R-Regular Integers Modulo n'

M. GaneshwarRao^a

^aChaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: Introducing the notion of ar-regular integer modulo n^r we obtain some basic properties of such integers and arithmetic properties of certain functions related to them.

Keywords: r-regular integer modulo n', unitary divisor, r-free integer, r-gcd of two integers

1. Introduction

Let r be a fixed positive integer. A positive integer a is said to be r-regular modulo n^r if there is an integer x $a^{r+1}x \equiv a^r \pmod{n^r}$. The case r=1 gives the notion of aregular integer moduleon, introduced by (Morgado, J, 1972; Morgado J, 1974) who made an investigation of their properties.

Clearly a = 0 is r-regular modulo n^r for every $n \ge 1$. Also if $a \equiv b \pmod{n^r}$ then a and b are r-regular modulo n^r simultaneously. Further, if a and b are r-regular modulo n^r then so is ab.

For positive integers a and b their greatest rth power common divisor is denoted by $(a, b)_r$ and is called the r-gcd of a and b. Note that $(a, b)_1 = (a, b)$, the gcd of a and b.

We recall the notions given in (McCarthy, 1985):

A complete set of residues modulo n^r is called a (n, r)-residue system. $C_{n, r} = \{a : 1 \le a \le n^r\}$ is the minimal (n, r)-residue system. The set of all a in an (n, r)-residue system such that $(a, n^r)_r = 1$ is called a reduced (n, r)-residue system. $R_{n, r} = \{a \in C_{n, r} : (a, n^r)_r = 1\}$ is the minimal reduced (n, r)-residue system.

(V.L.Klee, 1948) defined a generalization φ_r of the Euler's function by $\varphi_r(n) = \# \{ a : 1 \le a \le n \text{ and } (a, n)_r = 1 \}$ and proved that

$$\varphi_r(n) = \sum_{d|n} \mu_r(d) \cdot \frac{n}{d},$$
(1)

Where μ_r is the r-analogue of the Mobius function μ given by

$$\mu_r(n) = \begin{cases} 1 & \text{if } n = 1\\ (-1)^t & \text{if } n = (p_1 p_2 \dots p_t)^r \text{ where } p_1 < p_2 < \dots < p_t \text{ are primes} \\ 0 & \text{otherwise} \end{cases}$$

Note that $\mu_1 = \mu_{\text{and that}} \varphi_r(n^r) = \# R_{n,r}$.

Let $\operatorname{Reg}_r(n) = \left\{ a \in C_{n, r} : a \text{ is r-regular modulo } n^r \right\}_{and} \rho_r(n^r) = \#\operatorname{Reg}_r(n).$

Observe that any $a \in R_{n,r}$ is in $\operatorname{Reg}_r(n)$. In fact, if $a \in R_{n,r}$ then $(a, n^r)_r = 1$ so that $(a, n^r) = 1$ and therefore there is an integer x_0 such that $a x_0 \equiv 1 \pmod{n^r}$ which gives $a^{r+1}x_0 \equiv a^r \pmod{n^r}$ showing $a \in \operatorname{Reg}_r(n)$. Hence $\varphi_r(n^r) < \varphi_r(n^r) \le n^r$ for every n > 1, with $\varphi_r(n^r) = n^r$ if and only if n

is squarefree. Recently (Laszlo Toth, 2008; Yokesh, T.L., 2020) has studied several properties of the function $\rho(n) := \rho_1(n)$.

In this paper we prove some basic properties of the integers in the set $\operatorname{Reg}_r(n)$ and certain arithmetic properties of the function $\rho_r(n^r)$

2. Integers in Reg_r(*n*)

In all that follows n > 1 be of the canonical form:

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_t^{\alpha_t},$$

where $p_1 < p_2 < ... < p_t$ are primes and α_i are integers ≥ 1 .

