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Abstract: The concept of Hopfian modules has been extensively studied in the literature. In this paper we introduce the notion 

of T-weakly Hopfian modules which is a proper generalization of Hopfian modules. We present some properties of these 

modules. Further, the T-weakly Hopficity of modules over truncated polynomial rings are considered. 
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1.  Introduction 

        Throughout this paper all rings have identity and all modules are unital right modules. The study of modules 

by properties of their endomorphisms has long been of interest. In [5], Hiremath, introduced the notion of Hopfian 

modules. A bit later, Varadarajan, introduced the concept of co-Hopfian modules. In [4], a proper generalization 

of Hopfian modules, called generalized Hopfian modules, was given. A right R-module M is called generalized 

Hopfian, if any surjective endomorphism of M has a small kernel. In [10], an other proper generalization of 

Hopfian modules, called weakly Hopfian modules, was given. A right R-module M is called weakly Hopfian, if 

any small surjective endomorphism of M is an automorphism. In [3], we introduced the concept of µ-Hopfian 

modules. A right R-module M is called µ-Hopfian, if any surjective endomorphism of M has a µ-small kernel. 

Such modules and others generalizations were introduced and studied by many authors, (for more information 

about this and others related topics, see, for instance, [5, 8-10]. Recall that a submodule K of an R-module M is 

said to be small in M, written K ≪ M, if for every submodule L ≤ M with K+L=M implies L=M. In [2], a 

generalization of small submodules, called T-small submodules, was given. A submodule K of an R-module M is 

said to be T-small in M, written K ≪𝑇  M, with T is a submodule of M, if for every submodule L ≤ M such that T 

⊆ K+L implies T ⊆ L. If T=M, then K ≪𝑇   M if and only if K ≪ M. 

By works mentioned we are motivated to introduce in this paper the notion of T-weakly Hopfian modules which 

is proper generalization of Hopfian modules, and in particular Noetherian modules. We call a module T-weakly 

Hopfian if any its T-small surjective endomorphism of M is an automorphism. We present some of their 

properties and examples. Also, we consider the T-weakly Hopfian property of  
M x 

(𝑥n +1)
 (as an 

R x 

(𝑥n +1)
 -module). 

Varadarajan [9] showed that the left R-module M is Hopfian if and only if the left R[x]-module M[x] is Hopfian if 

and only if the left 
R x 

(𝑥n +1)
 -module 

M x 

(𝑥n +1)
  is Hopfian, where n is a non-negative integer and x is a commuting 

indeterminate over R. However, for any nonzero R-module M, the R[x]-module M[x] is never co-Hopfian. In fact, 
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the map "multiplication by x" is injective and non surjective. In [3] we showed that the right 
R x 

(𝑥n +1)
 -module 

M x 

(𝑥n +1)
  

is µ-Hopfian if and only if the right R-module M is µ-Hopfian. We are motivated to prove that, if 
M x 

(𝑥n +1)
  is 

T x 

(𝑥n +1)
-

weakly Hopfian 
R x 

(𝑥n +1)
-module then M is T-weakly Hopfian R-module, (Theorem 3.2).  

At the end of the paper, some open problems are given.  

Let R be a ring and M an $R$-module. We recall the following definitions and facts: 

Definition 1.1. 

 (1) M is called Hopfian if every surjective endomorphism of M is an automorphism. [5] 

(2) M is called co-Hopfian if every injective endomorphism of M is an automorphism. [9] 

Remarks  

(1) Every Noetherian  R-module M (i.e., M has ACC on submodules), is Hopfian .[1] 

(1) Every Artinian R-module M (i.e., M has DCC on submodules), is co-Hopfian) . [1] 

(1) The additive group ℚ of rational numbers is a non-Noetherian non-Artinian ℤ -module, which is Hopfian and 

co-Hopfian . [6] 

Definition1.2 [2]. Let M and N be modules and T be a submodule of M. An epimorphism f :M ⟶ N is said to be 

T-small, if Ker f is T-small in M. 

Lemma1.3[2]. Let M be an R-module, L ≤ T ≤ M and K ≤ M. Then 

(1) If K ≪𝑻 M, then K ∩ T ≪ M. 

(2) L ≪𝑻 M if and only if L ≪ T. 

