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Abstract: Over the past two decades, there has been a great enhance in researches dealing 

with the software development effort estimation utilizing machine learning (ML) approaches 

with the objective of improving the accuracy of the estimates. Among these ML methods, 

artificial neural network approaches have gained significant scholarly attention thanks to their 

capability to learn and model non-linear and complex functions. In this paper, artificial neural 

network technique was considered for modelling software development effort estimation. 

Datasets considered for estimation were COCOMO. Evaluation measures used were MMRE 

and correlation R. After building and testing the ANN model, and based on the comparison 

between the test results of the ANN model and the SLIM, Function Points, and COCOMO-

basic models it could be concluded that the ANN was a suitable model in the estimation of the 

effort. ANN is recommended to be used as a predictive model for software development effort 

estimation. 

 

Keywords:  Machine learning, COCOMO database, Artificial neural network, Software effort 

estimation 

 

1. Introduction   

One of the main objectives of the software development community is to develop models 

that are practically applicable. Another important goal for the community is to evaluate how 

accurately a model can predict effort involved in developing software. Effort estimation is the 

prediction of the development time and cost required to develop the software product. 

Estimating of software development effort is essential and important issue to manage of 

complex and large software projects (Papatheocharous & Andreou, 2010). Accurate and 

reliable prediction for software effort enables project managers to effectively plan and 

allocate resources during software design and development. Overestimation can cause 

resources misallocation, affecting the development of other important projects. Conversely, 

underestimating of software effort may lead to delay and cost over-run, that may result in 

failure of  project (Moosavi & Bardsiri, 2017). Therefore, during the last years, numerous 

effort estimation approaches were established using various theoretical concepts (Jorgensen & 

Shepperd, 2006) and combining existing estimation techniques (MacDonell & Shepperd, 

2003; Mittas & Angelis, 2008). Because of the importance of accurate estimation of effort, 

extensive research has been conducted in this field. The current techniques can be categorized 

as below (Boehm, Abts, & Chulani, 2000) : 

(1) Parametric models: SLIM (Putnam & Myers, 1991), SEER-SEM (Jensen, 1983), and 

COCOMO (Boehm, 1981) 

(2) Expertise-based methods: Delphi technique and work breakdown structure based 

techniques (Jørgensen, 2004) 

(3) Dynamics based approaches (Madachy, 1994) 
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(4) Regression based techniques: robust regression and ordinary least square regression 

(Costagliola, Ferrucci, Tortora, & Vitiello, 2005) 

(5) Learning oriented methods: analogy based estimation (Shepperd & Schofield, 1997) and 

machine learning techniques (Mohsin, 2021; Oliveira, 2006).  

Although previous models have produced improvements in prediction of software effort, 

the attempts to develop more reliable and accurate models are ongoing. Recently, machine 

learning techniques, such as artificial neural networks (ANN), have gained popularity as a 

way to model the complex relationship between effort and software attributes. Within this 

context, Wen et al. conducted an extensive literature review for relevant published studies in 

1991–2010 and 84 primary empirical studies were selected (Wen, Li, Lin, Hu, & Huang, 

2012).  

They found that eight types of ML approaches were used in software development effort 

estimation models: case-based reasoning (CBR), decision trees (DT), artificial neural 

networks (ANN), support vector regression (SVR), Bayesian networks (BN), genetic 

programming (GP), genetic algorithms (GA), and association rules (AR). The most frequently 

utilized among them are ANN, DT, and CBR. Their study also revealed that the prediction 

accuracy of most ML models is close to the acceptable level and is outperforms the non-ML 

models in terms of MMRE and Pred (0.25). In fact, different ML approaches have different 

strengths and weaknesses and the efficiency of any model is influenced by the database 

characteristics utilized to build the model (size of dataset, outliers, categorical features, and 

missing values). 

Because the artificial neural network technique is adaptable and nonparametric, predictive 

models can be designed to the data at a specific site. The present study investigated the 

application of a powerful machine learning approach namely ANN to estimate the software 

development effort. The COCOMO database (Boehm, 1981) have been used for training and 

testing the proposed ANN model. 