Theorem 1. For an integer $a \ge 1$ the following are equivalent:

$$a \in \operatorname{Reg}_{r}(n)$$

$$1.1 \quad a \in \operatorname{Reg}_{r}(n)$$

$$1.2 \quad \text{for every} \quad i \in \{1, 2, ..., t\} \text{ we have either } p_{i} \nmid a \text{ or } p_{i}^{\alpha_{i}r} \mid a^{r}$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means that}} d \mid m_{\text{and}} (d, \frac{m}{d}) = 1,$$

$$(a, n^{r})_{r} \mid n^{r}, (d \mid m_{\text{means}} (d \mid m_$$

1.4
$$a^{\varphi_r(n')+r} \equiv a^r \left(\mod n^r \right)$$

1.5 There is an integer
$$k \ge 1$$
 such that $a^{k+r} \equiv a^r \pmod{n^r}$

Proof: Suppose $a \in \operatorname{Reg}_r(n)$ so that $a^{r+1}x_0 \equiv a^r \pmod{n^r}$ for some integer x_0 . Therefore for $i(1 \le i \le t), p_i^{\alpha_i r} | a^r (ax_0 - 1).$ Since $(a, ax_0 - 1) = 1$ we have $(a^r, ax_0 - 1) = 1$, we have either $p_i \nmid a_{\text{or}} p_i | a^r$ for each i, and in the latter case it follows $p_i^{\alpha_i r} | a^r$. Thus (i) \Rightarrow (ii).

Assume (ii). That is, a is an integer ≥ 1 such that either $p_i \mid a_{\text{or}} p_i^{\alpha_i r} \mid a^r$. We have to show $a \in \operatorname{Reg}_r(n)$.

In case $p_i \nmid a_{\text{then}} (a, p_i^{\alpha_i r}) = 1$ so that there is an integer x_i with $a x_i \equiv 1 \pmod{p_i^{\alpha_i r}}$ and hence $a^{r+1}x_i \equiv a^r \pmod{p_i^{\alpha_i r}}$.

In case $p_i^{\alpha_i r} | a^r$ then for any integer x, $a^{r+1} x \equiv a^r \pmod{p_i^{\alpha_i r}}_{\text{holds. Thus}} a^{r+1} x \equiv a^r \pmod{p_i^{\alpha_i r}}_{\text{is solvable for } 1 \le i \le t}$ and hence $a^{r+1} x \equiv a^r \pmod{p_1^{\alpha_1 r} \cdot p_2^{\alpha_2 r} \dots p_t^{\alpha_t r}}_{\text{is solvable, showing}} a \in \operatorname{Reg}_r(n)$. Thus (ii) \Rightarrow (i).

Note that (ii) holds
$$\Leftrightarrow a^r = a_0 d^r$$
, where $d^r = \prod_{p_i|a} p_i^{\alpha_i r}$ and $(a_0, n) = 1$
 $\Leftrightarrow (a^r, n^r) = d^r$, which is a unitary divisor of n^r

$$\Leftrightarrow (a, n^{r})_{r} = d^{r} || n^{r}, _{\text{since}} (a^{r}, n^{r}) = (a, n^{r})_{r}. _{\text{Thus}} \text{ (ii) } \Leftrightarrow \text{ (iii)}.$$

(ii) \Rightarrow (iv). If $p_i^{\alpha_i r} | a^r|_{\text{then}} a^{\varphi_r(n^r) + r} \equiv a^r (\text{mod } n^r)_{\text{is obvious. If }} p_i \nmid a$, then by Euler-Fermat $a^{\varphi(p_i^{\alpha_i r})} \equiv 1 \pmod{p_i^{\alpha_i r}}$ so that Theorem.

$$a^{\varphi_r(n^r)} = \left[a^{\varphi(p_i^{\alpha_i r})}\right]^{\varphi_r(n^r)/\varphi(p_i^{\alpha_i r})} \equiv 1 \pmod{p_i^{\alpha_i r}}$$

since

$$m \coloneqq \frac{\varphi_r(n^r)}{\varphi(p_i^{\alpha_i r})} = \frac{\varphi_r(p_1^{\alpha_i r})\varphi_r(p_2^{\alpha_2 r})..\varphi_r(p_t^{\alpha_i r})}{\varphi(p_i^{\alpha_i r})} = \left(\prod_{j \neq i} \varphi_r(p_j^{\alpha_j r})\right) \frac{\varphi_r(p_i^{\alpha_i r})}{\varphi(p_i^{\alpha_i r})}$$

$$= \left(1 + p_i + \dots + p_i^{r-1}\right) \cdot \frac{M}{\text{Mwhere}} = \prod_{j \neq i} \varphi_r\left(p_j^{\alpha_j r}\right)$$
so that mis an integer.
$$\frac{a^{\varphi_r\left(n^r\right) + r}}{\text{Thus}} \equiv a^r \left(\mod p_i^{\alpha_i r} \right)_{\text{for}} 1 \le i \le t, \text{ giving (iv)}$$

(iv)
$$\Rightarrow$$
 (i). If $a^{\varphi_r(n^r)+r} \equiv a^r \pmod{n^r}$ then $a^{r+1} \cdot x_0 \equiv a^r \pmod{n^r}$ where $x_0 = a^{\varphi_r(n^r)-1}$
showing $a \in \operatorname{Reg}_r(n)$.

