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Abstract: Conventional power flow methods could not be used in islanded microgrids (IMGs) because 

the reference bus frequency and voltage are assumed to be constant. Usually, the presumptions of the 

power flow problem cannot be generalized to the intended characteristics of an islanded microgrid, and 

all distributed generators (DGs) play their role in providing active and reactive power to keep the 

frequency constant in a microgrid. Under such a situation, the problem should be modeled without the 

reference bus and taking into account the steady-state frequency and the reference bus voltage as a power 

flow variable. In this case, parameters such as load and line admittance change with changing frequency 

in every iteration, affecting the convergence of such networks and increasing the number of iterations. To 

reduce the number of iterations in such networks, new mathematical methods, such as the Levenberg–

Marquardt method, are used.  

By using a new equation for calculating various values voltages and angles as well as presenting and 

calculating coefficients to reduce iterations, this method speeds up the process of solving the power flow 

problem. The new method performs the calculations regarding power flow by approximating the first-

order solution from the Jacobin matrix. It has also speeded up the solution process by calculating the 

coefficients of the power differences at each stage.  

Keywords: Microgrid, power flow, Levenberg–Marquardt algorithm 

 

Introduction  

The microgrid control strategy should be designed in different modes, i.e. centralized, decentralized, 

and distributed. Any combination of these modes can also be implemented. Centralized control strategies 

require significant amounts of data in a reliable communication link [1].  

To solve the power flow problem in networks, conventional and new power flow methods are used. 

Due to the structures and conditions of microgrids, some of these methods are not used in the problem of 

microgrid power flow, and some make changes in the structures or equations. In solving the microgrid 

power flow problem, due to the structural difference of these networks and power networks as well as 

changed in the parameters of the lines, new problems arise that require appropriate methods to be solved.  

mailto:y_derakhshandeh@eng.sku.ac.ir
mailto:pourbagher@stu.sku.ac.ir
mailto:hamedmahdiyan68@gmail.com


S. Y. Derakhshandeh,, R. Pourbagher, H. Mahdiyan 

 

7694 

Until now, many methods have been proposed to solve the power flow problem in distribution systems, 

which could be divided into three general categories: the deterministic method, the probabilistic method, 

and the evolutionary method. In all of these methods, the parameters required for the power flow are the 

same, differing only in terms of convergence speed, number of iterations, and accuracy. It should be noted 

that in islanded microgrids, the frequency parameter is added to other power distribution parameters [2].  

Backward/Forward sweep Method: This is one of the most widely used methods for power flow in 

radial networks. These methods have a low computational burden and high accuracy. In some distribution 

networks, a loop is used to increase the reliability and improve the voltage rate of the busbars. The 

advantages of this method are high speed, low memory storage, and good convergence. This method faces 

problems in distribution networks that have a mesh [3].  

One of the most well-known methods for solving nonlinear problems is the Newton-Raphson method, 

in which, we start with an initial conjecture, write the Taylor series for the equations, and then discard 

the high orders. The result is the conversion of a nonlinear equation into a linear one. In this method, the 

number of iterations does not depend on the number of busbars and often converges. Since fixed point 

methods, such as that proposed by Gauss-Seidel, have little or no convergence in radial networks, our 

method can be a good alternative to fixed-point methods such as that of Gauss-Seidel [3, 2].  

Mathematical methods are required to determine indefinite values and what is ignored in definite 

methods. Thereby, the probabilistic power flow method was first introduced in 1974 and further 

developed and extended to power system analyzes, including fuzzy logic or interval analysis. [1] 

presented a comprehensive review and history of probabilistic power flow articles. Probabilistic power 

flow solution can be divided into two categories of numerical and analytical solution methods. 

Probabilistic power flow methods emphasize a definite power flow using nonlinear equations for an 

extended period with different inputs and combinations. To use the real power flow equations, the results 

obtained from these methods are usually used as a reference for the results of other probabilistic power 

flow solutions to examine the accuracy level. However, some power flow methods require a long time to 

calculate [4, 5]. The main idea of analytical solutions is to obtain volumetric functions and line currents 

from random state variables and the functions of lots of random input variables, respectively. But there 

are two problems for the probabilistic solution of power flow equations. The first problem is nonlinear 

equations and the second is the interdependence of input power variables. In addition, abstractions that 

enhance the probabilistic power flow using the analytical method cause errors in the solutions. These 

power flow equations are linearized around the estimated points of the system using Taylor's first method 

[1-6].  

