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Abstract: The study shall seek to explore the deep, underlying correspondence between the mathematical world of pure 
numbers and our physical reality. The study begins by pointing out that while the familiar, one-dimensional real numbers 
quantify many aspects of our day-to-day reality, complex numbers provide the mathematical foundations of quantum mechanics 
and also describe the behavior of more complicated quantum networks and multi-party correlations, and quaternions underlie 

Einsteinian special theory of relativity, and then poses the question whether the octonions could play a similar role in 

constructing a grander theory of our universe. The study then points out that by increasing the level of abstraction and 
generalization of axiomatic assumptions, we could construct a more powerful number system based on octonions, the seditions, 
or even other hypercomplex numbers so that we may more accurately describe the universe in its totality. 
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1. Introduction  

What is it that breathes fire into the equations and makes a universe for them to describe? —Stephen Hawking 

As this article attempts to take a closer look at the various ways in which the macroscopic and microscopic 

world of physical reality and the mathematical world of pure numbers interact, influence and inspire each other, it 

is of great importance that we try to understand the intrinsically mathematical nature of our own universe.  

Many fundamental constants of nature and initial conditions of the universe do indeed appear as being 

exquisitely fine-tuned to an unimaginably high degree of precision. Parameters like dimensionality of the universe, 

matter-antimatter asymmetry, spontaneous breaking of the electroweak symmetry and bosons acquiring their 

masses through the Higgs mechanism, various cosmological features like cosmic mean density, Hubble and 

cosmological constant, curvature etc., values of various coupling constants, fine-tuning of a multitude of nuclear 

processes such as the deuterium bottleneck, the triple-alpha process of stellar burning, and nucleon–nucleon 

binding etc. to name a few — are some of the most striking examples of fine-tuning operating in the cosmic scale. 

Max Tegmark, in his Our Mathematical Universe, explores the controversial idea that “the ultimate reality is purely 

mathematical, demoting familiar notions such as randomness, complexity, and even change to the status of 

illusions, and implying that there’s a fourth and ultimate level of parallel universes” (13). According to his 

classification of multiverses, the Level IV multiverse is the ultimate, ensemble multiverse where mathematics does 

not describe any external physical reality, but the reality in its grandest form itself is mathematics, and our physical 

world or the different branches of parallel universes in the Level III multiverse becomes a giant mathematical 

object in the Level IV multiverse that encompasses all mathematical objects. In Tegmark’s words, “the Level IV 

parallel universes dance to the tunes of different equations, corresponding to different mathematical structures” 

(Our Mathematical Universe 321). Various other books like van Fraassen’s Laws and Symmetry (1989), Victor 

Stenger’s The Comprehensible Cosmos: Where Do the Laws of Physics Come From? (2006), Brian Greene’s The 

Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos (2011), Yanofsky’s The Outer Limits of 

Reason: What Science, Mathematics, and Logic Cannot Tell Us (2013), and Dray and Manogue’s The Geometry 

of the Octonions (2015) — attempt to delve deep in the discussion of the relationship between mathematics and 

physical reality.  

Barrow and Tipler (1986), Leslie (1989), Davies (2006), Ellis (2007), and Barnes (2012) have pointed out this 

fine-tuning aspect of cosmos. These examples of fine-tuning therefore make us wonder at the intrinsically 

mathematical nature of our cosmos. One example is the so-called ‘Beryllium bottleneck’ and the associated 

phenomenon of Hoyle state resonance. Now, the process of making carbon starts with two 4He nuclei colliding 

together to form 8Be, upon which a third 4He nucleus fuses with 8Be to produce 12C. It is from this 12C, 16O is 

made after combining another 4He nucleus. Now as the 8Be isotope is extremely unstable, the second step must 

occur pretty rapidly, and as Hoyle predicted, in the absence of the exquisitely fine-tuned energy level in 12C, this 

process would be too inefficient in creating sufficient amount of carbon. Also, the mass difference between protons 

and neutrons, or, between the down quark and the up quark is also extremely fine-tuned. Also, speaking of the 

initial conditions of our universe, we see that the number Q, or size of primordial inhomogeneities, or ‘ripples’ is 

also exquisitely fine-tuned. The value of Q is around 0.00001, or one part in a 100,000. If this value was 1/10th of 
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his present value, then no galaxies could have emerged and consequently no stars and planets, and if, on the other 

hand, it had been 10 times larger than its present value, all the matter contents of our universe would have collapsed 

to form only black holes, and so no galaxies, star or planets would arise. Also, equally important is the number Ω, 

which is defined as the ratio between the current matter density in the Universe and the critical density. If Ω ≤ 1, 

then the universe would continue to expand forever, whereas if Ω > 1 it would undergo a tremendous cosmic 

collapse. Thus Ω = 1 is definitely a critical number and the current value is around Ω ≈ 1. The density of our 

universe is Ωtot = ρ/ρcrit = 1.0002 ± 0.0026 which is tantalizingly close to its critical density ρcrit = 3H02/8πGN 

where the curvature of the cosmos also contributes with its value Ωk = 0.000 ± 0.005. So, unless the number Ω 

had the right value from the dawn of time to a precision of almost 55 decimal places, it would not have been 

possible for the number Ω to retain and maintain its critical value for few billions of years. Grinbaum (2012) 

discusses this problem in more details. Also, the smallness of cosmological constant compared to the enormous 

value of Planck energy is another example in fine-tuning. As the natural energy scale of gravitation, the Planck 

scale is somewhat close to mPl = (h¯ c/GN)1/2 = 1.2 × 1019 GeV/c2, and the cosmological constant or dark energy 

density Λ is close to (10 meV)4~(10−30 mPl)4 = 10−120 mPl4. The cosmological constant is also extremely tiny 

when compared to the vacuum expectation value of the Higgs field which has a value of about mH4~(100 

GeV)4~1052 L.  