(iv)
$$\Rightarrow$$
 (v) is immediate with $k = \varphi_r(n^r)$. Also if $a^{k+r} \equiv a^r \pmod{n^r}$ for some $k \ge 1$ implies $a^{r+1} \cdot x_0 \equiv a^r \pmod{n^r}$, where $x_0 \equiv a^{k-1}$, showing $a \in \operatorname{Reg}_r(n)$. Thus (v) \Rightarrow (i).

3. The Function $\rho_r(n^r)$.

In this section we study the function $\rho_r(n^r)$ and its relation with $\varphi_r(n^r)$. Also we express the sum $S_r(n)$ of the r-regular integers modulo n^r in terms of $\rho_r(n^r)$

$$\rho_r\left(n^r\right) = \sum_{d^r \mid n^r} \varphi_r\left(d^r\right).$$

Theorem 2: For every $n \ge 1$

The function $\rho_r(n^r)$ is multiplicative and $\rho_r(p^{\alpha r}) = p^{\alpha r} - p^{(\alpha-1)r} + 1$, for any prime pand integer $\alpha \ge 1$.

Proof: We give two proofs for the first part.

First Proof: Let $a \in \operatorname{Reg}_r(n)$.

If $p_i \not\mid a_{\text{for } 1 \le i \le t_{\text{then}}} (a, n) = 1_{\text{so that}} (a, n^r)_r = (a^r, n^r) = 1_{\text{and the number of such as}} \varphi_r(n^r)_{.}$

Suppose
$$p_i^{\alpha_i r} | a^r$$
 for exactly one i so that $(a, p_j) = 1$ for $j \neq i$ and $a = b \cdot p_i^{\alpha_i r}$ where $1 \le b \le \frac{n^r}{p_i^{\alpha_i r}}$
 $\left(b, \frac{n^r}{p_i^{\alpha_i r}}\right) = 1$; the number of such a's is $\varphi_r \left(\frac{n^r}{p_i^{\alpha_i r}}\right)$.

Suppose
$$p_i^{\alpha_i r} | a^r \text{ and } p_j^{\alpha_j r} | a^r \text{ for } 1 \le i < j \le t; \text{ and for } k \notin \{i, j\} (p_k, a) = 1.$$
 Then
 $a = C \cdot p_i^{\alpha_i r} \cdot p_j^{\alpha_j r}, \text{ where } 1 \le C \le \frac{n^r}{p_i^{\alpha_i r} p_j^{\alpha_j r}} \operatorname{and} \left(C, \frac{n^r}{p_i^{\alpha_i r} p_j^{\alpha_j r}} \right) = 1; \text{ and the number of such}$
 $\varphi_r \left(\frac{n^r}{p_i^{\alpha_i r} p_i^{\alpha_j r}} \right);$

integers is $(p_i^{r_i} \cdot p_j^{r_j})$ and so on. Thus

$$\rho_r(n^r) = \varphi_r(n^r) + \sum_{1 \le i \le t} \varphi_r\left(\frac{n^r}{p_i^{\alpha_i r}}\right) + \sum_{1 \le i < j \le t} \varphi_r\left(\frac{n^r}{p_i^{\alpha_i r} p_j^{\alpha_j r}}\right) + \dots + \varphi_r\left(\frac{n^r}{p_i^{\alpha_i r} p_2^{\alpha_2 r} \dots p_t^{\alpha_t r}}\right)$$
$$= y + \sum_{1 \le i \le j \le t} \frac{y}{y_i} + \sum_{1 \le i < j \le t} \frac{y}{y_i y_j} + \dots + \frac{y}{y_1 y_2 \dots y_t}$$
$$y_i = \varphi_i\left(y_i^{\alpha_i r}\right)$$

Where $y_i = \varphi_r \left(p_i^{\alpha_i r} \right)$ and $y = y_1 y_2 \dots y_t$.

