
Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4186

Research Article

APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN

PREDICTION OF SOFTWARE DEVELOPMENT EFFORT
Zainab Rustum Mohsin

University of Thi-Qar, College of Education for Pure Science, Department of Computer

Science, Thi-Qar/ Iraq

 E-mail : zainabrustum@utq.edu.iq

Abstract: Over the past two decades, there has been a great enhance in researches dealing

with the software development effort estimation utilizing machine learning (ML) approaches

with the objective of improving the accuracy of the estimates. Among these ML methods,

artificial neural network approaches have gained significant scholarly attention thanks to their

capability to learn and model non-linear and complex functions. In this paper, artificial neural

network technique was considered for modelling software development effort estimation.

Datasets considered for estimation were COCOMO. Evaluation measures used were MMRE

and correlation R. After building and testing the ANN model, and based on the comparison

between the test results of the ANN model and the SLIM, Function Points, and COCOMO-

basic models it could be concluded that the ANN was a suitable model in the estimation of the

effort. ANN is recommended to be used as a predictive model for software development effort

estimation.

Keywords: Machine learning, COCOMO database, Artificial neural network, Software effort

estimation

1. Introduction

One of the main objectives of the software development community is to develop models

that are practically applicable. Another important goal for the community is to evaluate how

accurately a model can predict effort involved in developing software. Effort estimation is the

prediction of the development time and cost required to develop the software product.

Estimating of software development effort is essential and important issue to manage of

complex and large software projects (Papatheocharous & Andreou, 2010). Accurate and

reliable prediction for software effort enables project managers to effectively plan and

allocate resources during software design and development. Overestimation can cause

resources misallocation, affecting the development of other important projects. Conversely,

underestimating of software effort may lead to delay and cost over-run, that may result in

failure of project (Moosavi & Bardsiri, 2017). Therefore, during the last years, numerous

effort estimation approaches were established using various theoretical concepts (Jorgensen &

Shepperd, 2006) and combining existing estimation techniques (MacDonell & Shepperd,

2003; Mittas & Angelis, 2008). Because of the importance of accurate estimation of effort,

extensive research has been conducted in this field. The current techniques can be categorized

as below (Boehm, Abts, & Chulani, 2000) :

(1) Parametric models: SLIM (Putnam & Myers, 1991), SEER-SEM (Jensen, 1983), and

COCOMO (Boehm, 1981)

(2) Expertise-based methods: Delphi technique and work breakdown structure based

techniques (Jørgensen, 2004)

(3) Dynamics based approaches (Madachy, 1994)

mailto:zainabrustum@utq.edu.iq

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4187

Research Article

(4) Regression based techniques: robust regression and ordinary least square regression

(Costagliola, Ferrucci, Tortora, & Vitiello, 2005)

(5) Learning oriented methods: analogy based estimation (Shepperd & Schofield, 1997) and

machine learning techniques (Mohsin, 2021; Oliveira, 2006).

Although previous models have produced improvements in prediction of software effort,

the attempts to develop more reliable and accurate models are ongoing. Recently, machine

learning techniques, such as artificial neural networks (ANN), have gained popularity as a

way to model the complex relationship between effort and software attributes. Within this

context, Wen et al. conducted an extensive literature review for relevant published studies in

1991–2010 and 84 primary empirical studies were selected (Wen, Li, Lin, Hu, & Huang,

2012).

They found that eight types of ML approaches were used in software development effort

estimation models: case-based reasoning (CBR), decision trees (DT), artificial neural

networks (ANN), support vector regression (SVR), Bayesian networks (BN), genetic

programming (GP), genetic algorithms (GA), and association rules (AR). The most frequently

utilized among them are ANN, DT, and CBR. Their study also revealed that the prediction

accuracy of most ML models is close to the acceptable level and is outperforms the non-ML

models in terms of MMRE and Pred (0.25). In fact, different ML approaches have different

strengths and weaknesses and the efficiency of any model is influenced by the database

characteristics utilized to build the model (size of dataset, outliers, categorical features, and

missing values).

