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1. Introduction 

Let r be a fixed positive integer.  A positive integer a is said to be r-regular modulo 
rn if there is an integer x 

such that 
( )1 mod .r r ra x a n+ 

  The case 1r =  gives the notion of aregular integer moduleon, introduced by 

(Morgado, J, 1972; Morgado J , 1974) who made an investigation of their properties. 

Clearly 0a =  is r-regular modulo
rn  for every 1.n   Also if 

( )mod ra b n
 then a and b are r-regular 

modulo
rn simultaneously.  Further, if a and b are r-regular modulo

rn then so is ab. 

For positive integers a and b their greatest rth power common divisor is denoted by
( ),  

r
a b

and is called the r-

gcd of a and b.  Note that
( ) ( )

1
,  ,  ,a b a b=

the gcd of  and .a b  

We recall the notions given in (McCarthy, 1985):  

A complete set of residues modulo
rn is called a 

( ),  n r
-residue system.  

 , :1 r
n rC a a n=  

is the 

minimal
( ),  n r

-residue system.The set of all a in an
( ),  n r

-residue system such that 
( ),  1r

r
a n =

 is called a 

reduced 
( ),  n r

-residue system.
( ) , ,  :  ,  1r

n r n r
r

R a C a n=  =
is the minimal reduced 

( ),  n r
-residue 

system.  

(V.L.Klee, 1948) defined a generalization r  of the Euler’s function by

( ) ( ) # :1  and ,  1r r
n a a n a n =   =

  and proved that 

    

( ) ( ). ,r r

d n

n
n d

d
 =

 -------------------------- (1) 

Where r  is the r-analogue of the Mobius function 


 given by 

( ) ( ) ( )1 2 1 2

1          if  1

1   if  ...  where ...  are primes

0         otherwise

rt

r t t

n

n n p p p p p p

=


= − =   

 ------ (2) 
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Note that 1 =
 and that 

( ) , # .r
r n rn R =

 

Let 
( )  , Reg :  is r-regular modulo r

r n rn a C a n= 
 and 

( ) ( )#Reg .r
r rn n =

 

Observe that any , n ra R
 is in 

( )Reg .r n
  In fact, if , n ra R

 then 
( ),  1r

r
a n =

 so that 
( ),  1ra n =

and therefore there is an integer 0x
 such that 

( )0 1 mod ra x n
 which gives 

( )1
0 modr r ra x a n+ 

 

showing 
( )Reg .ra n

  Hence 
( ) ( )r r r

r rn n n  
for every 

1,n 
 with 

( )r r
r n n =

if and only if n 

is squarefree. 

Recently (Laszlo Toth, 2008; Yokesh, T.L., 2020) has studied several properties of the function 

 
( ) ( )1: .n n =

 

In this paper we prove some basic properties of the integers in the set 
( )Regr n

and certain arithmetic 

properties of the function 
)( r

r n
 

 

2. Integers in Regr(n) 

In all that follows 1n   be of the canonical form: 

1 2
1 2 ... ,t

tn p p p
 

=
 

where 1 2 ... tp p p  
 are primes and i  are integers 1.  

Theorem 1.For an integer 1a   the following are equivalent: 

1.1 
( )Regra n

 

1.2 for every 
 1,  2,  ...,  i t

 we have either 
api |

 or 

ir r
ip a


 

1.3 
( ),  ,r r

r
a n n

(
d m

means that 
d m

 and 

,  1,
m

d
d

 
= 

   in which case d is called a unitary divisor of 

m) 

1.4 

( ) ( )mod
r

r n r
r ra a n

 +


 

1.5 There is an integer 1k   such that 
( )mod .k r r ra a n+ 

 

Proof: Suppose 
( )Regra n

 so that 
( )1

0 modr r ra x a n+ 
 for some integer 0.x

  Therefore for 

each 
( ) ( ).1,1 0 − axaptii rr

i
i

Since
( )0,  1 1a ax − =

 we have 
( )0,  1 1,ra ax − =

 we have either  

api |
 or 

r
ip a

for each 
,i

 and in the latter case it follows 
.ir r

ip a


  Thus 
(i)  (ii).

 

Assume (ii). That is, a is an integer 1  such that either   
api |

 or 
.ir r

ip a


We have to show 
( )Reg .ra n

 

In case 
api |

 then 
( ),  1ir

ia p


=
 so that there is an integer ix

 with 
( ) 1 mod ir

i ia x p



 and hence 

( )1 mod irr r
i ia x a p

+ 
. 
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In case 

ir r
ip a


 then for any integer x ,
( )r

i

rr ipaxa


mod1 +

 holds. Thus 
( )1 mod irr r

ia x a p
+ 

 is 

solvable for 1 i t   and hence
( )r

t

rrrr tpppaxa


.....mod 21

21

1 +

is solvable, showing 
( )Reg .ra n

 Thus 

(ii)  (i).
 

