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Abstract 

The aim of this paper is to analyzing exponential stability of non-linear partial differential 

equation using Lyapunov second method. We consider different models from heat and wave 

non-linear equations in addition to 2×2 hyperbolic system with balance laws. We show the 

effectiveness of the proposed methodology using some examples of different types of 

nonlinear PDEs. 
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Introduction 

Lyapunov’s second method, also sometimes called Lyapunov’s direct method, is one of the 

effective and powerful classical methods for studying asymptotic behavior and stability of the 

dynamical systems by ordinary differential equations. In the classical Lyapunov stability 

theory, we will start by defining the exponential stability in ordinary differential equations. 

The system �̇� = 𝐴𝑋 

Where 𝑋 ∈ 𝑅𝑛 is called exponentially stable at the equilibrium 𝑋 = 0 if there exist positive 

constants𝑀 and 𝛼, such that ‖𝑋(𝑡)‖ ≤ 𝑀𝑒−𝛼𝑡‖𝑋(0)‖ 

Where ‖. ‖is a vector norm[1]. 

It should be noted, however, that the vector norms are equivalent in a finite dimension, 

unfortunately, this is not true in infinite dimension systems like PDEstherefore, we miss 

generalizing the results of stability. Lyapunov's work in 1892 had a lasting influence on 

stability studies not only for ordinary differential equations but also for general dynamical 

systems, especially for partial differential equations [2]. In fact, Lyapunov stability theorem 

was applied to linear partial equations and remarkable results were obtained [3].  Vast parts of 

real-world physical systems are described by nonlinear partial differential equations.  Such 

equations arise in various fields of applications, for example, fluid mechanics, gas dynamics, 

combustion theory, relativity, elasticity, thermodynamics, biology, ecology, neuroscience and 

many others. In this paper, we apply the second Lyapunovmethod to some models of 

nonlinear partial differential equations in one dimension in 𝐿2-norm. It should be noted that it 

is not always easy to find a way to apply this method to nonlinear PDEs [4] we have been 

benefitedthe results of nonlinear energy stability obtained in convective problems, which are 

very similar to Lyapunov method [5].  
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Preliminaries 

First of all, let us define some important concepts that we will use in this paper 

1. Some functional spaces 

                   𝐿2(Ω) = {𝑓(𝑥)|∫Ω𝑓2(𝑥) 𝑑𝑥 < ∞}                                           (1) 

All of functions in space 𝐿2(Ω) have bounded energy                             𝐻1(Ω) = (𝑓(𝑥)|𝑓 ∈ 𝐿2, 𝑓′ ∈ 𝐿2}                                        (2) 

2. Recall some useful inequalities 

a) Young's inequality:                                  𝑎𝑏 ≤ 𝜀2 𝑎2 + 12𝜀 𝑏2                                                (3) 

b) Cauchy –Schwarz inequality: ∫ 𝑢𝑤 𝑑𝑥 ≤ (∫ 𝑢21
0 𝑑𝑥)1 2⁄1

0 (∫ 𝑤21
0 𝑑𝑥)1 2⁄                            (4) 

c) Poincare inequality: ∫ 𝑢2 𝑑𝑥 ≤ 2𝑢2(1) + 4 ∫ 𝑢𝑥2 𝑑𝑥1010∫ 𝑢2 𝑑𝑥 ≤ 2𝑢2(0) + 4 ∫ 𝑢𝑥2 𝑑𝑥1010                                             (5) 

For any 𝑢 continuously differentiable on [0,1] 

d) Sobolev inequality: 

Let Ω be a bounded domain in 𝑅3 with boundary𝜕Ω. Then for function 𝑢 with 𝑢 = 0 

on 𝜕Ω (∫Ω𝑢6𝑑𝑉)1 3⁄ ≤ 𝐶∫Ω|∇𝑢|2 𝑑𝑉                                       (6) 