Because the artificial neural network technique is adaptable and nonparametric, predictive

models can be designed to the data at a specific site. The present study investigated the

application of a powerful machine learning approach namely ANN to estimate the software

development effort. The COCOMO database (Boehm, 1981) have been used for training and

testing the proposed ANN model.

The remainder of this paper is organized as follows: Section 2 presents the previous work

related to software effort estimation using different machine learning techniques. Section 3

gives a description of the ANN technique. Section 4 illustrates the datasets and performance

criteria employed to assess the performance of the ANN model. Section 5 presents the results

obtained by the proposed model and comparison of the results is discussed. Finally, section 6

concludes the research and suggests future work.

2. The Related Work

Accurate and reliable estimation of development effort is a key element of effective

software projects management. Although the numerous studies over the last decades, the

software community remain faces significant challenges when it comes to estimate software

effort. Time to time, different methods for the same have been discussed by authors.

Karunanitthi et al. (Karunanithi, Whitley, & Malaiya, 1992) developed neural networks model

for software reliability prediction. They performed analysis with both ANN and Jordan

networks and the cascade correlation learning algorithm. Samson et al. (Samson, Ellison, &

Dugard, 1997) applied Albus multiplayer perceptron to estimate software effort on the

Boehm’s COCOMO dataset and they compare a neural networks method with a linear

regression method. The software development effort using wavelet neural network (WNN)

was estimated by Kumar et al. (Kumar, Ravi, Carr, & Kiran, 2008). The WNN performance is

compared with radial basis function network, multilayer perceptron, dynamic evolving neuro-

fuzzy inference system, multiple linear regression, and support vector machine. The mean

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4188

Research Article

magnitude relative error (MMRE) was used as the accuracy criterion. Two sets of data were

used: The Canadian financial comprising 24 projects and the IBM data processing services

comprising 37 projects. Their results indicated that the WNN performed better than the other

methods. Heiat (Heiat, 2002) compared the performance of two types of NNs (a radial basis

function network and a multilayer perceptron) with the performance of a regression approach

for software effort estimation. The three datasets used were from IBM DP Services

Organization, Kemerer dataset, and Hallmark dataset, having 24, 15, and 28 software projects,

respectively. The performance criterion was the MMRE. Park and Baek (Park & Baek, 2008)

proposed a neural network model for software development estimation. The model was

developed used a set of 148 software projects that were published from 1999 to 2003, which

included a wide range of software techniques, project periods, and project scales, as well as

projects from a variety of industries. Kultur et al. (Kultur, Turhan, & Bener, 2009) predicted

software effort using an ensemble of neural networks with associative memory (ENNA). Five

sets of data were used: the NASA dataset comprising 60 projects (these projects are from

1980 to 1990), the COCOMO 81 dataset comprising 63 projects created before 1981, the

Softlab Data Repository dataset comprising 24 projects, the NASA 93 dataset comprising 93

projects completed between 1970 and 1980, and the Desharnais dataset comprising 77

projects from the late 1980s. Lopez-Martin et al. (Lopez-Martin, Isaza, & Chavoya, 2012)

proposed a model to predict the software development effort using general regression neural

network (GRNN) approach. The International Software Benchmarking Standards Group

(ISBSG) database was used for training and testing the proposed model. Khoshgoftaar et al.

(Khoshgoftaar, Allen, & Xu, 2000) performed a research that used real time software for

forecasting the testability for each module based on source code static measures. They applied

ANNs approach for developing predictive models, because they can model nonlinear

relationships. Sree et al. (Sree & SNSVSC, 2016) applied a fuzzy model using subtractive

clustering for software effort estimation. The NASA 93 dataset was used for estimation.

Nassif et al., (Nassif, Azzeh, Capretz, & Ho, 2016) used four ANN methods to predict the

software development effort. Models considered for estimation are multi-layer perceptron,

radial basis function neural networks, general regression neural network, and cascade

correlation neural networks. The ISBSG dataset was used to develop the proposed model.

Their results indicated that the cascade correlation neural network outperformed other

compared methods.