In addition to analytical models, several studies examine power flow models based on evolutionary 

algorithms. These models depend on the boundary values of the problem variables. For example, Al-Riah 

[7] provides an algorithm based on the PSO technique to solve the power flow problem in an islanded 

microgrid. PSO is used to estimate the loss parameters to optimize the reactive power flow. However, 

their algorithm fails to calculate the active power flow between distributed generation resources.  

An improved genetic algorithm (IGA) was proposed in [5] to solve the power flow problem. IGA 

responses include gradient methods. The combination of PSO and GA in [8] is used to solve the power 

flow problem in two different steps from PSO and GA. The proposed method takes a lot of time to make 

the power flow using PSO\GA [9].  

A large number of the above studies are related to the power flow analysis models, which consider a 

constant frequency for the system. However, in an islanded microgrid where no reference bus exists, the 

frequency cannot be considered constant and must be calculated as one of the power flow variables. The 

power flow models, which only consider P-V or P-Q nodes as the distributed generation units, fail to 

measure the performance of islanded microgrids [5].  
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Problem statement: 

The high-order Newton-Raphson method is used to solve the power flow problem in low voltage 

islanded microgrids based on the loss control methods in distributed generation units. This method has 

the following advantages:  

 Highly accurate solution  

 Low number of iterations to achieve convergence  

 Increased convergence rate due to higher-order in the new method compared to traditional 

methods  

 Controllability of the CPU time using the controlling parameters, such as the damping parameter 

(λ)  

 Guaranteed convergence of solutions  

 Possibility of method convergence for systems with a high R/X ratio  

Proposed methodology for power low  

Newton-Raphson power flow method is an old methodology for nonlinear flow in power networks, 

which is widely used due to its advantages. In the universal power network, due to the ideal conditions 

such as the sufficient generation, appropriate impedance to network admittance ratio, and the presence of 

infinite or reference bus, this method has a very good convergence rate. Adding accelerating coefficients 

to this method further improves the situation and accelerates the convergence rate. However, favorable 

conditions do not always exist, and as each of these advantages is omitted, the convergence conditions 

deteriorate. Deteriorated conditions in such iterative methods, the number of iterations increases, and in 

some cases, it leads to divergence of the existing algorithm. Naturally, with increasing frequency, the 

time to obtain the solution increases based on conditions, type, and the number of network buses, which 

makes this solution seem implausible and impractical [6]. 

One of the cases in which sub-optimal conditions prevail is microgrids. The conditions of this type of 

network are different from other power systems such as universal power networks. In these networks, the 

generation rate is limited and is often in the form of distributed generation. This does not cause major 

problems in microgrids that can connect to the universal power system, but the problem occurs when the 

microgrid is unable to connect. In these cases, the generation sufficiency, reference bus voltage stability, 

voltage control bus generation stability, and frequency stability, which are the fixed points in the Newton-

Raphson algorithm, will be uncertain. This leads to a sharp decrease in the convergence rate and a sharp 

increase in the number of iterations [9-10].  

Another problem in both connected and islanded microgrids is that the 
𝑅

𝑋
 the ratio of these grids is 

high. This is because these grids generally operate at distribution-level voltages or have a radial structure 

or serve a small area. This has been shown to reduce the convergence rate and increase the number of 

iterations.  

As mentioned above, in islanded microgrids, due to the uncertainty and insufficient generation, the 

actual power of the voltage control bus is not possible to be kept constant. This also contributes to the 

poor conditions of this type of grid and increases the non-convergence rate and the number of iterations 

[11-14].  

