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Abstract: This paper is intended to explain the multivariate spatial prediction in geostatistical 

analysis. The purpose of this paper to develop an empirical methodology for spatial insurance 

by studying the fundamental causes for differences in between distributed locations. The 

objective of this work is to access an approach of optimal model of prediction under 

uncertainty. Cokriging technique used in this paper through  empirical estimation of 

variograms and  cross-variograms in all directions of compass. Multivariate  technique applied 

to obtain fitting theoretical models of covariance function, with their  properties. The data 

adopted from Mosul quadrangle/Iraq, include two sets of groundwater viability of soil data., 

each set contains (100) sample. First set primary variable, magnesium (Mg), and second set is 

secondary variable (co-variable) is chlorine (Cl). The results of this work shown to suggest fit 

models with best prediction, through the small variations and constraints of weights clear 

support of accuracy of cokriging prediction. The outcome showed the models of data adopted 

nearest of origin models of covariance functions. In conclusion, the prediction of cokriging 

found that the origin data are the nearest the prediction of cross variogram. The computations 

are carried out by Matlab language                                                                                               .
                                                                                                                                                       

  Keywords: cokriging, uncertainty, cross-vriogram function , soil data. 

 

 

The main characteristic in mining field and  spatial statistics is study of phenomenon  based 

on a set of observationsspatial prediction defined as to get the model of regionalized variables 

and to study the phenomenon includes the required predicate in unmeasured common 

properties. The problem statement of this study is to improve interpolation techniques 

performance, which are seeking to obtain a minimum error in prediction.  in 1963 Matheron 

developed kriging's theory basing the study on krige's Master. The name "kriging" is method 

of interpolation prediction. In general cases, estimate parameters of covariance functions or 

models, this problem started with the French engineer Matheron in 1971. Other studies took 

universal kriging in estimation process as Dalezios et. al (2002), Brus et. al  (2007).                          

Kriging's technique includes many subjects and multi spaces in addition to using a spatial 

model to determine weights during estimation, one of the most important aspects of the 

geographic statistical method is the integration of quantitative data. From classical 

multivariate statistics, we notice that models developed from two or more variables often 

produce better estimates. We can extend the classic multivariate techniques in the 

geostatistics world and use two or more regional variables in  the geostatistics estimation. 

These techniques have a benefit over kriging techniques because they contain multivariate 

under uncertainty by Delobbe and Holleman (2006), Trapero et. al (2009),Chiles and Delfiner 

(2012), Erdin et. al (2012).For example, by analyzing our exploratory data, we may find a 
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good correlation between a characteristic measured at the sites of the studied phenomenon 

and a characteristic of a specific chemical element. In such a case, we may wish to use the 

chemical information to provide the best estimates obtained from the phenomenon data alone. 

Even when the primary data count is (good), it is possible to use a sample-dense secondary 

characteristic such as soil salinity in the interpolation process such as Dobesch et. al (2007), 

Xie et. al (2011). Examples of cokriging two correlated variables sample at different locations 

in various applications such as Eldeiry and Garcia (2010),Wackernagel (2010), Wackernagel 

(2013). 

 

2. Methodology 

2.1 The variogram function  

Inaccuracy in results and interpretation back to  a lack of accuracy among the observations 

during using the correlation coefficient . Therefore, south African scientist  Krige found the 

experimental of varioram function, usually used to build the best mathematical model.Let 𝑦(𝑠)and 𝑦(𝑠 + ℎ)be two random variables at two points  (𝑠) and (𝑠 + ℎ)separated by the 

vector ℎThe variability between these two quantities is characterized by                           

2γ(𝑠, ℎ) = 𝐸{[𝑦(𝑠) − 𝑦(𝑠 + ℎ)]2} 
In all generality, the variogram function  2γ(𝑠, ℎ)  is a function of both the point(𝑠)and the 

vector(ℎ). And variogram function is defined as:  

2γ(ℎ) = 1𝑛(ℎ)∑ [𝑦(𝑠𝑖 +ℎ)−𝑦(𝑠𝑖)]2𝑛(ℎ)𝑖=1                                                                                            (1)   