Machine Learning approaches especially ANN are the prominent techniques to develop

predicting models. Thus, newer machine learning-based techniques can always be used to

develop more accurate predictive precision models. ANNs have been effectively used for

solving problems in area like engineering, business, physics, and medicine. They can be

utilized as predictive models because they are developing approaches capable of modeling

non-linear and complex relationships. In this vision, our work is aimed to predict software

development effort of a project size in source lines of code and other effort and cost drivers

using artificial neural networks (ANN) technique.

3. Artificial Neural Networks (ANNs)

An artificial neural network (ANN) is a computational model inspired in the biological

neural networks, which comprises of highly interconnected nodes, called neurons. (Tanarslan,

Secer, & Kumanlioglu, 2012). The neuron calculates the sum of weighted input signals and

produces an output signals if the sum is greater than a value, called the threshold. If the

associated connection is excitatory, the weight is positive; if the connection is inhibitory, the

weight is negative. The procedure continuous until one or more outputs are produced. Figure

(1) shows the architecture of the neural network consisting of three layers (Baughman & Liu,

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4189

Research Article

2014): (i) the input layer, which introduces input data into the network (ii) hidden layer as an

intermediate layer, and (iii) the output layer, which consists nodes that represent the results of

NN predictions. Also, ANN can involve a bias term acting on a neuron like an offset. The

objective of the bias term is providing a threshold for the activation of neurons. The bias can

be connected all neurons in network.

The neurons' number in the input layer is the same as the number of input data into the

network, and the neurons' number in the output layer represents the number of target output

data. Hidden layers comprises from one or more layers and the number of neurons in the

hidden layer depends on the application of the network. Neural networks are parallel and

distributed framework composed of a large number of interconnected processing units called

nodes. Each node is connected with the other by varying connection strengths (or weights).

Each node has a mathematical process that involves each input is multiplied by its weight,

calculating the sum of the product, and then the activation function are applied to generate the

desired output (Jeon & Rahman, 2008). Back-propagation is commonly used algorithm for

training feedforward neural networks. The network is trained by feeding a pairs of input -

output data.

Figure 1. Basic structure of ANN

ANN model applications are generally carried out in two phases. At the first phase, the

network is built and trained, and in the second phase, the network is tested with new input

data. The main goal to train the model is updating the connection weights to achieve a

satisfactory reduction of error between the values of actual output and desired output. During

model training, net information is flow to the output layer along with connection weights by

using Equation (1): 𝑛𝑒𝑡 = ∑ 𝑥𝑖𝑤𝑖𝑘 + 𝑏𝑛𝑖=1 (1)

where net is the total input of the node, 𝑥𝑖 is the value of input, 𝑤𝑖𝑘 is the value of weight, and

b is the neuron's negative threshold value and is referred to as the bias of the neuron.

The transfer (activation) function is used to produce the neuron output. The most

commonly used activation function is the sigmoid transfer function, expressed as given in

Equation (2):

 𝑓(𝑛𝑒𝑡) = 11+𝑒−𝑛𝑒𝑡
(2)

https://en.wikipedia.org/wiki/Feedforward_neural_network

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4190

Research Article

where f (net) is the value of the output of the neuron and the process of obtaining f (net) is

depicted in Figure 2.

Figure 2. Neuron output

The error of the ANN model is calculated using actual output values and neurons output

values. If the value of the error exceeds the acceptable range, the error is propagated

backwards from output layer to the input layer. This process continues until the output error is

minimized. In the steepest descent direction, the back-propagation algorithm updates the

connection weights between neurons. After the training phase, the corresponding trained

weights of the model are tested using new input variables that was not used in training. In this

study, the resilient BPNN training algorithm is used. The structure and procedures of BPNN

have been explained in details elsewhere in the literature (Mashrei, Abdulrazzaq, Abdalla, &

Rahman, 2010; Rafiq, Bugmann, & Easterbrook, 2001). This paper presents the used of feed-

forward back-propagation neural network (BPNN) technique to the actual data for software

effort estimation utilizing MATLAB program (Higham & Higham, 2000).