3. Let𝒟𝑚 denoted the set of diagonal 𝑚 × 𝑚 real matrices with strictly positive diagonal 

entries. We introduce the following norm for the matrix 𝐾 𝜌(𝐾) ≜ inf {‖∆𝐾∆−1‖, ∆ ∈ 𝒟2𝑛                      (7) 

 

 

NonlinearPDE 

Example.1:Consider the Burger equationwhich is more easily accessible to reader who has 

background in Lyapunov exponential stability of linear PDE. (Burgers' equation is a nonlinear 

PDE in progress in different fields of mathematics, such as fluid mechanics, nonlinear 

acoustics, traffic flow and gas dynamic)                                                𝑢𝑡 = 𝜇𝑢𝑥𝑥 + 𝑢𝑢𝑥                                                  (8) 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 

Consider Lyapunov function  𝑉 = ∫ 𝑢2 𝑑𝑥10                                                       (9) 

Taking time derivative along the trajectory of (8), we get �̇� = ∫ 𝑢𝑢𝑡 𝑑𝑥 = 𝜇 ∫ 𝑢𝑢𝑥𝑥 𝑑𝑥 + ∫ 𝑢2𝑢𝑥1
0 𝑑𝑥1

0
1

0  

                                           = 𝜇 [𝑢𝑢𝑥|01 − ∫ 𝑢𝑥21
0 ] − 𝑢33 |0

1                               (10) 

                                            = −𝜇 ∫ 𝑢𝑥21
0 𝑑𝑥                                                     (11) 
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By using (5), we get �̇� ≤ − 𝜇4 ∫ 𝑢2 𝑑𝑥 ≤ − 𝜇21
0 𝑉                                   (12) 

Proving exponential stability of the system (8) in 𝐿2-norm 

Exact solution for Burger equation 𝑢(𝑥, 𝑡) = 2 tanh(𝑡 + 𝑥 − 1) + 1 

 
 

Figure 1: The 3D and 2D graphics for the Burger equation 

 

Example 2: consider Burger equation in another boundary condition [3]                                                 𝑢𝑡 = 𝜇𝑢𝑥𝑥 + 𝑢𝑢𝑥                                         (13) 𝑢(0, 𝑡) = 0 𝑢𝑥(1, 𝑡) = − 16 (𝑢(1) +  𝑢3(1)) 

Let we recall the equation (10), and use the boundary condition given in this example, then 

we have �̇� = 𝜇 [𝑢𝑢𝑥|01 − ∫ 𝑢𝑥21
0 ] − 𝑢33 |0

1
 

= − 16 𝑢2(1) − 16 𝑢4 − 13 𝑢3(1) − ∫ 𝑢𝑥21
0 𝑑𝑥 �̇� ≤ 12 𝑉                                                        (14) 

Then the system (13) is exponentially stable in 𝐿2-norm 

 

Example 3:Let we consider the following diffusion equation, but here with additional term 

i.e. quadratic nonlinear term. [5]                                             𝑢𝑡 = 𝜇𝑢𝑥𝑥 − 𝑢𝑢𝑥 + 𝛽𝑢2                                   (15) 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 

By using Lyapunov function (9), and taking time derivative, we get �̇� = ∫ 𝑢𝑢𝑥𝑥 𝑑𝑥 − ∫ 𝑢2𝑢𝑥1
0 𝑑𝑥 + 𝛽 ∫ 𝑢31

0 𝑑𝑥1
0  

= 𝑢𝑢𝑥|01 − ∫ 𝑢𝑥2 𝑑𝑥1
0 − 𝑢33 |0

1 + 𝛽 ∫ 𝑢3 𝑑𝑥1
0  
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                              = − ∫ 𝑢𝑥21
0 𝑑𝑥 + 𝛽 ∫ 𝑢3 𝑑𝑥                                             (16)1