Therefore

$$\rho_r(n^r) = (y_1 + 1)(y_2 + 1)...(y_t + 1)$$

= $(\varphi_r(p_1^{\alpha_1 r}) + 1)(\varphi_r(p_2^{\alpha_2 r}) + 1)...(\varphi_r(p_t^{\alpha_t r}) + 1)$
= $\sum_{d^r || n^r} \varphi_r(\frac{n^r}{d^r}) = \sum_{d^r || n^r} \varphi_r(d^r).$

Second Proof: Groupthe integers $a \in C_{n, r}$ according to the value $(a, n^r)_r = d^r$.

Note that $(a, n^r)_r = d^r \Leftrightarrow a = j.d^r$ where $1 \le j \le \frac{n^r}{d^r}$ and $(j, \frac{n^r}{d^r})_r = 1.$

Hence the number of a's

$$\lim_{i \to r} C_{n,r} \inf_{\text{with}} \left(a, n^r \right)_r = d^r \inf_{i \in r} \varphi_r \left(\frac{n^r}{d^r} \right)_r \text{ Thus } \varphi_r \left(n^r \right) = \sum_{d^r \mid n^r} \varphi_r \left(\frac{n^r}{d^r} \right) = \sum_{d^r \mid n^r} \varphi_r \left(d^r \right).$$

$$\rho_r(n^r) = \sum_{D \parallel n^r} \varphi_r(D) \cdot \chi_r(D), \qquad (3)$$

Now

where $\chi_r(m) = 1$ or 0 according as m is therth power of an integer or not.

 $\rho_r(n^r) = (\varphi_r \chi_r \circ I)(n^r), \quad I(n) \equiv 1$ for all n and \circ is the unitary convolution of arithmetic functions discussed by (Eckford Cohen, 1960). Since unitary convolution preserves multiplicativity, we get

$$\rho_r(n^r)_{\text{ is multiplicative, because }} \varphi_r, \ \chi_r \text{ and I are all multiplicative.}$$

$$P_r(p^{\alpha r}) = \varphi_r(p^{\alpha r}) + 1 = p^{\alpha r} - p^{(\alpha - 1)r} + 1, \text{ completing the proof of Theorem B.}$$

$$\sum_{\substack{a \in C_{n, r} \\ a \in C_{n, r} = 1}} a = \frac{1}{2}n^r \cdot \varphi_r(n^r)$$
Theorem 3.
$$\int_{a \in C_{n, r}} a = \frac{1}{2}n^r \cdot \varphi_r(n^r) + 1 = n^r \cdot \varphi_r(n^r)$$

Proof: First observe that for positive integers a and b, $(a, b)_r = 1$ if and only if (a, b) is r-free (Recall that an integer not divisible by the rth power of any prime is said to be r-free). Let $q_r(m) = 1$ or 0 according

as m is r-free or not. Then it is well-known (Apostol, 1998, problem 6, p.47; Ranjeeth 2020) that

$$q_r(m) = \sum_{t^r \mid m} \mu(t),$$
------(4)

Where μ is the Mobius function

Now, by (4) and (1), we get

$$\sum_{\substack{a \in C_{n, r} \\ (a, n^{r})_{r} = 1}} a = \sum_{1 \le a \le n^{r}} a.q_{r}\left(\left(a, n^{r}\right)\right)$$

$$= \sum_{1 \leq a \leq n'} a \left\{ \sum_{\substack{t's=a \\ t' \mid n'}} \mu(t) \right\}$$
$$= \sum_{\substack{t's\leq n' \\ t' \mid n'}} t^r s \mu(t)$$
$$= \sum_{\substack{t'r \mid n'}} \mu(t) t^r \left\{ \sum_{s \leq \frac{n'}{t'}} s \right\}$$
$$= \sum_{\substack{t' \mid n'}} \mu(t) t^r \cdot \frac{1}{2} \cdot \frac{n^r}{t'} \left(\frac{n^r}{t'} + 1 \right)$$
$$= \frac{n^r}{2} \sum_{\substack{t' \mid n'}} \mu(t) \frac{n^r}{t'} + \frac{n^r}{2} \sum_{\substack{t' \mid n'}} \mu(t)$$
$$= \frac{n^r}{2} \cdot \sum_{t_0 \mid n'} \mu(t_0) \frac{n^r}{t_0} + \frac{n^r}{2} \sum_{\substack{t' \mid n'}} \mu(t)$$
$$= \frac{n^r}{2} \cdot \varphi_r(n^r),$$
since $\sum_{\substack{t' \mid n'}} \mu(t) = 0$ for $n > 1$.