Where  𝑦(𝑠𝑖) and 𝑦(𝑠𝑖 + ℎ)are random variables at locations, (𝑠𝑖) and  (𝑠𝑖 + ℎ) respectively 

where 𝑖 = 1,2, … , 𝑛  and (ℎ)  is the distance between the observations of data. The total 

number of experimental pairs 𝑦(𝑠𝑖), 𝑦(𝑠𝑖 + ℎ) of data with distance(ℎ) is denote 𝑛(ℎ). To 

describe the spatial correlation of the variogram function and the cross- variogram is defined 

as:    

2𝛾𝑖𝑗(ℎ) = 1𝑛(ℎ)∑[𝑛(ℎ)
𝑖=1 𝑦𝑖(𝑠𝑘 + ℎ) − 𝑦𝑖(𝑠𝑘)][𝑦𝑗(𝑠𝑘 + ℎ) − 𝑦𝑗(𝑠𝑘)]                               (2) 

When( 𝑖 = 𝑗) then variogram function equation (1) is reached, when ( 𝑖 ≠ 𝑗), then it is the 

cross-variogram. Random function is called second order stationary if and only if 𝐸(𝑦(𝑠) = 𝛍 , 𝒄𝒐𝒗[𝑦(𝑠 + ℎ), 𝑦(𝑠)] = 𝑐(ℎ)                                                                       (3) 
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Can be obtained on the relationship between covariance function 𝑐(ℎ), variogram function 2𝛾(ℎ) and variance 𝑐(0)as in the following formula:𝛾(ℎ) = 𝑐(0) − 𝑐(ℎ) 

 2.2 Zone of Uncertainty 

To access to zones of uncertainty,  we must  determine real spatial data locations with a 

certain probability provides  in the field of study. kriging technique is the most important 

advantages using, it has the ability to identify  areas of uncertainty. also, zones of uncertainty  

needs  some information of the same data benefit the researcher. Let 𝑦(𝑠𝑜) be a variable with 

sit (𝑠𝑜), and 𝑦(𝑠𝑖), 𝑖 = 1,2, … , 𝑛, are observations of locations (𝑠𝑖) .  Uncertainty round of 𝑦(𝑠𝑜)  in unknown location (𝑠𝑜)  is the model of the function of cumulative distribution of 

random variable(𝑠):                                                                                                                   𝐹(𝑠, 𝑦) = 𝑃𝑟𝑜𝑏{𝑌(𝑆) ≤ 𝑦(𝑠)} 
Where 𝐹(. ) is the function of the probability with unknown location and the probability 

between 0 and 1 give us the map of zones with and without zoned of uncertainty.                      

                                                                                 

2.3 The Assumptions   

, represent number of (𝑛𝛽), (𝑛𝛽 > 0)Let (𝑚)variables and variable 𝑌𝛽(𝑠)  the vector   𝑦 = (𝑦1(𝑠), 𝑦2(𝑠),… , 𝑦𝑚(𝑠))    ,   we can represent these theβ = 1,2, … ,𝑚   as  

𝑦𝛽(𝑠) = (𝑦𝛽(𝑠1), 𝑦𝛽(𝑠2),… , 𝑦𝛽(𝑠𝑛𝛽))   

  Where 𝑦1(𝑠) are called primary variable and 𝑦𝛽(𝑠)called secondary variables, then the 

vector of the random functions is: 

𝑦 = (𝑦1(𝑠1),… , (𝑦1(𝑠𝑛1), (𝑦2(𝑠1),… , (𝑦2(𝑠𝑛2), 𝑦𝑚(𝑠1), … , 𝑦𝑚(𝑠𝑛𝑚))   

The weights vector that correspond to the random vector functions is     

𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑚)  , 𝜔𝛽 = (𝜔𝛽1, 𝜔𝛽2, … , 𝜔𝛽𝑚)    then,                                             
  

𝜔𝛽 = (𝜔11, 𝜔12, … , 𝜔1𝑛1 , 𝜔21, 𝜔22, … , 𝜔2𝑛2 , 𝜔𝑚1, 𝜔𝑚2, … , 𝜔𝑚𝑛𝑚)   

 

2.4 Multivariate geostatistics 

Integrating secondary variable in spatial prediction often effective way to introduce 

secondary data in  kriging  algorithms is using secondary information as a trend. 
 In kriging, the primary variable is decomposed into a mean component 
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 𝑦𝑖(𝑠) = 𝑚(𝑠) + 𝑅(𝑠)                                                                                        (4) 
the mean-component can be used to model the trend because  secondary data is 

often smooth in nature, 𝐸(𝑦𝑖(𝑠)) = 𝑚(𝑠) = 𝜑(𝑦2(𝑠))                                                                                   (5)    

from necessary of any  function needs to be knowledge of data. this require  that 

the secondary data is needs to be determined and available everywhere.. 
 