2.  Modules whose T-small Surjective Endomorphisms Are Isomorphism  

Motivated by the definition of weakly Hopfian modules, we introduce the key definition of this section. 

Definition2.1.  Let M be an R-module and T be a submodule of M. We say that M is T-weakly Hopfian if any T-

small surjective endomorphism of M is an automorphism. 

Lemma2.2. For a non-zero module M and T be a submodule of M, the following statements are equivalent. 

(i) M is a T-weakly Hopfian module. 

(ii) M/K ≅ M for any T-small submodule K ≤ T ≤ M if and only if K = 0. 

Proof: 

(i) ⇒ (ii) Suppose M ≅M/K for some T-small submodule K ≤ T ≤ M. Let 𝜑: M/K ⟶ M be an isomorphism and  

𝜋 : M ⟶ M/K the canonical epimorphism. Then the map 𝜑𝜋 is an epimorphism with Ker(𝜑𝜋) = K. Then 𝜑𝜋 is a 

T-small epimorphism. So 𝜑𝜋 is an isomorphism by (i), and so K=0. 
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(ii) ⇒ (i) Let f : M ⟶ M be T-small epimorphism. Then M ≅ M/Ker(f) by first isomorphism theorem. From (ii), 

we get Ker(f)=0. This shows f is an isomorphism. Hence M is T-weakly Hopfian. 

Definition2.3. [7]. An R-module M is called quasi-projective if for any surjective homomorphism g of M onto N 

and any homomorphism, f of M to N, there exists an endomorphism h of M such that: f = gh. 

Clearly, every projective module is quasi-projective. 

Proposition2.4 Let  be an R-module and T be a submodule of M, if M is quasi-projective, then it is T-weakly 

Hopfian. 

Proof:  Let M be a quasi-projective module and T ≤ M. Suppose M ≅ M/K for some T-small submodule K ≤ T ≤ 

M. Let 𝜑 : M/K ⟶ M be an isomorphism. The map 𝜑𝜋 : M ⟶ M, where 𝜋 : M ⟶ M/K is a canonical 

epimorphism has kernel K i.e. Ker(𝜑𝜋) = K. Since M is quasi-projective, there is a g : M ⟶ M such that:  𝜑𝜋 g= 

1. Thus, M=Ker(𝜑𝜋) ⨁ Im(g), since Ker(𝜑𝜋)=K ≪𝑇  M, hence by Lemma1.3, Ker(𝜑𝜋) ≪ T then Ker(𝜑𝜋) ≪ M, 

hence M=Im(g), we must have K=0, and so M is T-weakly Hopfian by Lemma2.2. 

The following example show that the class of Hopfian modules form a proper subclass of T-weakly Hopfian 

modules. 

Example An infinite-dimensional vector space is T-weakly Hopfian, but it is not Hopfian, because in [5], a vector 

space V over a field F is Hopfian if and only if it is finite dimensional. 

Recall that a submodule K of an R-module M is said to be essential in M, written K ≤𝑒  M, if for every submodule 

L ⊆ M with K ∩ L=0 implies L=0. If all non-zero submodules of M are essential in M, then M is called uniform. 

Proposition2.5. Let M be a non-singular module and T be a submodule of M, if M is uniform then it is T-weakly 

Hopfian. 

Proof: Suppose M is non-singular uniform R-module. Let f : M ⟶ M be a T-small epimorphism. i.e. Ker f ≪𝑇  M. 

Suppose Ker f ≠ 0. Then Ker f ≤𝑒  M because M is uniform. So M/Ker f is singular. Since f is an epimorphism, by 

first isomorphism theorem M/Ker f ≅M. This is impossible because M/Ker f is singular and M is non-singular. 

Therefore Ker f must be zero. So f is an isomorphism. Hence M is T-weakly Hopfian. 

Proposition2.6. Let M be an R-module. If M/N is T-weakly Hopfian for any nonzero T-small submodule N of M, 

then M itself is T-weakly Hopfian. 

Proof: If M is not T-weakly Hopfian. Then there exists a T-small surjection f of M which is not an isomorphism, 

and f induces an isomorphism g : M/Ker f ⟶ M. If 𝜋 : M ⟶ M/Ker f denotes the canonical quotient morphism, 

then 𝜋 g : M/Ker f ⟶ M/Ker f is a T-small surjection which is not an isomorphism. This is a contradiction. 