0  

From Cauchy-Schwarz inequality (4), we get ∫ 𝑢3 𝑑𝑥1
0 = ∫ 𝑢2𝑢 𝑑𝑥 ≤ (∫ 𝑢4 𝑑𝑥1

0 )1 2⁄ (∫ 𝑢2 𝑑𝑥1
0 )1 2⁄1

0  

Sobelov inequality (6) give us ∫ 𝑢4 𝑑𝑥 ≤ 14 (∫ 𝑢𝑥2 𝑑𝑥1
0 )21

0  

Then ∫ 𝑢3 𝑑𝑥1
0 ≤ 12 (∫ 𝑢𝑥2 𝑑𝑥1

0 ) (∫ 𝑢2 𝑑𝑥1
0 )1 2⁄                            (17) 

By putting (17) in (16), we get �̇� ≤ − ∫ 𝑢𝑥21
0 𝑑𝑥 + 𝛽2 (∫ 𝑢𝑥2 𝑑𝑥1

0 ) (∫ 𝑢2 𝑑𝑥1
0 )1 2⁄

 

                             ≤ − ∫ 𝑢𝑥21
0 𝑑𝑥 (1 − 𝛽2 ‖𝑢‖)                                             (18) 

By Poincare inequality (5), we have �̇� ≤ − 12  𝑉 (1 − 𝛽2 ‖𝑢‖)                                                (19) 

If we want to prove exponential stability condition, we shall assume that ‖𝑢0‖ ≤ 2𝛽−1 

Then�̇� ≤ − 𝐴2 𝑉, and the system (15) is exponentially stable in 𝐿2-norm. 

 

Example 4:consider the fisher equation [6], (Fisher's equation is a nonlinear parabolic 

equation firstly proposed by fisher to model the progression gene in an infinite-dimensional 

homeland [7]. Moreover, Fisher's equation has been used as a basis for a wide variety of 

models for the spatial diffusion of gene in population, chemical wave diffusion, flame 

diffusion, ramifying Brownian motion process and even nuclear reactor theory.                                              𝑢𝑡 = 𝑢𝑥𝑥 + 𝛼𝑢 − 𝛽𝑢2                                      (20) 𝑢(0) = 0 , 𝑢(1) = 𝑈(𝑡) 

Where 𝛼, 𝛽 are positive constant and 𝑈(𝑡) is control 

By using Lyapunov (9) and taking time derivative of it along the trajectory of (20), we get �̇� = ∫ 𝑢𝑢𝑥𝑥 𝑑𝑥 + 𝛼 ∫ 𝑢21
0 𝑑𝑥 − 𝛽 ∫ 𝑢31

0 𝑑𝑥1
0  

= 𝑢𝑢𝑥|01 − ∫ 𝑢𝑥2 𝑑𝑥1
0 + 𝛼 ∫ 𝑢21

0 𝑑𝑥 − 𝛽 ∫ 𝑢31
0 𝑑𝑥 

                     = 𝑢(1)𝑢𝑥(1) − ∫ 𝑢𝑥2 𝑑𝑥1
0 + 𝑑𝑥 − 𝛽 ∫ 𝑢31

0 𝑑𝑥                      (21) 

If 𝑈(𝑡) = 0, and by using Sobolev inequality (6), we get �̇� ≤ − ∫ 𝑢𝑥21
0 𝑑𝑥 + 𝛼 ∫ 𝑢21

0 𝑑𝑥 − 𝛽2 (∫ 𝑢𝑥2 𝑑𝑥1
0 ) (∫ 𝑢2 𝑑𝑥1

0 )1 2⁄
 

≤ − ∫ 𝑢𝑥21
0 𝑑𝑥 (1 + 𝛽2 ‖𝑢‖) + 𝛼 ∫ 𝑢21

0 𝑑𝑥 
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Now using Poincar'e inequality (5) �̇� ≤ − 14 ∫ 𝑢21
0 𝑑𝑥 (1 + 𝛽2 ‖𝑢‖) + 𝛼 ∫ 𝑢21

0 𝑑𝑥 

≤ − ∫ 𝑢21
0 𝑑𝑥 (14 (1 + 𝛽2 ‖𝑢‖) − 𝛼) ≤ −2𝑉 (14 + 𝛽8 ‖𝑢‖ − 𝛼) 

So,thesystem (20) is exponentially stable in 𝐿2-norm if 𝛼 ≤ 14. 