In the original soft data, spatial variance is largely neglected in kriging system. The 

property of spatial correlation between the secondary variables and the primary 

variable is characterized by continuity. Whereas, for the secondary data expressed in 

the correlation diagram, the spatial relationship between the secondary and the 

primary, therefore, we use the  cross- covariance to obtain the complete spatial 

correlation.  

 𝜌𝑦1𝑦2(ℎ) = 𝑐𝑜𝑣(𝑦1(𝑠), 𝑦2(𝑠 + ℎ)√𝑣𝑎𝑟(𝑦1)𝑣𝑎𝑟(𝑦2) (6) 
for a regionalization characterized by a set of K spatially intercorrelated random 

variables : { 𝑦𝑘(𝑠), k=1 to K} 

The first and second order moments of these variables, assuming stationarity, are: 

 

 

 𝐸[𝑦𝑘(𝑠)] =  𝑚𝑘 , 

  ∀ 𝑠                                                                    (7) 𝑐𝑜𝑣𝑘𝑘̀(ℎ)] = 𝐸[𝑦𝑘(𝑠𝑠1) − 𝑚𝑘][𝑦𝑘̀(𝑠𝑠2) − 𝑚𝑘̀], 𝑓𝑜𝑟 𝑠𝑠1 − 𝑠𝑠2 = ℎ                             (8)  
 

Simple cokriging technique is similar to a simple kriging technique when the expectation is 

constant and known in all locations of the study. Also ordinary cokriging is a similar to 

ordinary kriging technique when the expectation is constant and unknown in the area of study, 

whereas the differences are in the numbers of variables, where there is primary variable and to 

predict the secondary variables so as to improve the value of prediction. Cokriging uses the 

multivariable, auxiliary variable and co- variable or secondary variable, with two constraints 

of the weights.                                                                                                                                

 

∑𝜔𝑛
𝑖=1 𝑖 = 1,   ∑ ∑𝛼𝑛

𝑖=1
𝑚𝑗 𝑖𝑗 = 0                                                                                              (9) 
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  𝑦̂(𝑠𝑜) =∑𝜔𝑖𝑦(𝑠𝑖)∑∑𝛼𝑖𝑗𝑐(𝑠𝑖𝑗)                                                                          (10)𝑛
𝑖=1

𝑚
𝑗=1

𝑛
𝑖=1  

 

Where (𝜔𝑖) kriging weights, (𝛼𝑖𝑗)cokriging weights, and 𝑐(𝑠𝑖𝑗) are correlated to each other. 

The linear combination of cokriging predictor is defined as: 

 

(11) 𝑦̂(𝑠𝑜) = 𝑦 

Where 𝑦̂(𝑠𝑜)    represent real value of prediction. And by using the matrices form we get: 𝑦̂𝑐𝑜𝑘 = 𝐶𝑜׳ 𝐶−1𝑦 − 𝐶𝑜׳ 𝐶−1𝐼 (𝐼𝐶−1𝐼)−1𝐼׳𝐶−1𝑦 + 𝑓׳(𝐼𝐶−1𝐼)𝐼׳𝐶−1𝑦                                  (12)
 

The variance of cokriging refers to the accuracy of prediction, and with the condition of 

unpaisedness that is equivalent(𝜔׳𝐼 = 𝑓׳), then 𝜎𝑐𝑜𝑘2 = 𝐶𝑜𝑜 − (𝜔׳𝐶𝑜 + 𝐿1) 𝜎𝑐𝑜𝑘2 = 𝐶𝑜𝑜 − (𝐶𝑜׳ 𝐶−1𝐶𝑜 − (𝐶𝑜׳ 𝐶−1𝐼 − 𝑓) (𝐼𝐶−1𝐼)−1𝐼׳𝐶−1𝐶𝑜 − ((𝑓׳(𝐼𝐶−1𝐼)−1)(𝐼׳𝐶−1𝐶𝑜 − 𝑓)                        (13)    
 