4. Data Description and Performance Criteria

4.1. Description of the database

In the present study, COCOMO dataset (Boehm, 1981) was applied to determine the

software effort utilizing ANN method. The COCOMO database was selected because it is a

public domain database that has been used for various methods already. This dataset consists

of 63 projects. Table 1 presents effort driver variables of the COCOMO dataset considered in

this study. The dependent variable was the total effort, as represented by the variable

MMACT (the number of man-hours spent on software development). The software size

measured in thousands of source lines of code (ADJKDSI). The software size measured in

term of ADJKDSI (thousands of lines of code). All cost drivers have qualitative rating levels

('extra low' to 'extra high') which express their influence on development effort. The cost

driver at a nominal level always has the effort multiplier (EM) of 1.00, which means the

estimated effort remains unchanged. If the rating level increases the software development

effort, then the associated EM is greater than 1.0. Conversely, if a rating level causes less

effort, then the associated EM is lower than 1.0 (BW Boehm et al., 2000). The cost drives

considered in this study and their levels are presented in Table 2. Size, identified as

ADJKDSI, is the only numerical independent variable in this work. This variable was then

transformed into its corresponding logarithmic value to get better fitting and estimation

results.

The COCOMO dataset was divided into two groups. The first data set training dataset was

used for training and the second data set testing was used for testing the proposed model. The

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4191

Research Article

assessment of the efficiency of the model similar to the procedure used by Kitchenham

(Kitchenham, 1998), using a separate testing dataset. Following the Kitchenham’s procedure,

by creating six different training and testing datasets couple. The training dataset has been

created by removing every sixth project beginning from a different project number.

For example, training set number 1 was created by removing projects 1, 7, 13, 19, 25, 31,

37, 43, 49, 55, 61(according to numbering scheme of Boehm); training set number 2 was

created by removing projects: 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, and so on. The projects

that were removed from the training set have been utilizing as the test dataset. Since the

dataset consists from 63 projects, there were 52 projects in the first three training subsets and

53 projects in the next three. Although data can be randomly selected and only one training

and testing dataset can be used, this collection of six couples of dataset may result in decrease

the bias and prevent the recurrence of bias for data sequences in a possible software project.

Table 1. COCOMO features

Table 2. Cost driver.

Variable Full name

ACAP Analyst capability

TOOL Use of software tools

AEXP Applications experience

RELY Reliability

MODP Use programming modern practices

DATA Database size

VEXP Experience with virtual machine

PCAP Programmers capability

CPLX Process complexity

LEXP Programming language experience

TIME Restriction of time

TURN Computer turnaround

SCED Schedule constraint

VIRT Virtual machine volatility

STOR Main storage constraint

RVOL Requirements volatility

ADJKDSI Software size

Cost drive Levels

ACAP 1. Super high

2. Very high

3. High

4. Nominal

5. Low

6. Very low

7. Super low

RELY 1. Extra low

2. Very low

3. Low

4. Nominal

5. High

6. Very high

STOR 1. Nominal

2. High

3. Very high

4. Extra high

5. Super high

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4192

Research Article

TOOL 1. Extra high

1. Very high

2. High

3. Nominal

4. Low

5. Very low

AEXP 1. Very high

2. High

3. Nominal

4. Low

5. Very low

MODP 1. Extra high

2. Very high

3. High

4. Nominal

5. Low

6. Very low

DATA 1. Low

2. Nominal

3. High

4. Very high

5. Extra high

VEXP 1. High

2. Nominal

3. Low

4. Very low

PCAP 1. Super high

2. Very high

3. High

4. Nominal

5. Low

6. Very low

7. Super low

LEXP 1. High

2. Nominal

3. Low

4. Very low

CPLX 1. Very low

2. Low

3. Nominal

4. High

5. Very high

6. Extra high

7. Super high

TIME 1. Nominal

2. High

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4193

Research Article

4.2. Performance Criteria

(1) Mean Magnitude Relative Error (MMRE): MMRE is commonly used to assess the

performance of any estimation method. It measures the percentage of the absolute relative

errors values from whole dataset (Baker, 2007).