Remark 1. The case r = 1 of Theorem C is the well-known formula:

$$\sum_{\substack{1 \le a \le n \\ (a, n) = 1}} a = \frac{n\varphi(n)}{2} \text{ for } n > 1. \text{ (For example see (Apostol, 1998, Problem 16, p.48)}$$

Theorem 4. If $S_r(n) := \sum_{a \in \operatorname{Reg}_{r(n)}} a$ then $S_r(n) = \frac{1}{2} [\rho_r(n^r) + 1]$ for $n \ge 1$.

Proof: We have, by Theorem A, that $a \in \operatorname{Reg}_r(n) \Leftrightarrow (a, n^r)_r = d^r || n^r$.

Therefore

$$S_{r}(n) = \sum_{\substack{a \in C_{r,n} \\ (a,n^{r})_{r} \mid n^{r}}} a = \sum_{\substack{d^{r} \mid n^{r} \\ a \in C_{r,n}}} \sum_{\substack{a \in C_{r,n} \\ a \in C_{r,n}}} a$$
$$= \sum_{\substack{d^{r} \mid n^{r} \\ \frac{j \in C_{r,n}}{d^{r}, r}}{\left(j, \frac{n^{r}}{d^{r}}\right)_{r}} = 1} j, \text{ since } \left(a, n^{r}\right)_{r} = d^{r} \Leftrightarrow a = j.d^{r} \text{ where } 1 \le j \le \frac{n^{r}}{d^{r}} \text{ and } \left(j, \frac{n^{r}}{d^{r}}\right)_{r} = 1.$$

Now, in view of Theorem C and Theorem B, for $n \ge 1$ we have

$$S_{r}(n) = n^{r} + \sum_{\substack{d^{r} \mid n^{r} \\ d^{r} < n^{r}}} d^{r} \cdot \frac{1}{2} \cdot \frac{n^{r}}{d^{r}} \cdot \varphi^{r} \left(\frac{n^{r}}{d^{r}}\right)$$
$$= n^{r} + \frac{n^{r}}{2} \sum_{\substack{d^{r} \mid n^{r} \\ d^{r} < n^{r}}} \varphi^{r} \left(\frac{n^{r}}{d^{r}}\right)$$
$$= n^{r} + \frac{n^{r}}{2} \cdot \left[\rho_{r}\left(n^{r}\right) - 1\right]$$
$$= \frac{n^{r}}{2} \left[\rho_{r}\left(n^{r}\right) + 1\right],$$

proving the theorem.

References

- 1. Apostol, Tom M., (1998) Introduction to Analytic Number Theory, Springer International Student Edition, Naroso Publishing House, New Delhi, 1998.
- 2. Eckford Cohen, (1960)Arithmetical Functions Associated with the Unitary Divisors of an Integer, Math. Zeitschr. 74, 66-80.
- 3. Klee, V. L, (1948) Generalization of Euler's Function, Amer. Math., Monthly, 55, 358-359.
- 4. Laszlo Toth, Regular Integers Modulo n, (2008) AnnalsUniv. Sci. Budapest., Sect. Comp. 29, 263-275.
- 5. McCarthy, Paul J., (1985). Introduction to Arithmetical Functions, Springer-Verlag, New York.
- 6. Morgado, J, (1972). InteiorsRegulares Modulo n, Gazeta de Mathematical (Lisboa), 33, 125-125, 1-5.
- Morgado, J. (1974)A Property of the Euler φ-Function Concerning the Integers which are Regular Modulo n, Portugal. Math., 33, 185-191.
- 8. Ranjeeth, S., Latchoumi, T. P., & Paul, P. V. (2020). Role of gender on academic performance based on different parameters: Data from secondary school education. Data in brief, 29, 105257.
- Yookesh, T. L., Boobalan, E. D., & Latchoumi, T. P. (2020, March). Variational Iteration Method to Deal with Time Delay Differential Equations under Uncertainty Conditions. In 2020 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 252-256). IEEE.