2.5 Cross validation 

 In order to obtain  effective a prediction we used The value of g measures by using 
sample mean. where g- value is defined as: 

 

𝑔 − 𝑣𝑎𝑙𝑢𝑒 = [1− ∑ [𝑦(𝑠𝑖) − 𝑦̂(𝑠𝑖)]2𝑛𝑖=1∑ [𝑦(𝑠𝑖) − 𝑦̅(𝑠𝑖)]𝑛𝑖=1 ]                                          (14) 
 

               where    𝑦(𝑠𝑖)are the observations of the variables,𝑦̂(𝑠𝑖)  the predictor values and are 𝑦  ̅̅ ̅thesamplemean, to evaluate the complete prediction must  gvalue is equal to 1 , 

while the prediction is less accurate when  g value is a negative value, while  if g value 

is a positive value that means a more positive prediction and g value of zero refer to the 

sample mean should be used. 

 By using the cokriging variance we can defined the accuracy of prediction 

(MSEcok)and calculated by:    

 𝑀𝑆𝐸𝑐𝑜𝑘 = [∑ [𝑦(𝑠𝑖) − 𝑦̂(𝑠𝑖)]2𝜎𝑐𝑜𝑘2𝑛
𝑖=1 ]                                                              (15)     

 



  Turkish Journal of Computer and Mathematics Education                         Vol.12 No.10(2021), 6343- 6355 

 

6348 

 

 

 

Research Article  

 

3.  Results and Analysis 

3.1 Data study  

On the practical side, the data used in this research were from the soil data. The data consisted 

of two groups. The first group of the primary variable is magnesium (Mg), content (100) 

samples of real values with their locations, and the second group of the co-variable or 

secondary variable, it contains (100) samples of chlorine (Cl). These data are a real spatial 

data from locations in Mosul/Iraq.(Hatem (2007)) 

Table (1): data statistic for  Mg and Cl 

       Stat.                 

Data     

Min Max Median Mode Std 

  Mg 0.2000 36.5000 6.75000 3.70000 6.1525 

   Cl 1 41 9.4000 7.8000 10.9614 

 

Table (1) content the data statistic for two sets of data (Mg and Cl) fromMosul quadrangle. 

First set contains (100) sample of magnesium  (Mg), while the second set contains (100) 

sample of chlorine (Cl) variables. 

 

 

Figure 1: Histogram of Mg data 
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Figure 2: Histogram of Cl data 

3.2 Variogram function  

By using isotropic property, we applied the experimental variogram function according 

equation (1), to plot the curves of variogram function and by using the data of the first group 

for Mg,  in all directions (𝜃 = 0°, 90°, 45°, 𝑎𝑛𝑑 135°), as shown inFigure (3) 

 

Figure 3: variogram functions of Mg data in all directions 
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average of variogram. These results of variogram give knowledge to define the properties of 

variogram function. 

Table (2): Results of average variogram function of Mg data 

 

 

Figure 4: variogram functions of Mg data, (a) in all directions,  (b) average variogram  

 Figure (4) explain  the  curves the experimental variogram functions, by using the data of the 

first group for Mg. Figure (4a) the curves of variogram in all 

directions(𝜃 = 0°, 90°, 45°, 𝑎𝑛𝑑 135°),, while Figure (4b) shows the average of variogram 

functions in (𝜃 = 0°, 90°)and (𝜃 = 45°, 135°), because the same lag of  h as mentioned 

previously.   
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0°, 90° Gamma 0.0068    0.0093    0.0104    0.0138    0.0193    0.0264    0.0173    0.0222    0.0309 

45°, 135° Gamma  0.0131    0.0182    0.0202    0.0266    0.0373    0.0509    0.0316    0.0445    0.0588 
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Figure 5: curves of variogram function of Cl data 

Figure (5) show the  curve of  the experimental variogram function according equation (1), by 

using the data of the second group for Cl,  in all directions(𝜃 = 0°, 90°, 45°, 𝑎𝑛𝑑 135°),.  
Table (3) shows the average of variogram function, using the data of Cl. Because the two 

directions (𝜃 = 0°, 90°)haves the same lag ℎ, ℎ = 1,2, … ,9, where we found the average of 

variogram, while the variogram function was found by two directions (𝜃 = 45°, 135°),  , 

where ℎ = 1.414, 2.828, … ,12.72. Also, these two angles having the same lag  (ℎ) were found to 

be the average of variogram function.  