Considering all of the above, to solve this problem as well as to calculate the reference bus voltage 

and network frequency accurately, an evolutionary type of Newton-Raphson power flow method is 
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provided, which has the potential to both calculate the mentioned factors and to overcome the problem of 

convergence and number of iterations in this type of network. It should be explained that there are 

methods, such as the recursive method, that are suitable for calculating this type of power flow, but the 

main problem of such methods is that they can only be used in radial networks and are not suitable to 

solve the loop network problem.  

Modification of convergence of Newton-Raphson method 

After solving the problem of reference bus voltage and grid frequency using the Newton-Raphson 

algorithm, the remaining problem will be reducing the number of iterations in this method. Iterations have 

increased due to the above-mentioned conditions and have reduced the efficiency of the algorithm. 

Several methods are used to increase the speed of this algorithm, such as the Levenberg–Marquardt 

method or acceleration coefficient.  

Acceleration coefficient method:  

The acceleration coefficient is the simplest method for increasing the convergence rate, which is used 

in many cases. In this method, a constant, usually experimental coefficient, which is often a number 

between 0 and 2, is multiplied by the difference between the previous iteration solution and the current 

iteration solution. This results in solutions closer to the optimal solution.  

 

One of the problems of this method is that the coefficient is assumed to be constant in all iterations. 

This reduces the accuracy in finding solutions that are closer to the optimal solution. Also, at the 

beginning of the algorithm, if the differences are wide, they can cause non-convergence or an increased 

number of iterations. In the set of boundary solutions, this method creates a fluctuation of the solution 

around the operating point, and therefore, loses its efficiency in some cases.  

Levenberg–Marquardt Method: 

In this method, the slope of changes of variables in each step is compared to the previous step, and 

using this slope, acceleration coefficients are created which help speed up the convergence rate of the 

algorithm. One of the advantages of this approach compared to the previous ones is that the previously 

constant acceleration coefficient changes in several iterations. One of the problems with this method is 

that there is still the possibility of errors in the initial repetitions. The number of internal iterations is 

constant and the method loses its efficiency in case of a small number of errors.  

Self-correcting quasi-Schimanski Levenberg–Marquardt Method (new method): 

The Levenberg–Marquardt method is an algorithm that is applicable to the Newton problem in the 

Newton Trust area. Using coefficients that are created according to the obtained solutions, this method 

accelerates the solution of such problems. In this method, using the algorithms that have been added, the 

coefficients change in each period and each function.  

In this method, the correction factor is modified in each step according to the error rate and the number 

of iterations. This advantage makes the algorithm perform well with high error rates and have good 

accuracy at a low error rate.  

New Levenberg–Marquardt mathematical algorithm  

This algorithm is formulated as follows.  

Step one: 
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 First, the following initial constant values are selected by default; where m is the iteration limit at 

each stage of the inner loop, P0 is the acceptable error rate and N is the total iteration limit of the loop. 

Here, μ is the impact factor. 

 

 

𝛿𝜖[1,2]                                                                                                                                (6)                                                                                                                                                         

Step two:  

The initial values are given below. One of these values is the parameter β, which is one of the major 

differences between the new method and the Levenberg–Marquardt method. This is called the 

nonmonotonous parameter, which is defined as follows.  

 

Where ℱ𝑘(𝑖) is defined as follows:  

 

The value of λ0, which is the initial value of the correction parameter, is defined as follows. 

𝜆0 = 𝜇0Λ0                                                       (9)                                                                                                                                                        

Where, μ is the lower limit of the method, which prevents the high number of iterations at lower and 

close-to-solution limits.  

Step three: 

 At this step, the Jacobean values and the difference vector are defined as follows. It should be said 

that these are the values of every iteration (10). 

𝐹𝑥 = 𝐹(𝑥𝑘)      (10) 

𝐽𝑥 = 𝐽(𝑥𝑘)                                                                    (11) 

The following equality should be established for the algorithm to be completed.  

