer, 

and various hidden layers. The hidden layers of CNN usually contain convolutional layers, pooling layers, Fully 

Connected (FC) layers as well as normalization layers (ReLU). Excess layers are employed for tedious 

methodologies. The CNN structure has expressed tremendous function under various Computer Vision as well 

as ML issues. CNN computes the prediction as well as training operation in abstract level, with the remaining 

details given in the following subparagraphs. CNN method is applied widely in smart ML fields because of the 

processing record breaking efficiency. Linear algebra depends upon the performance of CNN. Matrix vector 

multiplication is central premises of how data and weights are displayed. The layers are composed of various 

characteristics for image set. For sample, when a face image is provided as input for CNN, the system would 

learn fundamental properties like edges, bright spots, dark spots, shapes and so forth. The consecutive set of 

layers is composed of shapes and objects which are related to image that can be recognized like Eyes, Nose and 

Mouth. The next layer is compose of factors which resembles as original faces, besides, shapes and objects of the 

network applies for defining human face. CNN maps the portions rather than entire image, and breaks the image 

classification process into tiny portions.  

A   grid is described to depict the features extraction by CNN for estimation. The following task is named as 

filtering, which lines the feature with image patch. The element is enhanced by using corresponding feature pixel, 

and the process is completed and classified by overall count of pixels in feature space. The consequent value for 

a feature is fixed within the feature patch. This operation is followed by residual feature patches and attempts in 

all feasible match- repeated field of filter that is named as a convolution. The subsequent layer of a CNN is 

assumed as “max pooling”, that contributes in diminishing the image stack. For pooling an image, window size 

should determine, the stride has to be described. The window is filtered over the image in strides, along with max 

value which is saved for every window. Max pooling limits the dimensionality of a feature map while maintaining 

the significant data. The normalization layer of a CNN is computed as Rectified Linear Unit (ReLU), which 

contributes the negative values inside the extracted image to 0.  

This is followed for all filtered images; the ReLU layer enhances non-linear features of a method. The next 

step by CNN is stacking the layers, thus the resultant of a layer is considered as input of subsequent layer. Layers 

which are repeated for “deep stacking”. The last layer inside the CNN structure is named as FC layer is named as 

the classification method. FC layers are stacked jointly, with middle layer voting on phantom “hidden” classes. 

Obviously, the excess layer enables the network for learning better integrations of features for making effective 

solution. The measures are employed for convolution layer and weights for FC layers were attained by using 

backpropagation (BP) that is processed by Deep Neural Network (DNN). BP in NN applies the error in last 

solution for computing the modifications which exist in the system. 

 
Fig. 2. Layered Structure of ResNet-50 

ResNet employs the residual block to resolve the decomposition and gradient disappearance issues which 

generally exists in general CNNs. The residual block is not based on the network depth, however enhances the 

function of a system. In particular, ResNet networks have accomplished best performance in ImageNet in 

classifying process. The function of residual function is given in the following: 

 
where   refers the input of residual block;   denotes the weight;   implies the result. The fundamental 

architecture of ResNet50 is depicted in Fig. 2.  

2.4. Classification 

Once the features are extracted from the ResNet-50 model, classification process takes place using DT model. 

DT is an inductive learning method which provides classification tree under the application of training data 

and samples. It depends upon “divide and conquer” principle. It is defined as a non-parametric which is 

independent of properties of data distribution, hence applicable for embedding non-spectral data with 

classification principle for enhancing the class separability is attained. The final DT offers a representation of 

model which appeals to human as it renders classification process evidently. It is suitable for resolving 

classification issues using maximum number of classes and adjusted to manage the regression problems. DT 
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applies a hierarchical architecture in which all levels are used for attribute scores which have 2 results. For 

classifying an object, the root of tree is initialized, estimate the test, and apply the branch for best results. The 

process is repeated finding a leaf, where an object is organized. The final leaf is assumed as final outcome of 

following set of unique decision rules over the tree. The tree is extended until all training instances are classified 

exactly; and over fitting of data is eliminated by pruning the training dataset. 