Even though physicists like Liddle and Lyth 2000 and Weinberg 2008 propose cosmic inflation to solve the 

fine-tuning problem for Ω, we find that even the parameters in any theory of inflation have to be fine-tuned to few 

millions of decimal places (Carroll and Tam ,2010). Also, as Penrose points out, the initial conditions of our 

universe must have been fine-tuned with a precision of one to 10^10^123. There are as many as 26 dimensionless 

constants which further point towards the extremely fine-tuned, and intrinsically mathematical nature of our 

universe. There is the famous fine-structure constant, or the strength of the electromagnetic interaction, which id 

more specifically the ratio of the charge of an elementary particle such as an electron squared to Planck’s constant 

and the speed of light. The number is ≈ 1/137.036. Then, the strong coupling constant is there to determine the 

strength of the force that glues protons and neutrons together. We require as many as 15 dimensionless constants 

to describe all the known masses in our universe. The masses of the six quarks, six leptons, the W, Z, and the Higgs 

bosons also call for the invention of some fundamental theory which might describe the process through which 

these masses arise and take their extremely precise values. Then we have four quark mixing parameters and three 

neutrino mixing parameters for the three types of neutrino species all of which possess the same quantum number. 

Finally, there is the cosmological constant Λ which is the vacuum energy density of space, that is a consequence 

of Einstein's field equations of general relativity. The ideas of dark energy and quintessence are invoked to describe 

the nature of this cosmological constant.   

2. The Relationship of Fundamental Physical properties with Pure Mathematics: 

The relationship of fundamental physical properties with pure mathematics has intrigued many mathematicians 

and physicists. Recently, it is suspected that the entire array of fundamental forces and particles actually spring 

from the properties of eight-dimensional numbers named “octonions.” Speaking of number system, the most 

familiar numbers are definitely real numbers, which includes rational numbers such as integers (-2, -1, 0, 1, 2), 

fractions (1/2, 1/3, 0.8, 2.5) and irrational numbers such as √3, √5, π (22/7 or 3.14159265358979…), Euler’s 

Number, e (2.71828182845904…), Golden ratio, φ (1.61803398874989….), etc. to name a few. Now, these real 

numbers can be combined in a special way to form “complex numbers,” which were first found during the 16th-

century Italy, and these numbers can also be imagined to lie like coordinates on a 2-D plane. It is by combining a 

real Number and an imaginary number that we derive a complex number. In the example, a+bi, a can be thought 

of as the ‘real part,’ and ‘bi’ the imaginary part, since the ‘i’ possesses a value of square root of negative one. Also, 

we can think of such acts as translating and rotating positions around the plane as equivalent to the performing of 

such basic operations like adding, subtracting, multiplying and dividing. Now, the complex numbers, when paired 

in a particular way, can give rise to the 4-D “quaternions”. Any single point in 4-D space with Cartesian coordinates 

(t, x, y, z) may be represented by a quaternion P = t + xi + yj + zk.  A general 4D rotation can be split into left- and 

right-isoclinic factors. If complex algebra can be thought of as 2-D, quaternion algebra can be thought of as 

occurring in 4-D plane: i^2 = j^2 = k^2 = ijk = -1. Here, using 1, i, j, k as the base, we see how a 4-axis space is 

created. Quaternions are pretty easy to interpolate which implies that applying two rotations, it is possible to 

transform one into the other in a smooth way without running into any problems. One needs four numbers to 

represent a quaternion, and this, in turn, is related to the number of some special 2D planes that seem to exist in 

3D space. In the 4-normed division algebras over the reals, where division by non-zero elements become possible, 

we see that besides the real numbers, there are also the complex numbers, quaternions, and a non-associative 

number system called octonions comprise the system. When we apply the Cayley-Dickson construction, we see 

that at each step, the number of dimensions gets doubled in a geometric progression: 1, 2, 4, 8. This is why the 

dimension number 3 remains absent. Another aspect that will continue to become ever more important as we will 

move up or down the Cayley-Dickson ladder is that with each progress, we tend to lose certain properties while 

gaining some. When we move up from the real plane to the complex numbers plane, we lose certain order; whereas 

when we move up to the plane of quaternions, we lose the property of commutativity; and by going to the level of 

the octonions, we lose associativity; and by moving up to the level of sedonions we lose all properties related to 

an alternative or a division algebra. The mathematician Cohl Furey has built upon the works of Murat Günaydin 
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to unfurl the underlying relationship between fundamental physics and pure mathematics. Many continue to 