‖𝐽𝑘
𝑇𝐹𝑘‖ = 0                                                       (12) 

To calculate the correction values in the required iterations (i) and at the Kth step, the following 

equation is used 

𝑑𝑖,𝑘 = −(𝐽𝑘
𝑇𝐽𝑘 + 𝜆𝑘𝐼)

−1
𝐽𝑘
𝑇𝑑𝑃𝑖,𝑘                                                                   (13) 

The initial values in each step are modified as follows 
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𝑥𝑘,𝑖 = 𝑥𝑘,𝑖−1 + 𝑑𝑘,𝑖−1                                                      (14) 

Generally, the total correction values are as follows 

𝑠𝑘 = ∑ 𝑑𝑘,𝑖
𝑚−1
𝑖=0                                                           (15)  

Step four: 

 Then, the maximum error rate in this step is calculated as follows. Aredk is the difference between 

the values from the beginning to the end of the interval and Predk  is the difference between the values 

in two consecutive iterations 

𝑟𝑘= 𝐴𝑟𝑒𝑑𝑘 𝑃𝑟𝑒𝑑𝑘⁄                                                       (16) 

If this error rate is acceptable, changes resulting from calculations will be applied. If this is not the 

case, the setting parameters will be adjusted automatically. 

𝑥𝑘+1 = {
𝐼𝑓 𝑥𝑘 + 𝑠𝑘    𝑟𝑘 ≥ 𝑝0 
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       𝑥𝑘          

                                                       (17)  

Step five: 

 The two parameters of Ared and Pred are calculated as follows.  

𝐴𝑟𝑒𝑑𝑘 = ‖𝐹𝑘‖
2 − ‖𝐹(𝑥𝑘 + 𝑠𝑘)‖

2                                              (18) 

By selecting the new m for the upper limit of the iterations and replacing k + 1 in the iterations, the 

new μ value will be calculated as follows and the algorithm returns to the third step.  

𝜇𝑘+1 = 𝑚𝑎𝑥{𝜇, 𝜇𝑘𝑞(𝑟𝑘)}                                        (20)  

Where the parameter q is as follows.  

𝑞(𝑟) = max {
1

4
, 1 − 2(2𝑟 − 1)3}                         (21)  

Implementation of the proposed method in power problem  

Step one: 

 First, the following initial constants will be selected by default just as the mathematical method. 

Where m is the iteration limit at each stage of the inner loop, P0 is the acceptable error rate and N is the 

total iteration limit of the loop. Here μ is the impact factor of small errors of the problem.  

  

The soft power of the problem (δ) and the initial values of μ, within their limits, are determined as 

follows.  

𝜇0𝛿[𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥]                                    (25)  

𝛿𝜖[1,2]                                                       (26) 

Step two: 
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 Then, the values of the primary variables are defined as follows: Λ, a parameter called β, is a 

nonmonotonous parameter that is defined as follows in the first iteration. The values of ∆𝑃 and ∆𝑄 should 

replace F in the mathematical problem, which is given here in the form 

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑥 

.  

Λ0 = ‖
‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑥0

‖
‖

𝛿

                                  (27) 

𝜆0 = 𝜇0Λ0                                                                  (28)  

The initial values are 𝑚(0) = 0, 𝑘 = 0 and 𝑖 = 0. Then the following loop is executed.  

Step three: 

 First, the algorithm termination condition is defined as follows.  

‖‖𝐽𝑘
𝑇

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘

‖‖ = 0                                    (29) 

This algorithm uses two loops, one internal loop, and one external loop. The internal loop performs 

the power flow calculations up to the number required by the external loop using the variable (counter) i. 

Then the correction factors are modified in the external loop and applied again to the internal loop. The 

value of the internal loop counter is determined based on the conditions of the external loop. It should be 

noted that the external loop counter is a variable k.  

The power difference to the number of internal counters i is calculated as follows. 𝑑𝑖,𝑘 is the vector of 

the power difference and the voltage with the number of iterations of i in the kth step.  

[

∆𝜖
∆𝑉
∆𝜔
∆𝑉1

]

𝑖,𝑘

= −(𝐽𝑘
𝑇𝐽𝑘 + 𝜆𝑘𝐼)

−1
𝐽𝑘
𝑇

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑖,𝑘

         (30)  

Then at each stage of the internal loop, the problem variables, including 𝑉 , 𝜖, 𝜔, 𝑉1 are updated as 

follows, as the normal methodology.  