 𝑀𝑀𝑅𝐸 = 1𝑁 ∑ |𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡|𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡𝑁1

(3)

where N is the amount of projects.

(2) The Correlation coefficient (R): is a statistical measure that determines the degree to

which the two different variables are associated. The value of the R ranges between 0 and 1.

The best model that give R value that are as near to 1 as possible. A negative value of R

indicates that the data and the model have no correlation.

 𝑅 = 1 − √∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁𝑖=1 2∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡)𝑁𝑖=1 2

(4)

5. Results and Discussion

5.1. Proposed Approach

3. Very high

4. Extra high

5. Super high

VIRT 1. Low

2. Nominal

3. High

4. Very high

TURN 1. Very high

2. High

3. Nominal

4. Low

5. Very low

SCHED 1. Lax

2. Nominal

3. Compressed

4. Very Compressed

RVOL 1. Low

2. Nominal

3. High

4. Very high

5. Extra high

6. Super high

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4194

Research Article

The MATLAB NN toolbox ("Neural network toolbox user’s guide: for Use with

MATLAB," 2009) was used for creating the proposed ANN model. Feed forward -

backpropagation algorithm was used for ANN modeling. A sigmoid function was used as a

transfer function for all the neurons in the input and hidden layers, whereas for the output

layer a linear one was applied. Through using trail-and-error process, the optimal number of

hidden layers, number of neurons in hidden layer, and epochs was chosen. During the training

process, the model's training convergence is based on the minimizing the tolerance error to

root mean squared error (RMSE) and evaluating the predictive accuracy of the proposed

model by comparing the outputs. After the errors are minimized, testing is performed to

ensure that the estimated values are close to actual values.

In the developing ANN, there is an input layer in which input variables are provided to

network and an output layer, with one neuron giving software effort estimation. The model

with one hidden layer and 18 nodes in the hidden layer gave the optimal configuration with

minimum RMSE. Table 1 presents the input data used for the training process of the proposed

model to predict the effort. In order to find the optimum network for solving the problem, the

training process was repeated ten times. Besides, different ANN architectures were

investigated and the best model has been selected. Table 3 presents the results of the ANN

model with the best-performing ANN model on the testing dataset. Figures 3-8 show the

actual (target) values versus predicted values during the training and testing periods. A head-

to-head comparison of performance for actual (target) values and proposed ANN model for

testing set are shown in Figures 9-15.

Table 3. Effort estimation using ANN approach

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Actu

al

Estim

ated

Actu

al

Estim

ated

Actu

al

Estim

ated

Actu

al

Estim

ated

Actu

al

Estim

ated

Actu

al

Estim

ated

2040 1513.

56

1600 3235.

94

243 204.1

7

240 501.1

9

33 34.67 43 31.6

8 11.75 1075 759 423 776.2

5

321 218.7

8

218 338.8

4

201 87.1

79 32.36 60 2.00 61 457.0

9

40 69.18 9 50.12 1140

0

11220

.2

6600 5888.

44

6400 36307

.8

2455 1778.

28

724 588.8

4

539 501.1

9

453 457.1

523 851.1

4

387 223.8

7

88 24.55 98 213.8 7.3 5.89 5.9 6.0

1063 524.8

1

702 281.8

4

605 724.4

4

230 144.5

4

82 60.26 55 56.2

47 72.44 12 16.22 8 11.48 8 9.55 6 20.89 45 93.3

83 36.31 87 147.9

1

106 95.50 126 109.6

5

36 14.45 1272 288.4

156 31.62 176 309.0

3

122 63.10 41 165.9

8

14 19.50 20 3.6

18 25.70 958 257.0

4

237 42.66 130 39.81 70 50.12 57 38.9

50 33.11 38 45.71 15 10.47

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4195

Research Article

Figure 3. Comparison between actual results and ANN results for set 1 for (a) training dataset

and (b) testing

Figure 4. Comparison between actual results and ANN results for set 2 for (a) training dataset

and (b) testing

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
92

*T
ar

g
et

 +
 -0

.0
18

Training: R=0.96737

Data

Fit

Y = T

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
94

*T
ar

g
et

 +
 -0

.0
84

Test: R=0.94649

Data

Fit

Y = T

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
98

*T
ar

g
et

 +
 -0

.0
03

2

Training: R=0.98948

Data

Fit

Y = T

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

1.
2*

Ta
rg

et
 +

 -0
.0

65

Test: R=0.86398

Data

Fit

Y = T

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
98

*T
ar

g
et

 +
 0

.0
07

2

Training: R=0.98708

Data

Fit

Y = T

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
92

*T
ar

g
et

 +
 -0

.0
48

Test: R=0.83646

Data

Fit

Y = T

(a) (b)

