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Abstract

The purpose of the present paper is to introduce certain new subclasses of analytic
univalent functions defined by a linear operator involving Mittag-Leffler function and
study their inclusion relationships. Some applications involving integral operators are
also considered.
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Introduction
Let A denote the class of functions of the form:

o0
f(z)=z+ X a,z", (1.1)
n=2
which are analytic in U= {ze C: ‘Z‘ <1}.
For 0<7n,&<1, let S(n), K(n7), C(1n,&E) and C(17,E) be the

subclasses of A consisting of all analytic functions which are, respectively, starlike of
order 7], convex of order 77, close-to-convex functions of order & and type 77 and

quasiconvex functions of order & and type 7.

Let S be the class of analytic and univalent functions ¢ for which ¢(U) is
convex with ¢(O) =1 and Re{¢(z)} >0, ze U.
For 0<1n,& <1 and g, €S, z€ U (cf. [3] and [11)), let

o 1 zf’(z)_
S(n;¢)=1£€A: T n (<92,

4) L, 2E @
ROpg)=1£eh: = |1+=0 = | <4
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c(n,§;¢,w)={feA g eSO st g[Zf'(Z)-eZ%w(z)}.

g(z)
and
Cln, Expay) = {f €A ;g cR(g)st. ] (<Z £y -5) < w(z)}
= P ’

where < denotes the subordination. For special choices for the functions ¢ and Y/,
we can obtain well-known subclasses of A . For examples:

(U,HZ) S(17), K(n,l j K(n),
| -z

1+z 1+ 1+z 1+
(77 &—= —Zj C(7n,¢) and C(n &—= Zj C#,%).
-7z 1-72 -z 1-z2
The function
o0 Zn
Ey,(z2)= Y ————, (z€C, Re(a)>0).
@ a—oT(an+1)

was introduced by Mittag-Leffler [15, 16] and is known as the Mittag-Leffler function.

,0
Srivastava and Tomovski [17] generalized this function by Eé/ B (z), where

_ z (7/)115 Zn
“’ﬂ(Z)_,EOF(an—W (zel), (1.2)

(a, B,y € C; Re(xx) > max{0, Re(d)—1}; Re(d) >0),

and proved that it is an entire function in the complex z-plane, where

T(y+n) { 1, o=0

re Ty) |y +D.(y+o-1) ceN={,2,..}

Several properties of Mittag-Leffler function and its generalization can be found

e.g. in ([1], [5]-[8], [12], [13], [15]-[17]).
Attiya [1] under the same conditions above defined the function Q7 ’ N (2)
by

0= *ﬂ)[ HEE

(7)s F(,B))
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v L@+ pla + f)
R Z L T(5 + y)l(an + irha

(1.3)

Corresponding to a function QZ’ ﬁ(Z) defined by (1.3), we introduce a

function Qi/’g ﬁ(z) given by
99 ﬂ<z> Ay (D)= (A>-D) (1.4)

(1-2)

and define the linear operator Hﬁ B (£)(2): A —> A asfollows:

H)O ﬂf<z> oo (D E(@)

74 Z n(A+n)'(0 +y)'(an +,B)
=2 C(A+DI(on +y)'(a +p)
(A>-1; B,y €C; Re(ex) >max{0, Re(d)—1}; Re(d)>0and
Re(a) = 0 when Re(0) =1with S #0).

1,1
We note that HOO,Bf(Z) £(2).

(1.5)

It is easily verified from (1.5) that

5z (B, GEQY =(r+ OBy o fE(D) -y B LGER). (o)

C@0 E@) =(A+DEYS |, S8 -0 4£(2), a7

and

ocz(H/1 a. ﬂf(z)) —(a+,B)H/1 a. ,8+1f(z) ,6’H/1 a. ﬂf(z). (1.8)
For €S, A>—1, osn,y<1 nd B0 SE() e

Sﬁ”g’ﬂ(n;@:{feA H/1 o, pE(2) €80r; ¢)}

KO rh)={Een: ByS L£()eK(rh)f:
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¢S &b =lEen: BLS £)e cinéigun)f:

and

aﬁ(nfcﬁw) {feA )Y, pE() e C(77§¢w)}

Note that

f(Z)EK ’3(77 ¢)C>Zf(z)es ﬂ(n P) (1.9)
and
f(Z)EC A, ﬂ(77 ¢)<:>Zf(Z)€C Aa, ,8(77 P). (1.10)
In particular, set
1+ Az ) .
aﬂ( e B Sl W ﬁ,a,ﬂ(n,A,B) (—-1<B< A<
and
1
aﬂ(n’l+2z) K/ aﬂ( nA,B) (-1<B<A<I).