Note that (ii) holds  0 . ,r ra a d =
 where 

i

i

rr
i

p a
d p


= 

 and 
( )0 ,  1a n =

 

 
( ) ,  ,r r ra n d =

which is a unitary divisor of 
rn  

 
( ) ,  ,r r r

r
a n d n =

since
( ) ( ),  ,  .r r r

r
a n a n=

  Thus 
(ii)  (iii).

 

(ii)  (iv).
If  

ir r
ip a


 then 

( ) ( )mod
r

r n r
r ra a n

 +


 is obvious.  If
api |

, then by Euler-Fermat 

Theorem, 

( ) ( )1 mod
ri

i
i

p
r

ia p
 


 so that  

( ) ( ) ( ) ( )
( )1 mod ,

rr i
r irr i

ir
i

n p
pn r

ia a p




 
 

 
=  
    

since 

( )
( )

( ) ( ) ( )
( )

( ) ( )
( )r

i

r

ir

ij

r

jrr

i

r

tr

r

r

r

r

r

i

r

r

i

i

j

i

t

i p

p
p

p

ppp

p

n
m




































=== 

=

...
:

21

21

 

 

 
( )11 ... .r

i ip p −= + + +
Mwhere

( )
=

=
ij

r

jr
jpM




 so that mis an integer.   

Thus

( ) ( )mod
r

r
i

n r rr
ia a p

 +


 for 
,1 ti 

 giving (iv) 

 
(iv)  (i).

 If 

( ) ( )mod
r

r n r
r ra a n

 +


 then 
( )1

0. modr r ra x a n+ 
 where 

( ) 1

0

r
r n

x a
 −

=
 

showing
( )Reg .ra n

 

 
(iv)  (v)

is immediate with 
( ).r

rk n=
  Also if 

( )modk r r ra a n+ 
 for some 1k   implies 

( )1
0. mod ,r r ra x a n+ 

 where 

1
0 ,kx a −=

 showing 
( )Reg .ra n

  Thus 
(v)  (i).

 

3. The Function ( )r
rρ n . 

In this section we study the function 
( )r

r n
 and its relation with 

( ).r
r n

 Also we express the sum 
( )rS n

 of 

the r-regular integers modulo
rn in terms of 

( )r
r n

 



M. GaneshwarRao 

 

 

1050  

Theorem 2: For every 
1,n 

( ) ( ).
r r

r r
r r

d n

n d = 

 

The function 
( )r

r n
 is multiplicative and 

( ) ( )1
1,

rr r
r p p p

 
−

= − +
 for any prime pand integer 

1.   

Proof: We give two proofs for the first part. 

First Proof: Let 
( )Reg .ra n

 

If 
api |

 for 1 i t   then 
( ),  1a n =

 so that 
( ) ( ),  ,  1r r r

r
a n a n= =

 and the number of such as

( )r
r n

. 

Suppose 

ir r
ip a


for exactly one i so that 
( ),  1ja p =

 for 
j i

 and 
. ir

ia b p


=
 where 

1
i

r

r
i

n
b

p


 

 

and 

,  1;
i

r

r
i

n
b

p


 
=  

   the number of such a’s is 

.
i

r

r r
i

n

p



 
  
   

Suppose 

ir r
ip a


and 

jr r
jp a


 for  
1 ;i j t  

and for
 ,  k i j ( ),  1.kp a =

  Then 

. . ,ji
rr

i ja C p p


=
 where 

1
ji

r

rr
i j

n
C

p p


 

 and 

,  1;
ji

r

rr
i j

n
C

p p


 
  =
 
  and the number of such 

integers is 

;
. ji

r

r rr
i j

n

p p



 
 
 
   and so on.  Thus 

( ) ( ) 









++














+









+= 


r

t

rr

i

r

r

tji
r

j

r

i

r

r

ti
r

i

r

r

r

r

r

r
tijii ppp

n

pp

n

p

n
nn




...
...

2

211
 

ttji jiti i yyy

y

yy

y

y

y
y

...
...