suspect that the eight-dimensional numbers called the ‘octonions’ seem to give rise to all the fundamental forces 

and particles. John Graves showed that we can derive octonions from combining certain pairs of quaternions in a 

particular way and it is the octonion numbers that define coordinates in an abstract 8-dimensional space. Hamilton, 

the Irish mathematician from whose name the “Hamiltonian” operator in classical and quantum mechanics is 

derived, first sought to ascend to the complex plane by adding an imaginary j axis. But working on three dimensions 

proved to be a highly critical challenge as he faced in his endeavor numerous unforeseen obstacles. Most important 

of them all is that in the complex plane, operations such as multiplication produce rotations. It became increasingly 

hard for Hamilton to define multiplication on a 3-D plane, since there was hardly any opposing division to return 

any meaningful answer. As Charlie Wood writes in Wired, “To see what makes 3-D rotation so much harder, 

compare turning a steering wheel with spinning a globe. All the points on the wheel move together in the same 

way, so they’re being multiplied by the same (complex) number. But points on the globe move fastest around the 

equator and slower as you move north or south. Crucially, the poles don’t change at all. If 3-D rotations worked 

like 2-D rotations, Baez explained, every point would move” (“Meet the Four-Dimensional Numbers That Led to 

Modern Algebra”). However, it is by adding three imaginary axes, i, j and k, with the real number line ‘a’, Hamilton 

found that these new numbers appear to function like arrows in 4-D space, and he named them “quaternions.” 

These ‘arrow’-like quaternions could also be rotated on the 3-D plane. Hamilton thought of ways in which he could 

simplify these quaternions where he could just keep the real part, a, equal to zero and let its imaginary components 

i, j and k function normally. For these three imaginary components, Hamilton coined the notation “vector.” The 

act of rotating a 3-D vector became equivalent to the multiplication of it by a pair of 4-D quaternions which also 

happened to contain information about the direction and degree of rotation. One could perform almost all the 

operations effortlessly with the quaternions what he/she can perform with the real and complex numbers. However, 

in case of quaternions, ordering matters. Whereas 4 × 5 and 5 × 4 both yield 20, when it comes to multiplication 

with quaternion, order matters, and this behavior used to be encountered frequently in ways in which objects rotate 

but never found in the world of numbers. numbers before, even though it reflects how everyday objects rotate. 

“Place your phone face-up on a flat surface, for example. Spin it 90 degrees to the left, and then flip it away from 

you. Note which way the camera points. Returning to the original position, flip it away from you first and then 

turn it to the left second. See how the camera points to the right instead? This initially alarming property, known 

as non-commutativity, turns out to be a feature the quaternions share with reality” (Wood, “Meet the Four-

Dimensional Numbers”). 

 However, during 1898, it becomes quite clear that reals, complex numbers, quaternions and octonions are the 

only kinds of numbers on which we can apply addition, subtraction, multiplication and division. Thus, the field of 

“division algebras” became the mathematical bedrock for 20th-century physics, where real numbers appear 

universally, complex numbers providing the mathematical foundations for the math of quantum mechanics, and 

quaternions becoming useful tools in Einstein’s Special Theory of Relativity. So, the question whether the 

octonions could hold the foundational secrets of our reality becomes important. Pierre Ramond, a particle physicist 

and string theorist at the University of Florida states, “Octonions are to physics what the Sirens were to Ulysses”. 

Günaydin and his advisor Feza Gürsey discovered a connection between the octonions and the strong nuclear force 

in 1973. However, with the advent of the Standard Model of particle physics, the focus of most of the researchers 

shifted to the results obtained from experiments performed in the collisions of high energy colliders and related 

experiments while also adding extra particles with the known ones in the hope of discovering an ultimate theory 

of everything. As Latham Boyle, a theoretical physicist at the Perimeter Institute of Theoretical Physics in 

Waterloo, Canada, feels that the physicists hoped “that the next bit of progress will come from some new pieces 

being dropped onto the table, [rather than] from thinking harder about the pieces we already have.”  

 In recent times, we see researchers like Furey attempting to build on the works of Günaydin and Gürsey in the 

hope of constructing an octonionic model of both the strong and electromagnetic forces. Professor Günaydin had 

through his researches sought to uncover some deep, underlying connections between String Theory, M-theory 

and supergravity and octonions themselves which parallels the attempts of other researchers in the field of 

Quantum Gravity or theories that attempt to unify gravity with the other three fundamental forces of pour universe. 

Furey has devised several ways in which the octonions could be connected to the Standard Model but has not 

attempted to unite gravity within the octonionic paradigm. There is a tantalizing indication that the division 

algebras along with the octonions could very well be a part of the mathematical foundations of our reality. In order 

to unify the fundamental forces and the particles with the octonionic model, one needs to construct an elegant and 

simple model, and the ways in which one could combine the octonions and other division algebras could open the 

door for many mathematical revolutions in the near future. Professor Michael Duff, a string theorist has also 

researched on the octonions’ role in string theory. 