,0
Inclusion properties involving the operator HZ a, £(2)

The following lemmas will be required in our investigation.

Lemma 1 [4]. Let @ be convex univalent in U with @(0) =1 and

Re{KﬂZ) +V} >0 (k,ve C) .If p isanalytic in U with p(O) =1, then

z2p(@)
ey =< 9(2) = p(z) < 9(z)

Lemma 2 [14]. Let @ be convex univalent in U and @ be analytic in U with
Re{w(z)}=0. 1t p isanalyticin U and p(0) = @(0), then
p(2)+a(2)zp'(2) < p(2) = p(2) < 9(2)

Theorem 1. Let Re{Z}, A >0 and ¢ € S. Then

S70 o g <80 s ST g,

Proof: Let £ GS/1+105 ,3(77 ¢)
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1 Z(H ﬂf(Z))
)= . 2.1)
P(z) 1—77( H75 pE@) 7
Applying (1.7) in (2.1), we obtain
7,0 '
1| 2E7 o pE(2) zp'(2)
— = + . 2.2
1—77( B o 4£(2) |=p0) (=) p(2)+A+1n 2

Since A >0 and @€ S, we see that
Re{(—n)p(z)+A+n}>0.

Applying Lemma 1 to (2.2), it follows that p < ¢, thatis, £ € S ,B (77 ¢)
Using arguments similar to those detailed above with (1.6), we can prove the second part.

Theorem 2. Let RC{Z}, A >0 and ¢E S. Then
K0 o g9 KL (1) KL (1)

Proof: Applying (1.9) and Theorem 1, we observe that
7,0

:>zf(Z)€S aﬂm ¢>@f(z>exﬁ’aﬂ(n ?).

£(z) eRY7, ﬂ(n $) =z £()esh, ﬁ(ﬂ ?)

=z7£(2)e sﬁ,(}fﬂ(n ) < £(2) € Kfﬁi %( :9),

which evidently proves Theorem 2.

1+ Az
1+ Bz

Taking ¢(Z) = (-1£B<A<LI; z€ U), in Theorems 1 and 2, we

have
Corollary 1. Let Re{Z}, A > 0. Then

.8 1,5
s/Maﬂ(n,AB)cs ﬂ(n,AB)csV+ (17, A, B),

and

A

e g UEAB) CRY O (1A, B) cK) G 01:A,B)
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Theorem 3. Let Re{Z}, A>0 and @, ¥ €S. Then

C,m o, p 1639 V/)cc ﬁ(n S 9, w)cCTOI;,%(n,f;(iﬁ,w)-

o . 7,0
Proof: To prove the first inclusion, let £ € C 1+1.a, ﬂ(ﬂ f ¢ l//) Then, from

— ,0 V7,0
the definition of C£+1 0!,,8(77’5;¢’W)’ = gES}H_l a. ,3(77’¢) such that

RO

—¢ | =y (2).
_ ,0
I-¢ Hﬁﬂ,a,ﬁg(z)
Now, let
2(H;O LE(2))
p(z)= [ 7 5 @/ é:} (2.3) using
H ﬂg(Z)

(1.7), we obtain

- H,, 42 +[(1—5>p(z>+§]z<nﬁj 0 58

—(i+l)z(Hﬂ+1 a. ﬁf(z)) /lz(H/1 a. ,Bf(z))’. (2.4)
Since g ES;H_l a. ﬂ(ﬂ ¢)CS 7,0 ﬂ(ﬂ @), by Theorem 1, we set
Z(Hﬁ a. ﬂg(Z))
q(z) =+ < $(2). 2.5)
1"7( B0 58(2) j
By using (1 7) again, we obtain
o, p8(2)
(A+1) H 1 P2 —(1=m)q(2) + A +1. (2.6)
,1 a, p8(2)

From (2.4) and (2.6), we get

Z(H +1a pE@) ) '(2)

Since A > O and g <@, Re{(- ﬂ)q(Z) + A+ 77} > (). Hence, applying

Lemma 2, we have p </, so that fe C 2.a, ,8(77 f ¢ l,V) Similarly the

second inclusion can be obtained by using (1.6).
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Similarly, we can prove the following theorem.

Theorem 4. Let RG{Z}, A >0 and @,y € S. Then

Cz+1 AU AD =C” 7 ﬂ(n S 9, t//)cCTOl;,aﬂ(n,é;czﬁ,V/).