2111

++++= 


 

        Where
( )ir

i r iy p
=

 and 1 2... .ty y y y=
 

Therefore 

 
( ) ( )( ) ( )1 21 1 ... 1r

r tn y y y = + + +
 

 
( )( ) ( )( ) ( )( )1 2

1 21 1 ... 1trr r
r r r tp p p

   = + + +
 

 

( ).
r r r r

r
r

r rr

d n d n

n
d

d
 

 
= =  
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Second Proof:  Groupthe integers , n ra C
 according to the value 

( ),  .r r

r
a n d=

 

Note that 
( ),  .r r r

r
a n d a j d=  =

 where 

1
r

r

n
j

d
 

 and 

,  1.
r

r

r

n
j

d

 
=  

 
  Hence the number of a’s 

in , n rC
 with 

( ),  r r

r
a n d=

is 

r

r r

n

d


 
  
  .  Thus 

( ) ( ).
r r r r

r
r r

r r rr

d n d n

n
n d

d
  

 
= =  

 
 

 

 

 Now                                  

( ) ( ) ( ). ,
r

r
r r r

D n

n D D  = 
--------------------------- (3) 

 

where
( ) 1r m =

 or 0 according as m is therth power of an integer or not. 

Therefore 
( ) ( )( ) ,r r

r r rn I n  =
 where 

( ) 1I n 
 for all n and is the unitary convolution of 

arithmetic functions discussed by (Eckford Cohen, 1960).  Since unitary convolution preserves multiplicativity, 

we get  

( )r
r n

 is multiplicative, because 
,  r r 

 and I are all multiplicative. 

Also 
( ) ( ) ( )1

1 1,
rr r r

r rp p p p
   
−

= + = − +
 completing  the  proof  of  Theorem B. 

Theorem 3.
( )

( )
,    

, 1

1
.

2
n r

r

r

r r
r

a C

a n

a n n


=

=

for 1.n   

Proof:  First observe that for positive integers a and b, 
( ),  1

r
a b =

 if and only if 
( ),  a b

 is r-free (Recall 

that an integer not divisible by the rth power of any prime is said to be r-free).   Let 
( ) 1rq m =

 or 0 according 

as m is r-free or not.  Then it is well-known (Apostol, 1998, problem 6, p.47; Ranjeeth 2020) that 

    

( ) ( ),
r

r

t m

q m t= 

----------------------(4) 

Where


 is the Mobius function 

Now, by (4) and (1), we get 

 

 
( )

( )( )
,    1

, 1

. ,  
r

n r
r

r

r
r

a C a n

a n

a a q a n
  

=

= 
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 =



















=
r

rr

rna

nt

ast

ta
1

)(

 

   

  

( )

  

r r

r r

r

t s n

t n

t s t



= 

 

  

( )
  

rr r

r

r

nt n
s

t

t t s



 
 
 

=  
 
  

 

 

  

( )
  

1
. . 1
2r r

r r
r

r r

t n

n n
t t

t t


 
= +  

 


 

   

  

( ) ( )
    

2 2r r r r

r r r

r

t n t n

n n n
t t

t
 = + 

 

  

( ) ( )
    

.
2   2r r r

r r r

t n t n

n n n
t t

t
 = + 

 

  
( ). ,

2

r
r

r

n
n=

 

since

( )
  

0
r rt n

t =

 for 1.n   

 

Remark 1.The case 1r =  of Theorem C is the well-known formula:  

( )

( )

 1
, 1

2a n
a n

n n
a



 
=

= for 1.n    (For example see (Apostol, 1998, Problem 16, p.48) 

Theorem 4.  If ( )
( )   Reg

:

r n

r

a

S n a


=    then ( ) ( ) 1
2

1
+= r

rr nnS   for 1.n   

 

Proof:  We have, by Theorem A, that ( ) ( )Reg ,  .r r r
r

r
a n a n d n  =  

Therefore 
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( )

( )
( ), 

, 

      ,    

,       

 
r rr rr n

rr r
r nr

r

a C a n dd n

a n n a C

S n a a
 =



= =  

 

,

1,

,

 

=
















=
rr

r

r

r

r
rd

rn
nd

d

n
j

Cj

r jd Since
( ),  .r r r

r
a n d a j d=  =

 where 

1
r

r

n
j

d
 

 and 

,  1.
r

r

r

n
j

d

 
=  

 
 

Now, in view of Theorem C and Theorem B, for 1n   we have 

  

( )
  

 

1
. . .
2r r

r r

r r
r r r

r r r

d n

d n

n n
S n n d

d d




 
= +   

 


 

  

  

 

2 r r

r r

r r
r r

r

d n

d n

n n
n

d




 
= +   

 


 

  
( ). 1

2

r
r r

r

n
n n = + −

 
 

  
( ) 1 ,

2

r
r

r

n
n = +

 
 

proving the theorem. 
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