The remainder of this paper is organized as follows: Section 2 presents the previous work 

related to software effort estimation using different machine learning techniques. Section 3 

gives a description of the ANN technique. Section 4 illustrates the datasets and performance 

criteria employed to assess the performance of the ANN model. Section 5 presents the results 

obtained by the proposed model and comparison of the results is discussed. Finally, section 6 

concludes the research and suggests future work. 

2. The Related Work 

Accurate and reliable estimation of development effort is a key element of effective 

software projects management. Although the numerous studies over the last decades, the 

software community remain faces significant challenges when it comes to estimate software 

effort. Time to time, different methods for the same have been discussed by authors. 

Karunanitthi et al. (Karunanithi, Whitley, & Malaiya, 1992) developed neural networks model 

for software reliability prediction. They performed analysis with both ANN and Jordan 

networks and the cascade correlation learning algorithm. Samson et al. (Samson, Ellison, & 

Dugard, 1997) applied Albus multiplayer perceptron to estimate software effort on the 

Boehm’s COCOMO dataset and they compare a neural networks method with a linear 

regression method. The software development effort using wavelet neural network (WNN) 

was estimated by Kumar et al. (Kumar, Ravi, Carr, & Kiran, 2008). The WNN performance is 

compared with radial basis function network, multilayer perceptron, dynamic evolving neuro-

fuzzy inference system, multiple linear regression, and support vector machine. The mean 



Turkish Journal of Computer and Mathematics              Vol.12No.14(2021),4186-4202 
 

 

 

4188 

 

 
 

Research Article  

magnitude relative error (MMRE) was used as the accuracy criterion. Two sets of data were 

used: The Canadian financial comprising 24 projects and the IBM data processing services 

comprising 37 projects. Their results indicated that the WNN performed better than the other 

methods. Heiat (Heiat, 2002) compared the performance of two types of NNs (a radial basis 

function network and a multilayer perceptron) with the performance of a regression approach 

for software effort estimation. The three datasets used were from IBM DP Services 

Organization, Kemerer dataset, and Hallmark dataset, having 24, 15, and 28 software projects, 

respectively. The performance criterion was the MMRE. Park and Baek (Park & Baek, 2008) 

proposed a neural network model for software development estimation. The model was 

developed used a set of 148 software projects that were published from 1999 to 2003, which 

included a wide range of software techniques, project periods, and project scales, as well as 

projects from a variety of industries. Kultur et al. (Kultur, Turhan, & Bener, 2009) predicted 

software effort using  an ensemble of neural networks with associative memory (ENNA). Five 

sets of data were used: the NASA dataset comprising 60 projects (these projects are from 

1980 to 1990), the COCOMO 81 dataset comprising 63 projects created before 1981, the 

Softlab Data Repository dataset comprising 24 projects, the NASA 93 dataset comprising 93 

projects completed between 1970 and 1980, and the Desharnais dataset comprising 77 

projects from the late 1980s. Lopez-Martin et al. (Lopez-Martin, Isaza, & Chavoya, 2012) 

proposed a model to predict the software development effort using general regression neural 

network (GRNN) approach. The International Software Benchmarking Standards Group 

(ISBSG) database was used for training and testing the proposed model. Khoshgoftaar et al. 

(Khoshgoftaar, Allen, & Xu, 2000) performed a research that used real time software for 

forecasting the testability for each module based on source code static measures. They applied 

ANNs approach for developing predictive models, because they can model nonlinear 

relationships. Sree et al. (Sree & SNSVSC, 2016) applied a fuzzy model using subtractive 

clustering for software effort estimation. The NASA 93 dataset was used for estimation. 

Nassif et al., (Nassif, Azzeh, Capretz, & Ho, 2016) used four ANN methods to predict the 

software development effort. Models considered for estimation are multi-layer perceptron, 

radial basis function neural networks, general regression neural network, and cascade 

correlation neural networks. The ISBSG dataset was used to develop the proposed model. 

Their results indicated that the cascade correlation neural network outperformed other 

compared methods.  