By using (1.8), we can prove the following theorem.

Theorem 5. Let Let Re{ﬁ} A >0 and @,y € S. Then

S) 0 g SL O s R0, 5 ) KO (1),
(2.8)

c’ iﬁﬂ(nfmu)cc aﬂ(nr§¢w) and

Cﬂaﬁ+1(f7,§¢w)c0 ﬂ(nfmu)

1+ Az
1+ Bz

Corollary 2. Let Re{ﬁ}, A > 0. Then

7,0
A, ,B+1(77’

)
Aa, ,B+1(77’

Taking @(Z) = (—-1<B<A<1; zeU), in(2.8), we have

S AB)CS aﬁ(ﬂ,A B), and

K’ A,B)cKV’ o g1 A B).

Inclusion properties involving the integral operator F

The generalized Libera integral operator F (cf. [2], [9] and [10]) is defined by

Z
Fu(£) = F,(8)(0) =2 [t e (f en; p>-1) a1
0
and satisfies
CE0 SF(B)0) = (U DBy O £~ uBy O F (£)(2)
(3.2)

Theorem 6. If £ belongs to S ,3(77 ¢) then F (£) belongs to
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S50 s (u=0).

Proof: Let £ € S% IB(U,¢) and set

F,(£)(2))
2B 5F(£)(2) _77] a3)

p(z)=
ﬂ[ B0 SF,(£)(2)
then p is analyticin U with p(O) =1. Using (3.2) and (3.3), we obtain

M,/;()

;O ,F,(£)(2)

Taking the logarithmic differentiation on both sides of (3.4) and multiplying by Z, we
have

@0 HE(2)) '
1 z a, B _n = p()+ zp(2)

-n| w9 c£c) A=mp()+p+n

Hence, by virtue of Lemma 1, we conclude that p < ¢ , which implies

Fu(8) €Sy o (1)

(u+1) =(1-mp()+u+n. (3.4)

Theorem 7. If fEK% IB(?] @), then F (f)EK aﬁ(” @) (u=0).
Proof: By applylng Theorem 6, we have

f(Z)EK aﬁ’(n ¢)C>Zf(Z)€S aﬂ(n 9)
= F,(z£'(z)) eS8 1. /;(77 )
< 2(F,(£)(2)) €Sy 0, ﬂ(ﬂ 9)

& Fy()(2) e, 0 019,

which proves Theorem 7.

From Theorems 6 and 7, we have

Corollary 3. If £ belongs to Sﬁ’i B (17;A,B) (or Kﬁ’i B (17; A, B)), then

35 ,5
F,u (£) belongs to Si/l,a,ﬂ(n;A’ B) (or Kﬂﬂ/,,a,ﬂ(n;A’ B)) (u=0).
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Theorem 8. If £ belongs to Cﬁ’i ,8(77,5;¢,l//), then F,u(f) belongs

to cy . pU5bw)  (u20).

Proof: Let feCﬁ’a ,3(77 E P, W), then, g ES Pa. ﬂ(ﬂ @) such that

1 Z(Hl a. ’Bf(Z))

1_5 Hﬁ:g,ﬂg(Z)
Thus, we set
| [ 2@ sFuBE)

=5 8yl R

—¢ | =y(2).

p(z)=

where P is analytic in U with p(O) =1. Since g ES o ﬂ(ﬂ ¢) we see

from Theorem 6 that F (g ) e S ﬂ(ﬂ @). Using (3.2), we have
[(-&)p(z)+ E18S ﬂ(gxz)wnl O F(E)2)

=(u+ I)H}b a, ﬂf(Z)-
Then, by a simple calculation,
(@ 5E(2)

(u+1)
O 5 (2)(2)

=[1-&) p()+ENA-mg(2)+ p+n]+1-E)zp'(2),

where

[ pFu()@)

I=n Hﬁ’aﬁ F(8)(2)

Hence, we have

q(z)=
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1 [z, q,s(@)ER) ) zp'(2)
1=¢{ Hpq.5()8(2) : p(Z)+(l—f7)q(z)+ﬂ+77'

The remaining part of this proof is similar to that of Theorem 3, so we omit it.

Theorem 9. If fe Cﬁ’,i’ Y (n,&0,w), then

a3 :
Proof: As in Theorem 7. The proof follows by using Theorem 8.

Remark 1. If we take Re(ax) =0 and A =0 in the above Theorems, we get results

that depend on £(Z) instead of Hﬁ’g ﬂf(Z)'
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