In every step of the ladder, as one moves from real numbers to complex numbers, and then to quaternions and 

to octonions, the numbers of dimensions are doubled and certain properties get also lost. In case of the real 

numbers, one can arrange them from smallest to largest, while in the complex plane there’s no such way for 

arranging numbers from smallest to largest. Next, in case of quaternions, we lose the property of commutativity, 

as for these numbers, a × b does not equal b × a. Since quaternions exist in a 4-D plane, switching the order of 

rotations in more than two dimensions can also shift the position of the numbers. In case of the octonions all 
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associativity is lost where (a × b) × c no longer implies the same thing as a × (b × c). As John Baez, a renowned 

mathematical physicist states, “Nonassociative things are strongly disliked by mathematicians. Because while it’s 

very easy to imagine noncommutative situations — putting on shoes then socks is different from socks then shoes 

— it’s very difficult to think of a nonassociative situation.” The nonassociative nature of the octonions make it 

extremely difficult to combine it with the dozens of particles and anti-particles in the Standard Model theory. The 

Standard Model is built on the notion of three symmetry groups dubbed as SU(3), SU(2) and U(1), which 

correspond to the strong, weak and electromagnetic forces, respectively. The Standard Model and its three 

symmetry groups contain subsets of particles which upon being interchanged leave the equations unchanged. The 

model contains six types of quarks and the six anti-quarks, the eight gluons, the three charged leptons and three 

antileptons, the three neutrinos and antineutrinos, the photon, the W and Z bosons, and the Higgs boson. Gravity 

is not included in this model and exists separately.  

Just as we find the four corners of a square giving rise to a symmetry of 90-degree rotations, similarly in the 

Standard Model Theory of particles, sets of particles with their unique handedness, arrangement of specific charges 

and division into three generations – all realize the symmetry group known as SU(3) × SU(2) × U(1). There is a 

chance that this model points towards some yet undiscovered theoretical structure which unifies all the particles 

and forces in a coherent and comprehensive framework and in this regard, the octonions could come handy in the 

construction of such a complete theoretical framework. If one imagines the particles to be rotating in a 4-D space-

time, quaternions could represent the way these particles translate and rotate in the 4-D. As Furey states, “I realized 

that the eight degrees of freedom of the octonions could correspond to one generation of particles: one neutrino, 

one electron, three up quarks and three down quarks.” Furey sought to reconstruct the internal properties like 

charge of the particles using the four division algebras or the Dixon Algebra which is composed of real numbers, 

complex numbers, quaternions and octonions. The four number systems can form a 64-dimensional space and the 

components of the subspace when multiplied by other components remain fixed in the subspace which in turn 

allows the particles to stay particles even when they are rerating, interacting, moving and transforming. This is the 

‘R⊗C⊗H⊗O combination’ of four number system where R stands for reals, C is for complex numbers, H 

represents quaternions and O the octonions. The mathematical ideals embedded in the symmetries of 

R⊗C⊗H⊗O system become manifest as particles of the Standard Model.  

Under such a transformation, the algebra separates into two parts in which one part is composed of complex 

numbers combining with quaternions and in the other with octonions: C⊗H and C⊗O. Furey has shown in her 

works how the symmetries of Lorentz group which deals with how particles move and rotate in space-time arise 

from C⊗H or quaternionic part. Now, the octonionic part C⊗O gives rise to the symmetry group SU(3) × SU(2) 

× U(1), which determine the internal properties of the particles and how the strong, weak and electromagnetic 

forces, interact with each other. 

Also as Günaydin and Gürsey have shown in their early work, the SU(3) can be found inside the octonions. 

“Consider the base set of octonions, 1, e1, e2, e3, e4, e5, e6 and e7, which are unit distances in eight different 

orthogonal directions: They respect a group of symmetries called G2, which happens to be one of the rare 

“exceptional groups” that can’t be mathematically classified into other existing symmetry-group families. The 

octonions’ intimate connection to all the exceptional groups and other special mathematical objects has 

compounded the belief in their importance, convincing the eminent Fields medalist and Abel Prize–winning 

mathematician Michael Atiyah, for example, that the final theory of nature must be octonionic. “The real theory 

which we would like to get to,” he said in 2010, “should include gravity with all these theories in such a way that 

gravity is seen to be a consequence of the octonions and the exceptional groups.” He added, “It will be hard because 

we know the octonions are hard, but when you’ve found it, it should be a beautiful theory, and it should be unique.” 

(“The Octonion Math That Could Underpin Physics”). Günaydin and Gürsey constructed an octonionic model of 

the strong force operating on a single generation of quarks. 

Furey in her paper in The European Physical Journal C, has attempted to include the entire Standard Model 

symmetry group, SU(3) × SU(2) × U(1), generating all the internal properties of such particles as an electron, 

neutrino and up quarks and their anti-particles. The reason behind the discrete values of electric charge is the value 

of the whole numbers themselves. Now, instead of capturing a single generation of particles through her algebraic 

formulation, further work needs to be done to capture the properties of all the three generations of particles. In 

another paper published in Physical Letters B, Furey uses C⊗O to tackle the Standard Model’s two other 

symmetries, namely the SU(3) and U(1). These two are unbroken symmetries while the other symmetry, namely, 

SU(2) × U(1) can be deconstructed into U(1) by the Higgs mechanism, through which the particles are endowed 

with their respective masses. Symmetries can act on all three generations of particles and give rise to even the 

hypothetical sterile neutrinos. Below is an image describing the number systems in details (courtesy of: Lucy 

Reading-Ikkanda/Quanta Magazine). 
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3. Increasing Abstractions and Lessening Axioms: 

Physicists like Rees (1999) has pointed out that the problem of fine-tuning gives us an additional motivation 

for believing in a theory of Multiverse and the existence of a Multiverse may be a consequence of some form of 

extrapolation and combination of string theory (Susskind 2005; Schellekens 2013) and theory of cosmic inflation 

(Liddle and Lyth 2000; Weinberg 2008). There is also the idea of ‘emergent multiverse’ which Wallace (2012) 

feels should naturally arise under the framework Many-Worlds or Everettian Interpretation of quantum mechanics. 