Machine Learning approaches especially ANN are the prominent techniques to develop 

predicting models. Thus, newer machine learning-based techniques can always be used to 

develop more accurate predictive precision models. ANNs have been effectively used for 

solving problems in area like engineering, business, physics, and medicine. They can be 

utilized as predictive models because they are developing approaches capable of modeling 

non-linear and complex relationships. In this vision, our work is aimed to predict software 

development effort of a project size in source lines of code and other effort and cost drivers 

using artificial neural networks (ANN) technique. 

3. Artificial Neural Networks (ANNs) 

An artificial neural network (ANN) is a computational model inspired in the biological 

neural networks, which comprises of highly interconnected nodes, called neurons. (Tanarslan, 

Secer, & Kumanlioglu, 2012). The neuron calculates the sum of weighted input signals and 

produces an output signals if the sum is greater than a value, called the threshold. If the 

associated connection is excitatory, the weight is positive; if the connection is inhibitory, the 

weight is negative. The procedure continuous until one or more outputs are produced. Figure 

(1) shows the architecture of the neural network consisting of three layers (Baughman & Liu, 
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2014): (i) the input layer, which introduces input data into the network (ii) hidden layer as an 

intermediate layer, and (iii) the output layer, which consists nodes that represent the results of  

NN predictions. Also, ANN can involve a bias term acting on a neuron like an offset. The 

objective of the bias term is providing a threshold for the activation of neurons. The bias can 

be connected all neurons in network.  

The neurons' number in the input layer is the same as the number of input data into the 

network, and the neurons' number in the output layer represents the number of target output 

data. Hidden layers comprises from one or more layers and the number of neurons in the 

hidden layer depends on the application of the network. Neural networks are parallel and 

distributed framework composed of a large number of interconnected processing units called 

nodes. Each node is connected with the other by varying connection strengths (or weights). 

Each node has a mathematical process that involves each input is multiplied by its weight, 

calculating the sum of the product, and then the activation function are applied to generate the 

desired output (Jeon & Rahman, 2008). Back-propagation is commonly used algorithm for 

training feedforward neural networks. The network is trained by feeding a pairs of input - 

output data. 

 
Figure 1. Basic structure of ANN 

 

ANN model applications are generally carried out in two phases. At the first phase, the 

network is built and trained, and in the second phase, the network is tested with new input 

data. The main goal to train the model is updating the connection weights to achieve a 

satisfactory reduction of error between the values of actual output and desired output. During 

model training, net information is flow to the output layer along with connection weights by 

using Equation (1): 𝑛𝑒𝑡 = ∑ 𝑥𝑖𝑤𝑖𝑘 + 𝑏𝑛𝑖=1                                                                          (1) 

where net is the total input of the node, 𝑥𝑖 is the value of input, 𝑤𝑖𝑘 is the value of weight, and 

b is the neuron's negative threshold value and is referred to as the bias of the neuron.  

The transfer (activation) function is used to produce the neuron output. The most 

commonly used activation function is the sigmoid transfer function, expressed as given in 

Equation (2): 

                                                    𝑓(𝑛𝑒𝑡) = 11+𝑒−𝑛𝑒𝑡                                                                          
(2) 

https://en.wikipedia.org/wiki/Feedforward_neural_network
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where f (net) is the value of the output of the neuron and the process of obtaining f (net) is 

depicted in Figure 2. 

 

Figure 2. Neuron output 

 

The error of the ANN model is calculated using actual output values and neurons output 

values. If the value of the error exceeds the acceptable range, the error is propagated 

backwards from output layer to the input layer. This process continues until the output error is 

minimized. In the steepest descent direction, the back-propagation algorithm updates the 

connection weights between neurons. After the training phase, the corresponding trained 

weights of the model are tested using new input variables that was not used in training. In this 

study, the resilient BPNN training algorithm is used. The structure and procedures of BPNN 

have been explained in details elsewhere in the literature (Mashrei, Abdulrazzaq, Abdalla, & 

Rahman, 2010; Rafiq, Bugmann, & Easterbrook, 2001). This paper presents the used of feed-

forward back-propagation neural network (BPNN) technique to the actual data for software 

effort estimation utilizing MATLAB program (Higham & Higham, 2000). 