[

𝜖
𝑉
𝜔
𝑉1

]

𝑘,𝑖

= [

𝜖
𝑉
𝜔
𝑉1

]

𝑘,𝑖−1

+ [

∆𝜖
∆𝑉
∆𝜔
∆𝑉1

]

𝑘,𝑖−1

                              (31)  

 

Then again, in the external loop, the counter of the internal loop becomes zero and the unit will be 

added to the external counter. The total correction is then calculated for the main loop. sk is the sum of 

all corrections in all rounds of the internal loop in each iteration.  
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Step fourth: 

 Then, the maximum error rate in this step is calculated as follows, where, Aredk is the difference 

between the power differences from the beginning to the end of the interval and Predk is the difference 

between the power differences in two consecutive repetitions.  

𝑟𝑘= 𝐴𝑟𝑒𝑑𝑘 𝑃𝑟𝑒𝑑𝑘⁄                                 (34)  

Now, if this error rate is acceptable, changes due to calculations will be applied. If not, the setting 

parameters are automatically modified. 

[

𝜖
𝑉
𝜔
𝑉1

]

𝑘+1

=

{
 
 
 

 
 
 
𝐼𝑓 [

𝜖
𝑉
𝜔
𝑉1

]

𝑘

+ 𝑠𝑘    𝑟𝑘 ≥ 𝑝0

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 [

𝜖
𝑉
𝜔
𝑉1

]

𝑘

         

                                           (35) 

 

Step fifth:  

Then with the increase in parameter m, the number of iterations increases as follows. Using the 

obtained data, the main parameter of the acceleration coefficient λ, which is Λ and μ, is calculated as 

follows.  

𝑚(𝑘 + 1) ∈ [0,min {𝑚(𝑘) + 1,𝑁}]                            (36)  

Where q(rk) is the correction factor μ based on the error coefficient rk.  

Λ𝑘 =

{
 
 
 
 

 
 
 
 

‖‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘

‖‖

𝛿

                                                   𝑖𝑓 𝑘 = 0

∑ 𝜂𝑚(𝑘)−𝑖ℱ𝑘(𝑖)+‖‖[

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡−𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡−𝑄𝑠𝑦𝑠

]

𝑘

‖‖

𝛿

𝑚(𝑘)−1
𝑖=0

∑ 𝜂𝑚(𝑘)−𝑖+1
𝑚(𝑘)−1
𝑖=0

,   𝑖𝑓 𝑘 > 0

             (37)  

 

𝜇𝑘+1 = max {𝜇, 𝜇𝑘𝑞(𝑟𝑘)}                                                                              (38) 

Where ℱ is calculated as follows.  
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ℱ𝑘(𝑖) =

{
 
 
 
 

 
 
 
 

‖‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘

‖‖

𝛿

                      𝑖𝑓 𝑘 < 𝑁

‖‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘−𝑁+𝑖+1

‖‖

𝛿

         𝑖𝑓 𝑘 ≥ 𝑁

                           (39)  

 

Where parameter q is as follows:  

𝑞(𝑟) = max {
1

4
, 1 − 2(2𝑟 − 1)3}                                                (40) 

 

Then ‖‖𝐽𝑘
𝑇

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘

‖‖  is calculated again. If it is equal to zero, the algorithm terminates; 

otherwise, the algorithm repeats.  

The two parameters of Ared and Pred are calculated as follows.  

 

𝐴𝑟𝑒𝑑𝑘 = ‖‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘

‖‖

2

−‖‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 
(𝑥𝑘 + 𝑠𝑘)‖‖

2

             (41) 𝑃𝑟𝑒𝑑𝑘 =

∑

(

 
 
‖
‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘,𝑖

‖
‖

2

− ‖
‖

[
 
 
 

∆𝑃
∆𝑄

𝑃𝑡𝑜𝑡 − 𝑃𝑠𝑦𝑠
𝑄𝑡𝑜𝑡 − 𝑄𝑠𝑦𝑠]

 
 
 

𝑘,𝑖

+ 𝐽𝑘 [

∆𝜖
∆𝑉
∆𝜔
∆𝑉1

]

𝑘,𝑖

‖
‖

2

)

 
 𝑚−1

𝑖=0       (41) 

 

Systems studied: 

Standard 6-bus system: This system is as set out in Fig. (1). This network consists of two loads on 

buses No. 1 and 3 and three generators on buses No. 4, 5, and 6.  