Table 3: results of average of variogram function of Cl data 
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Figure 6: curves of  average  of variogram function of Cl data 

Figure (6) explain  the  curves the experimental variogram functions, by using the data of the 

first group for Cl. Figure (6a)  the curves of variogram in all directions (𝜃 = 0°, 90°, 45°, 𝑎𝑛𝑑 135°),, while Figure (6b) shows the average of variogram functions in (𝜃 = 0°, 90°), and (𝜃 = 45°, 135°), because the same lag of  h as mentioned previously. 
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Figure 7: results of variogram and cross varigram functions of (Mg,Cl )data 

Figure (7) shows  the  curves the experimental variogram functions, by using the data of the 

first group for Mg and second group for Cl. The two curves (blue) of variogram in all 

directions (𝜃 = 0°, 90°, 45°, 𝑎𝑛𝑑 135°), for Mg and Cl, while  shows the red curve is cross 

variogram of Mg and Cl. Figure (7) gives the average of variogram function. It was noted that 

curves in all directions are nearest to the spherical model that is defined as: 

 

𝛾(ℎ) = ( 
𝑐𝑜 + 𝑐 , ℎ > 𝑎𝑐𝑜 + 𝑐[1.5 (ℎ𝑎) − 0.5((ℎ𝑎)3 , ℎ < 𝑎𝑐𝑜 , ℎ = 𝑎)                                                                  (16) 

 

Where ℎ = 𝑎 and a is the range, 𝑐𝑜 is Nugget effect and  𝑐𝑜 + 𝑐 is the variance, it was noted that 

the curve of variogram function for Mg cut the vertical axis at 𝑐𝑜 = 4.74, and the range 𝑎 = 4.175when the curve of variogram is stable, and the variance 𝑐𝑜 + 𝑐 =43.72. 

These results of variogram give the knowledge to define the properties of the variogram 

function for Mg and Cl  data, with results of prediction,  Refer to Table (6). 
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3.3 Prediction of cokriging technique 

 

Cokriging technique used to predict unmeasured location for the primary variable(Mg) by 

using the secondary variable(Cl). This prediction used for five random locations by applying 

equation (9) to obtain the weights for each variable. The results of weights were obtained 

where the nearest data has the bigger weights while, the furthest data has the smallest 

weights and is near to zero. And the sum of primary variable weights is equal to one while 

the sum of co-variable weights is equal to zero, that is the unbiased condition. The variance 

of cokriging (according equation (13)), is compute in these locations to get the accuracy of 

prediction process. Table (6) shows a comparison between both metals of Mg and Cl using 

cokriging variance. The observed points are display as a reference for the cokriging models. 

The cokriging model preformed as a trend surface. Most of the values of cokriging variance 

are very small and also MSECOR (according equation(15)). This proves the accuracy of the 

cokriging technique and, likely, supplies a good prediction. Also, most of the g values 

(according equation(14)) are closer to 1 of cokriging technique which proves the 

effectiveness of prediction process. 

 

4.   Conclusion 

 
In this paper, the values at unmeasured locations in the field of study were estimated by 

using multivariate geographical statistics. Multivariate geostatistics uses to find the solution 

to spatial prediction with co-regionalized variables, to improve prediction of environmental 

modeling. Cokrigink techniques have a benefit over kriging techniques because they contain 

multiple variables. The variable in this paper is isotropic, illustrated by studying the 

varogram curves of the compass directions. The results obtained indicate small differences in 

the estimate. Weights were obtained where the closest data contains the largest weights, 

while the further data contains the smallest weights and is close to zero. The advantages of 

cokriging can be added to the technique of interpolation as auxiliary variables. The 

performance of the magnesium variable (primary variable) may be attributed to the multiple 

cutting of the chlorine variable (co-variable). The result of this work is to show that the 

chlorine data are more effective than the magnesium (primary variable). The behavior of all 

data is closest to the spherical model of the covariance function when using the covariate 

function. The accuracy of the cokriging technique gives a good prediction. 
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