4. Data Description and Performance Criteria 

4.1. Description of the database 

In the present study, COCOMO dataset (Boehm, 1981) was applied to determine the 

software effort utilizing ANN method. The COCOMO database was selected because it is a 

public domain database that has been used for various methods already. This dataset consists 

of 63 projects. Table 1 presents effort driver variables of the COCOMO dataset considered in 

this study. The dependent variable was the total effort, as represented by the variable 

MMACT (the number of man-hours spent on software development). The software size 

measured in thousands of source lines of code (ADJKDSI). The software size measured in 

term of ADJKDSI (thousands of lines of code). All cost drivers have qualitative rating levels 

('extra low' to 'extra high') which express their influence on development effort. The cost 

driver at a nominal level always has the effort multiplier (EM) of 1.00, which means the 

estimated effort remains unchanged. If the rating level increases the software development 

effort, then the associated EM is greater than 1.0. Conversely, if a rating level causes less 

effort, then the associated EM is lower than 1.0 (BW Boehm et al., 2000). The cost drives 

considered in this study and their levels are presented in Table 2. Size, identified as 

ADJKDSI, is the only numerical independent variable in this work. This variable was then 

transformed into its corresponding logarithmic value to get better fitting and estimation 

results. 

The COCOMO dataset was divided into two groups. The first data set training dataset was 

used for training and the second data set testing was used for testing the proposed model. The 
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assessment of the efficiency of the model similar to the procedure used by Kitchenham 

(Kitchenham, 1998), using a separate testing dataset. Following the Kitchenham’s procedure, 

by creating six different training and testing datasets couple. The training dataset has been 

created by removing every sixth project beginning from a different project number. 

For example, training set number 1 was created by removing projects 1, 7, 13, 19, 25, 31, 

37, 43, 49, 55, 61(according to numbering scheme of Boehm); training set number 2 was 

created by removing projects: 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, and so on. The projects 

that were removed from the training set have been utilizing as the test dataset. Since the 

dataset consists from 63 projects, there were 52 projects in the first three training subsets and 

53 projects in the next three.  Although data can be randomly selected and only one training 

and testing dataset can be used, this collection of six couples of dataset may result in decrease 

the bias and prevent the recurrence of bias for data sequences in a possible software project. 

 

Table 1.  COCOMO features 

 

 

 

 

 

 

 

 

Table 2.  Cost driver. 

Variable Full name 

ACAP Analyst capability 

TOOL Use of software tools 

AEXP Applications experience 

RELY Reliability 

MODP Use programming modern practices 

DATA Database size 

VEXP Experience with virtual machine  

PCAP Programmers capability 

CPLX Process complexity 

LEXP Programming language experience 

TIME Restriction of time 

TURN Computer turnaround 

SCED Schedule constraint 

VIRT Virtual machine volatility 

STOR Main storage constraint 

RVOL Requirements volatility 

ADJKDSI Software size 

Cost drive Levels 

ACAP 1. Super high 

2. Very high 

3. High 

4. Nominal 

5. Low 

6. Very low 

7. Super low 

RELY 1. Extra low 

2. Very low 

3. Low 

4. Nominal 

5. High 

6. Very high 

STOR 1. Nominal 

2. High 

3. Very high 

4. Extra high 

5. Super high 
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TOOL 1. Extra high 

1. Very high 

2. High 

3. Nominal 

4. Low 

5. Very low 

AEXP 1. Very high 

2. High 

3. Nominal 

4. Low 

5. Very low 

MODP 1. Extra high 

2. Very high 

3. High 

4. Nominal 

5. Low 

6. Very low 

DATA 1. Low 

2. Nominal 

3. High 

4. Very high 

5. Extra high 

VEXP 1. High 

2. Nominal 

3. Low 

4. Very low 

PCAP 1. Super high 

2. Very high 

3. High 

4. Nominal 

5. Low 

6. Very low 

7. Super low 

LEXP 1. High 

2. Nominal 

3. Low 

4. Very low 

CPLX 1. Very low 

2. Low 

3. Nominal 

4. High 

5. Very high 

6. Extra high 

7. Super high 

TIME 1. Nominal 

2. High 
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4.2. Performance Criteria 

(1) Mean Magnitude Relative Error (MMRE): MMRE is commonly used to assess the 

performance of any estimation method. It measures the percentage of the absolute relative 

errors values from whole dataset (Baker, 2007).  