Proposition2.7. Let M be a quasi-projective module, if M is co-Hopfian then it is T-weakly Hopfian. 

Proof: Let f:M ⟶ M be a T-small surjective endomorphism, since M is quasi-projective, then there exists g : M 

⟶ M, such that fg=1, then g is a injective endomorphism, since M is co-Hopfian, so g is automorphism, which 

shows that f is an automorphism, then M is T-weakly Hopfian. 

Proposition2.8. Any direct summand of a T-weakly Hopfian module is T-weakly Hopfian. 
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Proof: Let K be a direct summand of M, there exists N a submodule of M such that M = K ⨁ N. Let f : K ⟶ K 

be a T-small surjective endomorphism of K, then f induces a surjective endomorphism of M, f⨁1𝑁  : M ⟶ M with 

(f⨁1𝑁)(k + n) = f (k) + n, where k ∈ K and n ∈ N. Thus Ker (f⨁1𝑁)=Ker (f) ⨁ 0≪𝑇   K ≤ M, then Ker (f⨁1𝑁) 

≪𝑇   M. Since M is T-weakly Hopfian, f⨁1𝑁  is an automorphism of M and hence f is an automorphism of K, then 

K is T-weakly Hopfian. 

The next result gives a condition that a direct sum of two T-weakly Hopfian modules is T-weakly Hopfian. 

Proposition2.9. Let M = 𝑀1⨁ 𝑀2 such that 𝑀1, 𝑀2 be invariant submodules under any surjection of M. Then M 

is T-weakly Hopfian if and only if 𝑀1 and 𝑀2 are T-weakly Hopfian. 

Proof 

⇒) Clear by Proposition2.8. 

⇐) Let f : M ⟶ M be a T-small epimorphism, then f/𝑀𝑖  : 𝑀𝑖  ⟶ 𝑀𝑖  where i ∈ {1;2}, is a T-small surjection. By 

assumption, f/𝑀𝑖  is an automorphism. Let f (𝑚1 +𝑚2) = 0, then f (𝑚1)+f(𝑚2) = 0 and so 𝑚1 = 𝑚2 = 0. Thus f is 

injective. Then M is T-weakly Hopfian. 

3. An analogue to Hilbert Basis Theorem 

Let M be an R-module. We will briefly recall the definitions of the modules M[x] and 
M x 

(𝑥n +1)
 from [8]. The 

elements of M[x] are formal sums of the form 𝑚0 + 𝑚1𝑥 +...+ 𝑚𝑘𝑥
𝑘  with k an integer greater than or equal to 0 

and 𝑚𝑖  ∈ M. We denote this sum by ∑𝑖=1
𝑘 𝑚𝑖𝑥

𝑖   (𝑚0𝑥
0 is to be understood as the element 𝑚0 ∈ M). 

Addition is defined by adding the corresponding coefficients. The R[x]-module structure is given by 

                               ( ∑𝑖=0
𝑘 𝑟𝑖𝑥

𝑖).( ∑𝑗=0
𝑧 𝑚𝑗𝑥

𝑗 )= ∑𝑙=0
𝑘+𝑧𝑐𝑙𝑥

𝑙  

where 𝑐𝑙  = ∑𝑖+𝑗 =𝑙𝑟𝑖𝑚𝑗 , for any 𝑟𝑖 ∈ R, 𝑚𝑗  ∈ M. 

Any nonzero element 𝛽  of M[x] can be written uniquely as ∑𝑖=𝑘
𝑙 𝑚𝑖𝑥

𝑖  with $l ≥ k ≥ 0, 𝑚𝑖  ∈ M, 𝑚𝑘  ≠0 and 

𝑚𝑙 ≠0. In this case, we refer to k as the order of 𝛽, l as the degree of 𝛽, 𝑚𝑘  as the initial coefficient of 𝛽, and 𝑚𝑙  

as the leading coefficient of 𝛽. 

Let n be any non-negative integer and 

                                𝐼𝑛+1= {0}∪ { 𝛽 ; 0≠ 𝛽 ∈ R[x], order of 𝛽 ≥ n+1\}. 