38-bus system simulation: 

This system is shown in the following. There are five generators in the system, which are located on 

buses No. 34, 35, 36, 37, and 38. Details of the buses are given in the appendix.  
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(a) (b) 

Figure 1. a. Schematic of IEEE 6-bus system [4], b. Schematic of IEEE 38-bus system [2]. 

Numerical results  

To test and implement the new method, conventional networks were used to simulate its algorithms. 

This method has been implemented on IEEE tested networks and the results have been compared with 

the simple Newton-Raphson methods in microgrids as well as with the usual Levenberg–Marquardt 

method and the Newton-Raphson method using acceleration coefficient.  

Results of simulation of 6-bus system with a typical loss 

According to the simulations of this system, the number of iterations required for system convergence 

in different methods is as follows. According to the simulations, the error considered is 𝜀 = 10−6. The 

number of repetitions required for convergence is 69 in the simple Newton-Raphson method, 30 in the 

Newton-Raphson method with a correction factor, 14 in the usual Levenberg–Marquardt method and 13 

in the proposed method. The diagram of this simulation is as shown in Fig. 2. In this diagram, due to a 

large number of repetitions, the Newton-Raphson method was omitted. The figure below shows that in 

the initial iterations, the diagram of the new method converges more rapidly due to the change in the 

acceleration coefficient at low iterations. The obtained frequency is 0.9964.  
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Figure 2: Power error in a 6-bus system with a typical loss 

 

Results of 6-bus system simulation with reverse loss: 

According to the simulations of this system, the number of iterations required for the convergence of 

the system in different methods is as follows. Based on the simulations, the error considered is 𝜀 = 10−6. 

The number of iterations required for convergence is 74 in the simple Newton-Raphson method, 27 in 

the Newton-Raphson method with a correction factor, 16 in the normal Levenberg–Marquardt method 

and 14 in the proposed method. The diagram of this simulation is as follows. In Fig. 3, the Newton-

Raphson method is omitted due to a large number of iterations. As can be seen, the new method converges 

more rapidly in the initial iterations. In addition, using the parameter η in the final iterations the slope of 

convergence increases in the diagram.  

 

Figure 3. Power error in a 6-bus system with reverse loss 

 

Results of 6-bus system simulation with a combined loss  
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According to the simulations of this system, the number of iterations required for the convergence of 

the system in different methods is as follows. According to the simulations, the error considered is 𝜀 =

10−6. The number of iterations required for convergence is 35 in the simple Newton-Raphson method, 

15 in the Newton-Raphson method with a correction factor, 14 normal Levenberg–Marquardt method, 

and 11 in the proposed method. The diagram of the simulation is as shown in Fig. 4. In this diagram, due 

to a large number of iterations, the Newton-Raphson method was omitted. The obtained frequency is 

0.9997.  

 

Figure 4. Power error in a 6-bus system with a combined loss 

 

Results of 38-bus system simulation with typical loss: 

According to the simulations of this system, the number of iterations required for the convergence of 

the system in different methods is as follows. According to the simulations, the error considered is 𝜀 =

10−6. The number of iterations required for convergence is 21 in the simple Newton-Raphson method, 

14 in the Newton-Raphson method with a correction factor, 9 in the normal Levenberg–Marquardt 

method, and 7 in the proposed method. The simulation diagram is as follows. The frequency is 0.9965 

(Fig. 5).  

 

Figure 5. Power error in a 38-bus system with a typical loss 
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Results of 38-bus system simulation with reverse loss:  

According to the simulations of this system, the number of iterations required for the convergence of 

this system in different methods is as follows. According to the simulations, the error considered is 𝜀 =

10−6. The number of iterations required for convergence is 27 in the simple Newton-Raphson method, 

27 in the Newton-Raphson method with a correction factor, 16 in the normal Levenberg–Marquardt 

method, and 16 in the proposed method. Fig. 6 shows the simulation results. Its frequency is 1.003.  