                                                            𝑀𝑀𝑅𝐸 = 1𝑁 ∑ |𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡|𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡𝑁1                                             

(3) 

where N is the amount of projects. 

(2) The Correlation coefficient (R): is a statistical measure that determines the degree to 

which the two different variables are associated.  The value of the R ranges between 0 and 1. 

The best model that give R value that are as near to 1 as possible. A negative value of R 

indicates that the data and the model have no correlation.  

 

                                                  𝑅 = 1 − √∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁𝑖=1 2∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁𝑖=1 2                                                      

(4) 

 

5. Results and Discussion 

5.1. Proposed Approach 

3. Very high 

4. Extra high 

5. Super high 

VIRT 1. Low 

2. Nominal 

3. High 

4. Very high 

TURN 1. Very high 

2. High 

3. Nominal 

4. Low 

5. Very low 

SCHED 1. Lax 

2. Nominal 

3. Compressed 

4. Very Compressed 

RVOL 1. Low 

2. Nominal 

3. High 

4. Very high 

5. Extra high 

6. Super high 
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The MATLAB NN toolbox ("Neural network toolbox user’s guide: for Use with 

MATLAB," 2009) was used for creating the proposed ANN model. Feed forward -

backpropagation algorithm was used for ANN modeling. A sigmoid function was used as a 

transfer function for all the neurons in the input and hidden layers, whereas for the output 

layer a linear one was applied. Through using trail-and-error process, the optimal number of 

hidden layers, number of neurons in hidden layer, and epochs was chosen. During the training 

process, the model's training convergence is based on the minimizing the tolerance error to 

root mean squared error (RMSE) and evaluating the predictive accuracy of the proposed 

model by comparing the outputs. After the errors are minimized, testing is performed to 

ensure that the estimated values are close to actual values.  

In the developing ANN, there is an input layer in which input variables are provided to 

network and an output layer, with one neuron giving software effort estimation. The model 

with one hidden layer and 18 nodes in the hidden layer gave the optimal configuration with 

minimum RMSE. Table 1 presents the input data used for the training process of the proposed 

model to predict the effort. In order to find the optimum network for solving the problem, the 

training process was repeated ten times. Besides, different ANN architectures were 

investigated and the best model has been selected. Table 3 presents the results of the ANN 

model with the best-performing ANN model on the testing dataset. Figures 3-8 show the 

actual (target) values versus predicted values during the training and testing periods. A head-

to-head comparison of performance for actual (target) values and proposed ANN model for 

testing set are shown in Figures 9-15. 

 

Table 3.  Effort estimation using ANN approach 

Set 1 Set  2 Set  3 Set  4 Set  5 Set  6 

Actu

al 

Estim

ated 

Actu

al 

Estim

ated 

Actu

al 

Estim

ated 

Actu

al 

Estim

ated 

Actu

al 

Estim

ated 

Actu

al 

Estim

ated 

2040 1513.

56 

1600 3235.

94 

243 204.1

7 

240 501.1

9 

33 34.67 43 31.6 

8 11.75 1075 759 423 776.2

5 

321 218.7

8 

218 338.8

4 

201 87.1 

79 32.36 60 2.00 61 457.0

9 

40 69.18 9 50.12 1140

0 

11220

.2 

6600 5888.

44 

6400 36307

.8 

2455 1778.