Then 𝐼𝑛+1 is a two-sided ideal of R[x]. The quotient ring R[x]/ 𝐼𝑛+1 will be called the truncated polynomial ring, 

truncated at degree n+1. Since R has an identity element, 𝐼𝑛+1  is the ideal generated by 𝑥n+1. Even when R does 

not have an identity element, we will "symbolically" denote the ring R[x]/  𝐼𝑛+1  by 
R x 

(𝑥n +1)
. Any element of 

R x 

(𝑥n +1)
  can be uniquely written as ( ∑𝑖=0

𝑘 𝑟𝑖𝑥
𝑖  with 𝑟𝑖 ∈ R. 

 

Let 

                                𝐷𝑛+1= {0}∪ { 𝛽 ; 0≠ 𝛽 ∈ R[x], order of 𝛽 ≥ n+1\}. 
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Then 𝐷𝑛+1 is an R[x]-submodule of M[x]. Since 𝐼𝑛+1M[x] ⊂  𝐷𝑛+1, we see that 
R x 

(𝑥n +1)
 acts on 

M x 

𝐷𝑛 +1
. We denote the 

module 
M x 

𝐷𝑛+1
 by 

M x 

(𝑥n +1)
. The action of 

R x 

(𝑥n +1)
  on 

M x 

(𝑥n +1)
  is given by 

                                                             ( ∑𝑖=0
𝑛 𝑟𝑖𝑥

𝑖).( ∑𝑗 =0
𝑛 𝑚𝑗𝑥

𝑗 )= ∑𝑙=0
𝑛 𝑐𝑙𝑥

𝑙  

where 𝑐𝑙  = ∑𝑖+𝑗 =𝑙𝑟𝑖𝑚𝑗 , for any 𝑟𝑖 ∈ R, 𝑚𝑗  ∈ M. 

Any nonzero element 𝛽 of 
M x 

𝐷𝑛 +1
  can be written uniquely as ∑𝑖=𝑘

𝑛 𝑚𝑖𝑥
𝑖  with $n ≥ k ≥ 0, 𝑚𝑖  ∈ M, 𝑚𝑘  ≠0. In this 

case, we refer to k as the order of  𝛽, 𝑚𝑘  as the initial coefficient of 𝛽. 

The 
R[𝑥1 ,...,𝑥𝑘 ]

(𝑥1
𝑛1+1

,...,𝑥𝑘

𝑛𝑘 +1
)
-module 

M[𝑥1 ,...,𝑥𝑘 ]

(𝑥1
𝑛1+1

,...,𝑥𝑘

𝑛𝑘 +1
)
 is defined similarly. 

Lemma3.1. Let M be an R-module and T be a submodule of M, if K ≪𝑇  M then 
K x 

(𝑥n +1)
   ≪ T  x  

(𝑥n +1)
   

 
M x 

(𝑥n +1)
   as 

R x 

(𝑥n +1)
-modules. 

Proof: Let 
P x 

(𝑥n +1)
    be a submodule of 

M x 

(𝑥n +1)
   satisfy  

T x 

(𝑥n +1)
   ⊆ 

P x 

(𝑥n +1)
   +

K x 

(𝑥n +1)
    

For any t ∈ 𝑇, we have $t=∑𝑖=0
𝑛 𝑝𝑖𝑥

𝑖  + ∑𝑖=0
𝑛 𝑘𝑖𝑥

𝑖 , where ∑𝑖=0
𝑛 𝑝𝑖𝑥

𝑖   ∈  
P x 

(𝑥n +1)
    ,  ∑𝑖=0

𝑛 𝑘𝑖𝑥
𝑖   ∈ 

K x 

(𝑥n +1)
 and t = 𝑝0+𝑘0, 

𝑝𝑗 = -𝑘𝑗  , for  j = 1, 2, ..., n. 