(a) (b)

(a) (b)

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4196

Research Article

Figure 5. Comparison between actual results and ANN results for set 3 for (a) training dataset

and (b) testing

Figure 6. Comparison between actual results and ANN results for set 4 for (a) training dataset

and (b) testing

Figure 7. Comparison between actual results and ANN results for set 5 for (a) training dataset

and (b) testing

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
99

*T
ar

g
et

 +
 -0

.0
02

5

Training: R=0.99687

Data

Fit

Y = T

-0.5 0 0.5 1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
78

*T
ar

g
et

 +
 -0

.0
17

Test: R=0.81786

Data

Fit

Y = T

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
99

*T
ar

g
et

 +
 -0

.0
00

93

Training: R=0.99743

Data

Fit

Y = T

-1 -0.5 0 0.5
-1

-0.5

0

0.5

Target

O
u

tp
u

t ~
=

0.
78

*T
ar

g
et

 +
 -0

.0
63

Test: R=0.85457

Data

Fit

Y = T

-0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Target

O
u

tp
u

t ~
=

1*
Ta

rg
et

 +
 -0

.0
00

65

Training: R=0.99907

Data

Fit

Y = T

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Target

O
u

tp
u

t ~
=

0.
82

*T
ar

g
et

 +
 -0

.0
36

Test: R=0.92968

Data

Fit

Y = T

(a) (b)

(a) (b)

(a) (b)

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4197

Research Article

Figure 8. Comparison between actual results and ANN results for set 6 for (a) training dataset

and (b) testing

Figure 9. Actual and predicted software effort for set 1 (testing dataset)

Figure 10. Actual and predicted software effort for set 2 (testing dataset)

Figure 11. Actual and predicted software effort for set 3 (testing dataset)

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70

E
ff

o
rt

project ID.

Actual

ANN-Set 1

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50 60 70

E
ff

o
rt

Project ID

Actual

ANN-Set 2

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

E
ff

o
rt

Project ID

Actual

ANN- Set 3

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4198

Research Article

Figure 12. Actual and predicted software effort for set 4 (testing dataset)

Figure 13. Actual and predicted software effort for set 5 (testing dataset)

Figure 14. Actual and predicted software effort for set 6 (testing dataset)

5.2. Comparison study

Table 4 presents the values of MMRE the correlation R resulting from the estimates

conducted using ANN model with the six testing datasets. According to Table 4, the best

performer could be attributed to the 6th dataset. The sixth dataset gives the best results with

minimum MMRE. The correlation R is quite high.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

E
ff

o
rt

Project ID

Actual

ANN-Set 4

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

Actual

ANN- Set 5

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

Actual

ANN-Set 6

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4199

Research Article

Table 4. The test dataset

predictive accuracy

Figure 16 also confirms this result when comparing the MMRE and the correlation R for

all test dataset. Kemerer (Kemerer, 1987) obtained the results shown in Table 5 using three

software cost estimation models, which are COCOMO-basic, Function Points, and SLIM

models.

These results demonstrate a good agreement in the predicting values compared with the

actual effort values for all test dataset. In term of MMRE, the ANN model outperforms the

COCOMO 's performance (610), the SLIM and the Function Point Analysis models (772 and

103, respectively) in Kemerer’s experiments. With regard to correlation R, the ANN has

better performance rather than the Function Points and COCOMO-basic methods. The results

show that the ANN model outperformed the SLIM method for the first and sixth dataset in

term of correlation R. But the SLIM model provides a slightly better value of correlation R

than ANN model for the remaining dataset. It should be noted that if the training data set

represent most of the probable software effort scenarios the ANN method will perform much

better. Thus, it is necessary to collect additional data in order for the model to learn (be

trained on) all of the data's intrinsic features.