In the quantum mechanical multiverse, all the branches will have the same exact values of the constants and will 

also obey the same laws of nature. 

In a multiverse or even a universe which for the most part lacks structure and order, one could discern and 

detect structure only if he chooses to look at regions which actually contain the structures. So, physics necessarily 

deals with predictable phenomena as its primary aim is to make testable and falsifiable predictions. Physics 

specifically deals with phenomena that involve symmetries and that can yield specific predictions. 

The phenomena that are selected by scientists for study must have many different types of symmetry. When a 

physicist sees a lot of phenomena, she must first determine if these phenomena have symmetry. She performs 

experiments in different places and at different times. If she achieves the same results, she then studies them to 

find the underlying cause. In contrast, if her experiments failed to be symmetric, she would ignore them.  

Kurt Sundermeyer in his 2014 book Symmetries in Fundamental Physics discusses the role of symmetries in 

physics ranging “from classical physics to now well-established theories of fundamental interactions, to the latest 

research on unified theories and quantum gravity”. Friedman and Scarr in their 2019 paper titled “Symmetry and 

Special Relativity” have dealt with “the role of symmetry in the theory of Special Relativity”. David Garofalo in 

his paper titled “Symmetry and the Arrow of Time in Theoretical Black Hole Astrophysics” (2015) considers the 

case of astrophysical black holes with their manifest properties such as “powerful outflows in active galactic nuclei 

which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes” to “identify a 

parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time 

symmetry-breaking of a simple overdamped harmonic oscillator.” Laura, et al in their paper “Extended Symmetries 

at the Black Hole Horizon,” have sought to prove that “non-extremal black holes in four-dimensional general 

relativity exhibit an infinite-dimensional symmetry in their near horizon region.” Carlip has attempted to study the 

underlying two-dimensional conformal symmetry near the horizon of a black hole in his paper titled “Symmetries, 

Horizons, and Black Hole Entropy.” 

Although legends like Galileo and Newton first realized and appreciated the role of symmetry in physical 

phenomena, it took the genius of Albert Einstein to first discover that the laws of physics should remain the same 

even when the experimenter is moving close to the speed of light. With this symmetry in mind, he was able to 

compose the laws of special relativity. Einstein’s work superseded classical mechanics and proposed the ways in 

which the laws about how space and time are interrelated and how mass and energy influence and in turn are 

influenced by the configuration of space and time. Einstein’s theory rests on two important axioms, among which 

the first is that the laws of physics are independent of one’s inertial reference frame, and second is that the speed 

of light in a vacuum always stays a constant. A group known as the Lorentz group captures these principles of 

symmetries, and from these principles of symmetries Einstein derived the famous E = mc2 along with the rest of 

the Theory of Special Relativity. Einstein’s General Relativity expands and extends the scope of his previous 

theory to include the phenomenon of acceleration of reference frames from special relativity. However, after its 

formulation, it soon became clear that in his new theory, the highly cherished principle of conservation of energy 

seemed to break down. Then it is the mathematician Emmy Noether who through her formulation of the correct 

symmetry showed that conservation of energy is never violated. G. S. Hall in his book Symmetries and Curvature 

Structure in General Relativity (2004) presents the theory of classical general relativity from a geometrical 

viewpoint and deals extensively on the symmetries in general relativity such as “isometries, homotheties, 

conformal symmetries and affine, projective and curvature collineations.” Following Einstein who explored the 

defining role that symmetries play in fundamental physics, Emmy Noether though her ‘Noether’s theorem’ showed 

that for every conserved quantity in physics there is a certain kind of corresponding symmetry and so the symmetry 

and conservation laws are bound together by a deep, underlying connection. This also indirectly influences the 

values of the fundamental constants of nature, which are the cornerstones of all of the modern physics. So, with 

every is symmetry there is an associated conservation law and constant. So, the physicist focuses only on those 

aspects of natural phenomena where symmetries play a crucial role and this is also related to predictability. 

Now, if we believe in the multiverse theory, we shall find that it is only in the subset of the universes that 

possess manifest symmetries where physics works the way we suppose it should work. There is a beautiful analogy 

between the various number systems and the properties of the universe. 