 

Figure 6. Power error in a 38-bus system with reverse loss 

 

Results of 38-bus system simulation with combined loss: 

According to the simulations of this system, the number of iterations required for the convergence of 

the system in different methods is as follows. According to the simulations, the error considered is 𝜀 =

10−6. The number of iterations required for convergence is 21 in the simple Newton-Raphson method, 

11 in the Newton-Raphson method with a correction factor, 10 in the normal Levenberg–Marquardt 

method, and 9 in the proposed method. The diagram of this simulation is Fig. 7. Its frequency is 0.9997.  
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Figure 7. Power error in a 38-bus system with a combined loss 

Table 1 shows the percentage change in the number of iterations of the proposed method compared to 

other methods.  

Table 1. Percentage change of iterations of the proposed method compared to other methods 

New Levenberg–

Marquardt method 

Triple Levenberg–

Marquardt method 

Newton -Raphson 

method with the 

correction coefficient 

Newton -Raphson 

method 
 

Improvement 

Percentage 

Number 

of 

iterations 

Improvement 

Percentage 

Number 

of 

iterations 

Improvement 

Percentage 

Number 

of 

iterations 

Improvement 

Percentage 

Number 

of 

iterations 

 

- 31 7 31 65 13 13 56 

6-bus 

system 

with 

normal 

loss 

- 31 3.26 35 11 .7 13 71 

6-bus 

system 

with 

reverse  

loss 

- 33 .3 31 .5 36 51 16 

6-bus 

system 

with 

combined 

loss 
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- 7 .. 6 63 31 55 .3 

38-bus 

system 

with 

normal 

loss 

- 35 3 35 13 .7 13 .7 

38-bus 

system 

with 

reverse 

loss 

- 1 .3 33 .7 33 53 .3 

38-bus 

system 

with 

combined 

loss 

 

Table 2 shows the percentage change in time consumption of the proposed method compared to other 

methods.  

 

Table 2. Percentage change in time consumption of the proposed method compared to other methods 

New Levenberg–

Marquardt method 

Triple Levenberg–

Marquardt method 

Newton -Raphson 

method with the 

correction coefficient 

Newton -Raphson 

method 
 

Improvement 

Percentage 
Time 

Improvement 

Percentage 
Time 

Improvement 

Percentage 
Time 

Improvement 

Percentage 
Time  

- 3266 62. 3256 62. 3256 .7 3213 

6-bus 

system 

with 

normal 

loss 

- 3253 36 3273 52. 3251 1626 323 

6-bus 

system 

with 

reverse  

loss 

- 3253 523 3256 121-  3266 37 3271 

6-bus 

system 

with 
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combined 

loss 

- 321 7 321 3 321 31 326 

38-bus 

system 

with 

normal 

loss 

- .23 33-  326 13-  326 13-  326 

38-bus 

system 

with 

reverse 

loss 

- 325 3 325 16-  323 2 325 

38-bus 

system 

with a 

combined 

loss 

 

Conclusion  

A microgrid consists of the internal connection of sources of distributed generation, which provide 

electrical and thermal loads such as energy storage. Power quality and reliability in microgrids can be 

enhanced by using electronic power relations and controllers. The microgrid operates in connected and 

islanded states. In the connected state, the main network determines the voltage and frequency of the 

microgrids. In the isolated state, the control units of the distributed generation sources, which manage the 

active and reactive powers, are responsible for voltage and frequency regulation [15, 16]. There are many 

different ways to solve the power flow problem in the power system, each of which has advantages and 

disadvantages. But all of these methods could not be used in practice for solving the power flow problem 

in low voltage, islanded power systems. Methods based on the Jacobean matrix are suitable for such 

problems and may result in appropriate solutions. The number of iterations and time taken for the 

problem-solving in these methods has always been under discussion and many researchers have tried to 

reduce these two parameters. The results of this study showed that the Levenberg–Marquardt algorithm 

is a mathematical method that can solve this problem in fewer iterations and time. 
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