The structure of DT needs supervised training; so it is essential to apply training dataset with a response and 

explanatory variables. A classification architecture is determined by DT is evaluated from training data utilizing 

a statistical process. The nodes are where trees branch or divide the dataset; terminal nodes are known as leaves 

that include most homogeneous classes. When a training set  , there is   count of classes   and a total of   cases, 

the expected data from such methods are, 

 
where,   implies the probability of class   in training set  . When separation the training set   in accordance 

with response variable   (e.g., NDVI), there can be ‘n’ count of cases. A usual data in separation is weighted sum 

over the subset as: 

 
The information gain (IG) by portioning training set following variable   (NDVI) is 

 
 

The gain condition chooses a test to maximize the IG. However, it has a strong bias, which facilitates the tests 

with multiple results. It is rectified by establishing gain ratio  , which is determined as: 

 
where, split info   is the potential data created by splitting   into   subsets that is not relevant to classification 

as provided by: 

 
The gain ratio signifies the proportion of helpful data for classification. An experiment that maximizes the 

ratio, subjects to control huge IG is chosen. A training sample (root node) is separation following the revealed 

situation for creating branches. A few nodes, instance sharing in uniform distribution, which means a single 

LULC class in all groups and so, data content is higher. It is determined as ‘leaves’.  

3. Experimental Validation 

For examining the final outcomes of the DS-RN method, overall count of 322 mammogram images has been 

employed from Mini-MIAS dataset [13]. It is composed of images acquired from 3 class labels such as benign, 

malignant and normal. The details about a dataset are offered in Table 1 and sample set of images are depicted in 

Fig. 3. 

Table 1 Dataset Description 

 Description Values 

Total Number of Images 322 

Number of Classes 3 

Number of Images in Normal Class 206 

Number of Images in Benign Class 64 

Number of Images in Malignant Class 52 
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Fig. 3. Sample Images a) Benign b) Malignant 

 

 
Fig. 4. Confusion Matrix of Proposed DS-RNDT 

Fig. 4 shows the confusion matrix generated by the proposed DS-RNDT model on the classification of 

mammogram images. The figure showed that the DT model has outperformed other models with the classification 

of 53 images as benign and 35 images as malignant. 
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A thorough comparative study of the classification results of the DS-RNDT and DS-RNRF with former 

methods with respect to accuracy is showcased in Fig. 5. From the figure, it is apparent that the HOG-NB 

approach has defined poor classification result by accomplishing least accuracy value of 42.6%. Similarly, the 

HOG-SVM approach is considered to have moderate results across the HOG-NB scheme with the accuracy value 

of 45.2%. Additionally, the HOG-DNN scheme has displayed acceptable accuracy value of 47%. Followed by, 

the Hybrid Features-NB, HOG-NN, Homogeneity-NN and Energy-NB approaches have outperformed previous 

methods and attained nearby accuracy values of 47.6%, 49%, 49.2% and 50.2% correspondingly. Besides, the 

Energy-NN framework has attempted to demonstrate considerable outcomes by accomplishing higher accuracy 

of 51.4%. Next, the Homogeneity-NB and Hybrid Features-NN schemes have illustrated similar and acceptable 

accuracy value of 52%. Moreover, the Homogeneity -SVM and Hybrid Features-SVM technologies have ended 

up with reasonable and identical accuracy value 52.2% and 53.2%. Meantime, the Energy-SVM scheme has 

resulted in maximum accuracy to a considerable extent of 54.2%. Next, the Homogeneity-DNN, Energy-DNN as 

well as hybrid features-DNN approaches have showcased better result with the accuracy values of 56.8%, 58.8%, 

59.6% correspondingly. Simultaneously, the DS-ANMLP and DS-ANRF approaches have illustrated qualified 

results by achieving the accuracy of 75.28% and 94.38%. Also, the newly projected DS-RNDT approaches have 

showcased supreme outcomes with the best accuracy of 97.75% and 98.86%. 

4. Conclusion 

This paper has developed a DL based segmentation with classification model named DS-RN model for breast 

cancer diagnosis model using mammogram images. Initially, the input mammogram image is preprocessed and 

then segmented using Faster RCNN model. Besides, ResNet model is applied as a feature extraction model to 

determine the useful set of feature vectors from the segmented image. At last, the classification process is done 

by DT model. A comprehensive simulation process is completed to confirm the betterment of the presented model 

on the Mini-MIAS dataset. The obtained experimental values stated that the DS-RN model has reached to a 

maximum classification performance with the maximum sensitivity, specificity, accuracy and F-Measure of 

98.15%, 100%, 98.86% and 99.07% respectively. In future, the proposed model can be deployed in IoT and cloud 

based environment to assist telemedicine. 
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