We again need to delve deep into the number system to understand the analogy between number systems and 

universes. In case of the real numbers, we can easily add, subtract, multiply, and divide these numbers in any way 

we choose. They are fundamental to virtually every imaginable aspect of science. The real numbers are also always 

completely ordered which means that given any two random real numbers we can tell which one is bigger and 

which one is smaller. In the real number line, between any two distinct points on the line, one number will be 

placed to the right of the other number. Now, next comes the imaginary numbers where the number i has such a 

property that its square root can be -1 and this is in contrast to any real number whose square root can never be 
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negative. An imaginary number thus can be defined as the product of a real number and its imaginary counterpart 

‘i’. Now, a complex number system results from a combination of a real number and an imaginary number. Noson 

Yanofsky in the article “Chaos Makes the Multiverse Unnecessary,” describes the hierarchy of the number system 

and its relationship with the multiverse/universe. For the real numbers r1 and r2, r1+r2i becomes a complex number 

and since a complex number is constructed from the combination of two real numbers, they can be represented on 

a 2-dimensional plane. In the complex plane the real number line will reside. We see that this results in the fact 

that every real number, r1, can be written as a complex number r1+0i which is just the number itself with a ‘0’ 

complex part of the number. Now, even though one can easily add, subtract, multiply, and divide the complex 

numbers, in stark contrast to the real numbers, they are never fully ordered. If we take two complex numbers such 

as, 7 + 7.5i and 8 – 8.5i, we can never tell which one is bigger of the two. Now, we can do some sort of ordering 

with the complex numbers but this will not involve multiplication, and we will lose certain property. Also, as we 

have seen in the previous section, similar to the way we can construct the complex numbers from two real numbers, 

we can also construct the quaternions from two complex numbers. If we take c1 = r1 + r2i and c2 = r3 + r4i as two 

complex numbers, a quaternion can arise out of these complex numbers in the form of q = c1 + c2j where j is a 

special number. In fact, a quaternion can be written down as r1 + r2i + r3j + r4k where i, j, and k are special 

numbers. Quaternions thus can be thought of as comprising of four real numbers just as a complex number is 

composed of two real numbers, and also complex number r1 + r2i can be written as a quaternion: r1+ r2i + 0j + 

0k. The quaternions also can be interpreted as a 4-dimensional superset which contains the complex numbers as 

its two-dimensional subset. Yanofsky also beautifully describes the nature of the quaternions. Quite similar to real 

and complex numbers, quaternions can be added, subtracted, multiplied, and divided without any hassle. However, 

in contrast to the complex numbers, quaternions fail to be totally ordered but they possess even less structure than 

their complex counterparts. The commutative nature of the complex numbers make multiplication of two complex 

numbers, say c1 and c2 always equivalent irrespective of the order in which they are written. So, c1c2 always 

equals c2c1, and this is not the case with the quaternions and so, for two quaternions q1 and q2 q1q2 is totally 

different from q2q1.   

So, we can interpret octonions as the fundamental system from which other numbers which more structural 

properties seem to emerge. This is the crux of the process known as “Cayley–Dickson construction,” named after 

the mathematicians Arthur Cayley and Leonard Eugene Dickson which proposes that a new number system can 

be derived from the original one by doubling the number of the dimension of the original system. The new system 

with higher dimensions than its predecessor also possesses less structure or demands less axioms than the preceding 

one. Now, by applying the Cayley–Dickson construction to the quaternions, we the eight-dimensional number 

system named the octonions. The octonions, too, can be written down as a combination of eight real numbers as - 

r1+ r2i + r3j + r4k +r5l + r6m + r7n + r8p. So, if we keep the last four coefficients zero, we can write down a 

quaternion as a special type of octonion also. The octonions, similarly to the quaternions, are neither fully ordered 

nor commutative. Further, the octonions are also nonassociative. All the previous number systems contain the 

property of associativity by virtue of which when the elements a, b, and c, are multiplied, their results a(bc) and 

(ab)c are always equal. However, the octonions fail to be associative. If we multiply such octonions as o1, o2 and 

o3, then their nonassociative nature demands that o1(o2o3) does not equal (o1o2)o3. Also, by keeping the last 

eight coefficients of the octonion zero, we can derive a sedonion, and for sedenions, it is not possible to divide 

them even though we can add, subtract or multiply them with ease. One can also construct 32 or even 64-

dimensional number system from sedenions. Yanofsky attempts to summarize the properties of the five different 

number systems in the following Venn diagram: 

 

Now, the real numbers are used ubiquitously in physics to denote quantities, measurements, and lengths of 

physical objects or processes, while the complex numbers assume a central significance in the study of quantum 

mechanics, and now, in the attempt to unify all the articles and forces in the Standard Model we are beginning to 
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see quaternions are being used in special situations. The octonions and the sedenions, too might be used in different 

branches of physics soon. Leopold Kronecker once stated, “God made the octonions, all else is the work of man.” 

In recent times, there has been a paradigm-shift in our thinking process where we have begun to see complex, 

quaternions, and octonions as more fundamental than real numbers and octonions appearing increasingly more 

important in understanding the origin of the hierarchy of number system.  

As Yanofsky puts it: Rather than looking at the real numbers as central and the octonions as strange larger 

number systems, think of the octonions as fundamental and all the other number systems as just special subsets of 

octonions. The only number system that really exists is the octonions. The octonions contain every number that 

we will ever need. (And, as we stated earlier, we can do the same trick with the sedenions and even the 64-

dimensional number system. We shall fix our ideas with the octonions.) 