Figure 15. Comparative analysis of test datasets

0,946
0,864 0,836 0,818

0,854
0,929

0,4

0,5

0,6

0,7

0,8

0,9

1

0

20

40

60

80

100

120

1 2 3 4 5 6

C
o

rr
e

la
ti

o
n

 R

M
M

R
E

Test dataset

MMRE R

Test dataset MMRE R

1 47.50 0.946

2 97.44 0.864

3 98.37 0.836

4 79.41 0.818

5 94.6 0.854

6 38.83 0.929

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4200

Research Article

Table 5. Traditional models on COCOMO dataset

Model MMRE R

SLIM 772 0.89

Function Points 103 0.58

COCOMO-basic 610 0.70

6. Conclusion and Future Works

In this investigation, the artificial neural network (ANN) model were developed to estimate

the software development effort. The Boehm’s COCOMO dataset was used to train and test

the network. Six different groups of training and testing data set were generated by following

the Kitchenham’s procedure. The training data set was constructing by eliminating every sixth

project beginning from a different software project number. The testing data set were

comprising from the projects that were eliminated. The optimal ANN models were chosen

after experimenting different model architecture. The structure of the proposed ANN model

has one hidden layer with 18 nodes, with sigmoid function as transfer function, and one

output nodes with a linear transfer function. The evaluation was conducted using two

assessment criteria: MMRE and correlation R. The ANN results showed a good agreement

with the actual data for the six test datasets. The ANN model was also compared with SLIM,

Function Points, and COCOMO-basic methods. It was found that the ANN model provided

better results compared to the other models. Therefore, the ANN can serve as an economical,

efficient, and reliable tool for software development effort estimation.

In future research, a hybrid model will be developed to improve prediction of software

development effort.

References

Baker, D. R. (2007). A hybrid approach to expert and model based effort estimation: Citeseer.

Baughman, D. R., & Liu, Y. A. (2014). Neural networks in bioprocessing and chemical

engineering: Academic press.

Boehm, B. (1981). Software engineering economics: Prentice-Hall, Englewood Cliffs, NJ.

Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., . . . Steece, B. (2000).

Software cost estimation with COCOMO II. Prentice Hall PTR. Upper Saddle River, NJ.

Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost estimation

approaches—A survey. Annals of software engineering, 10(1), 177-205.

Costagliola, G., Ferrucci, F., Tortora, G., & Vitiello, G. (2005). Class point: an approach for

the size estimation of object-oriented systems. IEEE Transactions on software engineering,

31(1), 52-74.

Heiat, A. (2002). Comparison of artificial neural network and regression models for

estimating software development effort. Information and Software Technology, 44(15),

911-922.

Higham, D. J., & Higham, N. J. (2000). MATLAB guide: Philadelphia: SIAM.

Jensen, R. (1983). An improved macrolevel software development resource estimation model.

Paper presented at the 5th ISPA Conference.

Jeon, J., & Rahman, M. S. (2008). Fuzzy neural network models for geotechnical problems.

Jørgensen, M. (2004). Top-down and bottom-up expert estimation of software development

effort. Information and Software Technology, 46(1), 3-16.

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4201

Research Article

Jorgensen, M., & Shepperd, M. (2006). A systematic review of software development cost

estimation studies. IEEE Transactions on software engineering, 33(1), 33-53.

Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992). Using neural networks in reliability

prediction. IEEE Software, 9(4), 53-59.

Kemerer, C. F. (1987). An empirical validation of software cost estimation models.

Communications of the ACM, 30(5), 416-429.

Khoshgoftaar, T. M., Allen, E. B., & Xu, Z. (2000). Predicting testability of program modules

using a neural network. Paper presented at the Proceedings 3rd IEEE Symposium on

Application-Specific Systems and Software Engineering Technology.