28 

724 588.8

4 

539 501.1

9 

453 457.1 

523 851.1

4 

387 223.8

7 

88 24.55 98 213.8 7.3 5.89 5.9 6.0 

1063 524.8

1 

702 281.8

4 

605 724.4

4 

230 144.5

4 

82 60.26 55 56.2 

47 72.44 12 16.22 8 11.48 8 9.55 6 20.89 45 93.3 

83 36.31 87 147.9

1 

106 95.50 126 109.6

5 

36 14.45 1272 288.4 

156 31.62 176 309.0

3 

122 63.10 41 165.9

8 

14 19.50 20 3.6 

18 25.70 958 257.0

4 

237 42.66 130 39.81 70 50.12 57 38.9 

50 33.11 38 45.71 15 10.47       
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Figure 3. Comparison between actual results and ANN results for set 1 for (a) training dataset 

and (b) testing 

  

 
 

 

Figure 4. Comparison between actual results and ANN results for set 2 for (a) training dataset 

and (b) testing 
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Figure 5. Comparison between actual results and ANN results for set 3 for (a) training dataset 

and (b) testing 

 

 

 

Figure 6. Comparison between actual results and ANN results for set 4 for (a) training dataset 

and (b) testing 

 

 

 

Figure 7. Comparison between actual results and ANN results for set 5 for (a) training dataset 

and (b) testing 
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Figure 8. Comparison between actual results and ANN results for set 6 for (a) training dataset 

and (b) testing 

 

 

Figure 9. Actual and predicted software effort for set 1 (testing dataset) 

 

Figure 10. Actual and predicted software effort for set 2 (testing dataset) 

 

 

Figure 11. Actual and predicted software effort for set 3 (testing dataset) 
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Figure 12. Actual and predicted software effort for set 4 (testing dataset) 

 

Figure 13. Actual and predicted software effort for set 5 (testing dataset) 

 

 

Figure 14. Actual and predicted software effort for set 6 (testing dataset) 

 

5.2. Comparison study 

Table 4 presents the values of MMRE the correlation R resulting from the estimates 

conducted using ANN model with the six testing datasets. According to Table 4, the best 

performer could be attributed to the 6th dataset. The sixth dataset gives the best results with 

minimum MMRE. The correlation R is quite high.  
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Table 4.  The test dataset 

predictive accuracy 

 

 

 

 

 

 

Figure 16 also confirms this result when comparing the MMRE and the correlation R for 

all test dataset. Kemerer (Kemerer, 1987) obtained the results shown in Table 5 using three 

software cost estimation models, which are COCOMO-basic, Function Points, and SLIM 

models. 

These results demonstrate a good agreement in the predicting values compared with the 

actual effort values for all test dataset. In term of MMRE, the ANN model outperforms the 

COCOMO 's performance (610), the SLIM and the Function Point Analysis models (772 and 

103, respectively) in Kemerer’s experiments. With regard to correlation R, the ANN has 

better performance rather than the Function Points and COCOMO-basic methods. The results 

show that the ANN model outperformed the SLIM method for the first and sixth dataset in 

term of correlation R. But the SLIM model provides a slightly better value of correlation R 

than ANN model for the remaining dataset. It should be noted that if the training data set 

represent most of the probable software effort scenarios the ANN method will perform much 

better. Thus, it is necessary to collect additional data in order for the model to learn (be 

trained on) all of the data's intrinsic features. 

 

 

 
 

Figure 15. Comparative analysis of test datasets 
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Table 5.  Traditional models on COCOMO dataset 

Model MMRE R 

SLIM 772 0.89 

Function Points 103 0.58 

COCOMO-basic 610 0.70 

 

6. Conclusion and Future Works 

In this investigation, the artificial neural network (ANN) model were developed to estimate 

the software development effort. The Boehm’s COCOMO dataset was used to train and test 

the network. Six different groups of training and testing data set were generated by following 

the Kitchenham’s procedure. The training data set was constructing by eliminating every sixth 

project beginning from a different software project number. The testing data set were 

comprising from the projects that were eliminated. The optimal ANN models were chosen 

after experimenting different model architecture. The structure of the proposed ANN model 

has one hidden layer with 18 nodes, with sigmoid function as transfer function, and one 

output nodes with a linear transfer function. The evaluation was conducted using two 

assessment criteria: MMRE and correlation R. The ANN results showed a good agreement 

with the actual data for the six test datasets. The ANN model was also compared with SLIM, 

Function Points, and COCOMO-basic methods. It was found that the ANN model provided 

better results compared to the other models. Therefore, the ANN can serve as an economical, 

efficient, and reliable tool for software development effort estimation.  

In future research, a hybrid model will be developed to improve prediction of software 

development effort. 
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