Yanofsky further states that one can find the lost property in the higher dimensional number system in the 

special type of subfields or subsets of the number system concerned. So, in the subset of the octonions, we can 

find the property of associative multiplication which does not exist in the multiplication of the octonions 

themselves. Now, if one selects the octonions in the form of r1+ r2i + r3j + r4k + 0l + 0m + 0n + 0p, the 

multiplication will be associative similar to what happens with the quaternions. Also, by writing the octonions in 

the form of r1+ r2i + 0j + 0k + 0l + 0m + 0n + 0p, we shall find that the multiplication will be commutative just 

like it happens with the multiplication of complex numbers. Finally, if one writes the octonions in the form of r1 

+ 0i + 0j + 0k + 0l + 0m + 0n + 0p, we will derive a completely ordered number system. So, virtually all the axioms 

can be thought as residing in the nested forms inside the larger superset of the octonions.  

Yanofsky explains it thus: Whenever we have a structure, we can focus on a subset of special elements that 

satisfies certain properties. Take, for example, any group. We can go through the elements of the group and pick 

out those X such that, for all elements Y, we have that XY = YX. This subset is a commutative (abelian) group. 

That is, it is a fact that in any group there is a subset that is a commutative group. We simply select those parts that 

satisfy the axiom and ignore (“bracket out”) those that do not. The point we are making is that if a system has a 

certain structure, special subsets of that system will satisfy more axioms than the starting system. This is similar 

to what we are doing in physics. We do not look at all phenomena. Rather, we pick out those phenomena that 

satisfy the requirements of symmetry and predictability. In mathematics, we describe the subset with the axiom 

that describes it. In physics, we describe the selected subset of phenomena with a law of nature  

Yanofsky explains the analogy using the following diagram: 

 

Now, in both mathematics and physics, when we tend to focus our attention to the description of subsets of 

phenomena rather than the entire phenomena, we discover structures, symmetries and pattern while if we shift our 

focus towards the vaster scales, we find mathematics becoming more complex than before and physical theories 

failing to grasp the crux of the problem. However, through their mutual interaction and interrelationship, both 

mathematics and physics have continued to inspire and influence each other over the ages. 

It was with the development in quantum mechanics that the need of complex numbers began to be felt. For 

describing the distributive nature of quantum mechanics complex numbers appear to play a very crucial role. Also, 

when Einstein formulated General Relativity, he felt the need to do away with the Euclidean axiom of flatness as 

being too restrictive and instead chose the non-Euclidean spacetime. In quantum mechanics, the order in which 

measurement is being done becomes extremely important and so to capture the bizarre beauty of quantum world, 

we need to discard the cherished principle of commutativity, and here the quaternions become important since they 

are noncommutative and so, the order of multiplication matters. As quaternions describe rotations in three 

dimensions, order of multiplication can make a difference to the outcome.  

Speaking of the relationship between quantum mechanics and complex numbers we can state that through a 

special combination of real numbers and a rule to keep them in line can represent the properties of complex 

numbers and so, quantum mechanics too can be represented via real numbers. Schrödinger himself endeavored to 

represent his ‘real’ wavefunction as made of “true wave equation” sans any complex part, i.e., ‘i’. In 2008 and 

2009, two teams of physicists which include Vértesi and McKague, have attempted to predict the outcome of Bell 

test by using only real numbers and they have succeeded in doing so. However, various researches are still 

attempting can prove that quantum mechanical experiments based purely on real numbers may not be enough and 

that there are complex quantum systems which demand the usage of complex numbers. As Marc-Olivier Renou 
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and Nicolas Gisin in their works are attempting to prove that the real number-based version of quantum mechanics 

cannot go very far in representing the most complex quantum mechanical features. In Bell test experiments, we 

see that pairs of entangled particles even when are sent far apart, can seem to share information between them, and 

when physicists measure the results of their measurements on the two particles, they find that the result are 

correlated in some inexplicable ways. Now, if instead of a single pair of particles we include three pairs of 

entangled articles where the first pair goes to Alice and Bob, and third pair to Bob and a third party, Charlie, we 

see that real number-based quantum mechanical description can never fully describe the pattern of correlations in 

a satisfactory manner. It is only through the use of complex numbers that the correlations in this three-party 

entanglement can be found. In fact, any attempt to describe such multi-party correlations demands that we do not 

take recourse to some restrictive class of logic, but instead adopt some less restrictive axiom, and here complex 

numbers and quaternions become handy since they are more effective in describing the distributive nature of 

quantum systems. 

Also, when Boltzmann and Gibbs began formulating their theories of statistical mechanics, they felt the need 

to do away with the deterministic mode of thinking. They discovered that the outcomes of their experiments were 

now no longer bound to binarisitic probabilities where either the event happens (p(X) = 1) or it does not (p(X) = 

0). Rather, in experiments based on statistical mechanics, an outcome (p(X)) is no longer seem to be a component 

of the restrictive finite subset {0,1}), but instead seem to belong to the infinite set [0,1]. Max Tegmark in his book 

Our Mathematical Universe gives us a diagram of the relationship between different number systems and our 

physical theories. 