Kitchenham, B. (1998). A procedure for analyzing unbalanced datasets. IEEE Transactions

on software engineering, 24(4), 278-301.

Kultur, Y., Turhan, B., & Bener, A. (2009). Ensemble of neural networks with associative

memory (ENNA) for estimating software development costs. Knowledge-Based Systems,

22(6), 395-402.

Kumar, K. V., Ravi, V., Carr, M., & Kiran, N. R. (2008). Software development cost

estimation using wavelet neural networks. Journal of Systems and Software, 81(11), 1853-

1867.

Lopez-Martin, C., Isaza, C., & Chavoya, A. (2012). Software development effort prediction of

industrial projects applying a general regression neural network. Empirical Software

Engineering, 17(6), 738-756.

MacDonell, S. G., & Shepperd, M. J. (2003). Combining techniques to optimize effort

predictions in software project management. Journal of Systems and Software, 66(2), 91-

98.

Madachy, R. J. (1994). A software project dynamics model for process cost, schedule and risk

assessment. University of Southern California.

Mashrei, M. A., Abdulrazzaq, N., Abdalla, T. Y., & Rahman, M. (2010). Neural networks

model and adaptive neuro-fuzzy inference system for predicting the moment capacity of

ferrocement members. Engineering Structures, 32(6), 1723-1734.

Mittas, N., & Angelis, L. (2008). Combining regression and estimation by analogy in a semi-

parametric model for software cost estimation. Paper presented at the Proceedings of the

Second ACM-IEEE international symposium on Empirical software engineering and

measurement.

Mohsin, Z. R. (2021). Investigating the Use of an Adaptive Neuro-Fuzzy Inference System in

Software Development Effort Estimation. Iraqi Journal For Computer Science and

Mathematics, 2(2), 18-24.

Moosavi, S. H. S., & Bardsiri, V. K. (2017). Satin bowerbird optimizer: A new optimization

algorithm to optimize ANFIS for software development effort estimation. Engineering

Applications of Artificial Intelligence, 60, 1-15.

Nassif, A. B., Azzeh, M., Capretz, L. F., & Ho, D. (2016). Neural network models for

software development effort estimation: a comparative study. Neural Computing and

Applications, 27(8), 2369-2381.

Neural network toolbox user’s guide: for Use with MATLAB. (2009).

Oliveira, A. L. (2006). Estimation of software project effort with support vector regression.

Neurocomputing, 69(13-15), 1749-1753.

Papatheocharous, E., & Andreou, A. S. (2010). On the problem of attribute selection for

software cost estimation: Input backward elimination using artificial neural networks.

Paper presented at the IFIP International Conference on Artificial Intelligence Applications

and Innovations.

Turkish Journal of Computer and Mathematics Vol.12No.14(2021),4186-4202

4202

Research Article

Park, H., & Baek, S. (2008). An empirical validation of a neural network model for software

effort estimation. Expert Systems with Applications, 35(3), 929-937.

Putnam, L. H., & Myers, W. (1991). Measures for excellence: reliable software on time,

within budget: Prentice Hall Professional Technical Reference.

Rafiq, M., Bugmann, G., & Easterbrook, D. (2001). Neural network design for engineering

applications. Computers & Structures, 79(17), 1541-1552.

Samson, B., Ellison, D., & Dugard, P. (1997). Software cost estimation using an Albus

perceptron (CMAC). Information and Software Technology, 39(1), 55-60.

Shepperd, M., & Schofield, C. (1997). Estimating software project effort using analogies.

IEEE Transactions on software engineering, 23(11), 736-743.

Sree, P. R., & SNSVSC, R. (2016). Improving efficiency of fuzzy models for effort

estimation by cascading & clustering techniques. Procedia Computer Science, 85, 278-

285.

Tanarslan, H., Secer, M., & Kumanlioglu, A. (2012). An approach for estimating the capacity

of RC beams strengthened in shear with FRP reinforcements using artificial neural

networks. Construction and Building Materials, 30, 556-568.

Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012). Systematic literature review of machine

learning based software development effort estimation models. Information and Software

Technology, 54(1), 41-59.

	References