For 0 ≤ l≤n,  t𝑥𝑙=∑𝑖=𝑙
𝑛 𝑝𝑖−𝑙𝑥

𝑖  + ∑𝑖=𝑙
𝑛 𝑘𝑖−𝑙𝑥

𝑖 . Clearly, ∑𝑖=𝑙
𝑛 𝑝𝑖−𝑙𝑥

𝑖   ∈  
P x 

(𝑥n +1)
    . If we define 

                𝑃𝑙  = {0}∪{initial coefficients of elements of order l in 
P x 

(𝑥n +1)
} 

then each 𝑃𝑙  is an R-module, and 𝑃0  ⊆ 𝑃1 ⊆ ... ⊆  𝑃𝑛 . We have T ⊆ 𝑃0  + K, since K ≪𝑇  M, then T ⊆

𝑃0 . Consequently, T ⊆ 𝑃𝑖  , for i = 0, 1, ..., n, and it follows easily that 
T x 

(𝑥n +1)
   ⊆ 

P x 

(𝑥n +1)
   . 

Theorem3.2. Let M be a module. If 
M x 

(𝑥n +1)
 is 

T x 

(𝑥n +1)
−weakly Hopfian 

R x 

(𝑥n +1)
−module, then M is T-weakly 

Hopfian R-module. 

Proof: Let f : M ⟶ M be any  T-small epimorphism in R-module, then g : 
M x 

(𝑥n +1)
 ⟶ 

M x 

(𝑥n +1)
 defined by 

g(∑𝑖=0
𝑛 𝑎𝑖𝑥

𝑖)= ∑𝑖=0
𝑛 𝑓(𝑎𝑖)𝑥

𝑖is a surjective endomorphism in 
R x 

(𝑥n +1)
-module and Ker g=

Ker  (f)[x]

(𝑥n +1)
. Since Ker f is $T$-

small in M then by Lemma3.1. Ker g=
Ker  (f)[x]

(𝑥n +1)
 is 

T x 

(𝑥n +1)
-small in 

M x 

(𝑥n +1)
. Since 

M x 

(𝑥n +1)
 is 

T x 

(𝑥n +1)
-weakly Hopfian 

R x 

(𝑥n +1)
-module, hence g is an automorphism in 

M x 

(𝑥n +1)
. Therefore f is an automorphism in M, and finally M is T-

weakly Hopfian. 

Corollary3.3. Let M be a module. If $
M[𝑥1 ,...,𝑥𝑘 ]

(𝑥1
𝑛1+1

,...,𝑥𝑘

𝑛𝑘+1
)
 is 

T[𝑥1 ,...,𝑥𝑘 ]

(𝑥1
𝑛1+1

,...,𝑥𝑘

𝑛𝑘 +1
)
-weakly Hopfian 

R[𝑥1 ,...,𝑥𝑘 ]

(𝑥1
𝑛1+1

,...,𝑥𝑘

𝑛𝑘+1
)
-module, then 

M is  T-weakly Hopfian R-module. 

Proof: Use induction and the 
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(
R[𝑥1 ,...,𝑥𝑘−1]

(𝑥1
𝑛1+1

,...,𝑥
𝑘−1

𝑛𝑘−1+1
)
) 

[𝑥𝑘 ]

(𝑥
𝑘

𝑛𝑘+1
)
-module isomorphism           (

M[𝑥1 ,...,𝑥𝑘−1]

(𝑥1
𝑛1+1

,...,𝑥
𝑘−1

𝑛𝑘−1+1
)
) 

[𝑥𝑘 ]

(𝑥
𝑘

𝑛𝑘 +1
)
≃

M[𝑥1 ,...,𝑥𝑘 ]

(𝑥1
𝑛1+1

,...,𝑥
𝑘

𝑛𝑘 +1
)
 

and ring isomorphism       (
R[𝑥1 ,...,𝑥𝑘−1]

(𝑥1
𝑛1+1

,...,𝑥𝑘−1

𝑛𝑘−1+1
)
) 

[𝑥𝑘 ]

(𝑥𝑘

𝑛𝑘+1
)
≃

R[𝑥1 ,...,𝑥𝑘 ]

(𝑥1
𝑛1+1

,...,𝑥𝑘

𝑛𝑘+1
)
 

 

Open Problems 

(1) What is the structure of rings whose finitely generated right modules are T-weakly Hopfian? 

(2) Let R be a ring with identity, and M be a T-weakly Hopfian module. Is M[X, X−1]  T[X, X−1]-weakly 

Hopfian in R[X, X−1]-module? 

(3)  Let R be a T-weakly Hopfian ring and n ≥ 1 an integer. Is the matrix ring Mn  (R)  

         T-weakly Hopfian? 
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