 

4. Strings and Dimensionality of our Cosmos: 

String Theory demands that supersymmetry be incorporated in it and this idea of supersymmetry was first 

formulated during the 1980s. Supersymmetry states that every matter particle such as an electron or neutrino and 

every force carrying particle such as a photon or gluon possesses a corresponding, twin matter or force mediating 

particle. Supersymmetry also predicts that the laws of physics would not alter if all the matter and force particles 

are exchanged with each other. As John C. Baez and John Huerta write: “Imagine viewing the universe in a strange 

mirror that, rather than interchanging left and right, traded every force particle for a matter particle, and vice versa. 
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If supersymmetry is true, if it really describes our universe, this mirror universe would act the same as ours. Even 

though physicists have not yet found any concrete experimental evidence in support of supersymmetry, the theory 

is so seductively beautiful, and has led to so much enchanting mathematics, that many physicists hope and expect 

that it is real” (“The Strangest Numbers in String Theory” 7). 

Now, in the standard, 3-dimensionsal version of quantum mechanical description of matter and force particles, 

we see that spinors describe the wave-like nature of matter particles while vectors represent wave nature of force 

particles. So, for understanding the nature of particle interactions we have to multiply these two numbers, namely 

spinors and vectors together. 

Now, in a universe where timelike dimension does not exist, we find that in the dimension 1, 2, 4, or 8, a 

number in a division algebra would be sufficient in describing both matter and force particles that permits addition, 

subtraction, multiplication and division. In such a timeless universe, in the dimensions 1, 2, 4, or 8, the vectors and 

spinors can only be real numbers, complex numbers, quaternions or octonions. Supersymmetry thus gives a 

complete and unifying description of all the matter and forces. However, the description changes radically when 

we take time into account as at every passing moment, a string despite being a 1-dimensional entity itself actually 

traces out a 2-dimensional surface. This doubles the dimensions from which supersymmetry emerges as one 

dimension is required by the string, and one gets added for time. So, we get dimensions 3, 4, 6, or 10 from which 

supersymmetry emerges instead of from dimensions 1, 2, 4 or 8. 

So, Baez and Huerta (2012) state: Coincidentally, string theorists have for years been saying that only 10-

dimensional versions of the theory are self-consistent. The rest suffer from glitches called anomalies, where 

computing the same thing in two different ways gives different answers. In anything other than 10 dimensions, 

string theory breaks down. But 10-dimensional string theory is, as we have just seen, the version of the theory that 

uses octonions. So, if string theory is right, the octonions are not a useless curiosity: on the contrary, they provide 

the deep reason why the universe must have 10 dimensions: in 10 dimensions, matter and force particles are 

embodied in the same type of numbers—the octonions. 

Also, there are entities called membranes which are higher dimensional versions of string s and as time passes, 

a 2-D brane can trace out a three-dimensional volume in spacetime. 

So, instead of adding two dimensions to the 1, 2, 4 and 8, we have to add three to our standard number of 

dimensions. So, with the addition of membranes, we find the dimensions 4, 5, 7 and 11 emerging, and in the M-

theory we confront 11 dimensions which naturally calls for an octonionic framework. So, one thing that is 

becoming increasingly clearer to us is that we need to give up the choice of axioms as we attempt to describe our 

reality in its grander form: 

Paul M. Dirac comments on this necessity of giving up axioms in the following manner: 

The steady progress of physics requires for its theoretical formulation a mathematics which get continually 

more advanced. This is only natural and to be expected. What however was not expected by the scientific workers 

of the last century was the particular form that the line of advancement of mathematics would take, namely it was 

expected that mathematics would get more and more complicated, but would rest on a permanent basis of axioms 

and definitions, while actually the modern physical developments have required a mathematics that continually 

shifts its foundation and gets more abstract. Non-Euclidean geometry and noncommutative algebra, which were at 

one time were considered to be purely fictions of the mind and pastimes of logical thinkers, have now been found 

to be very necessary for the description of general facts of the physical world. It seems likely that this process of 

increasing abstraction will continue in the future and the advance in physics is to be associated with continual 

modification and generalisation of the axioms at the base of mathematics rather than with a logical development 

of any one mathematical scheme on a fixed foundation. 

5. Conclusion  

The study primarily endeavored to explore the analogies between our physical reality and the mathematical 

world in order to point out the various ways in which the number system in the mathematical world often 

corresponds to the workings of our physical reality. The study first pointed out the extremely fine-tuned nature of 

our universe and then pointed out how complex numbers that behave like coordinates on a 2-D plane, the 4-D 

quaternions, and the octonions that define coordinates in an abstract 8-D space – all can be useful in describing 

some of the most complex aspects of particle physics and quantum mechanics. Then the study moved on to discuss 

how mathematical systems with a fewer number of axiomatic assumptions built into them seem to describe the 

nature of the cosmos in its grandest form imaginable. The larger mathematical structures like the octonionic, the 

sedenionic, and even hypercomplex numbers from the quaternions to the sedenion number systems should play an 

increasingly vital role in describing our universe in its totality.  Finally, after discussing the mathematical aspects 

of the dimensionality of string theory the study came to the conclusion that there is indeed a deep, underlying 

correspondence between the mathematical world of pure abstractions and our physical world. 
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