Exact solution for Fisher's equation 𝑢(𝑥, 𝑡) = 14 tanh ( 512 𝑡 + 112 √6𝑥 + 1)2 + 12 tanh ( 512 𝑡 + 112 √6𝑥 + 1) − 34 

 

 
Figure 2: The 3D and 2D graphics for the Fisher's equation 

Example 5:consider MKdV-Burgersequation [7]                                                𝑢𝑡 = −𝑢𝑥𝑥𝑥 + 𝜀𝑢𝑥𝑥 − 6𝑢𝑢𝑥                                 (22) 𝑢(0) = 𝑢𝑥(1) = 0 𝑢𝑥𝑥(1) = 𝑘1𝑢3(1) + 𝑘2𝑢(1) 

Where 𝜀, 𝑘1and 𝑘2 are positive constants 

By using Lyapunov (9) and taking time derivative of it along the trajectoryof (22), we get �̇� = − ∫ 𝑢𝑢𝑥𝑥𝑥 𝑑𝑥 + 𝜀 ∫ 𝑢𝑢𝑥𝑥 𝑑𝑥 − 6 ∫ 𝑢2𝑢𝑥 𝑑𝑥1
0

1
0

1
0                   (23) 

∫ 𝑢𝑢𝑥𝑥𝑥 𝑑𝑥 = 𝑢𝑢𝑥𝑥|01 − ∫ 𝑢𝑥𝑢𝑥𝑥 𝑑𝑥1
0 = −𝑢(1)𝑢𝑥𝑥(1) + 𝑢𝑥22 |0

11
0  

∫ 𝑢𝑢𝑥𝑥𝑥 𝑑𝑥 = −1
0 𝑘1𝑢4(1) − 𝑘2𝑢2(1) − 𝑢𝑥2(0)2 (24) 

∫ 𝑢𝑢𝑥𝑥 𝑑𝑥 = − ∫ 𝑢𝑥21
0

1
0 𝑑𝑥                                                  (25) 

∫ 𝑢2𝑢𝑥 𝑑𝑥 = 𝑢3(0)3                                                           (26)1
0  

By putting (24), (25) and (26) in (23), we get �̇� = −𝑢2(1)𝑘2 − 𝑘2𝑢4(1) − 12 𝑢𝑥2(0) − 𝜀 ∫ 𝑢𝑥21
0 − 2𝑢3(1) 

By using Poincar'e inequality (5), we have 
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�̇� ≤ − 𝜀4 ∫ 𝑢2 𝑑𝑥 = − 𝜀21
0 𝑉 

Then the system (22) is exponentially stable in 𝐿2-norm. 

 

2×2 Hyperbolic System with balance laws 

Example 6: double-pipe heat exchanger is governed, based on the thermal energy balance 

equations by the following PDE system [8] { 𝑢𝑡 + 𝑢𝑢𝑥 = 𝛼1(𝑤 − 𝑢)𝑤𝑡 + 𝑤𝑤𝑥 = 𝛼2(𝑢 − 𝑤)                                  (27) 

 

Let 𝛼1(𝑤 − 𝑢) = 𝛿(𝑢, 𝑤) and 𝛼1(𝑢 − 𝑤) = 𝛾(𝑢, 𝑤) 

We can write the system (27) in matrix form  [𝑢𝑡𝑤𝑡] + [𝑢 00 𝑤] [𝑢𝑥𝑤𝑥] = [𝛿𝛾]                                   (28) 

Let we define the vector 𝑇 ≜ (𝑢, 𝑤)┬ then system (28) can be written in                                    𝑇𝑡 + 𝐹(𝑇)𝑇𝑥 = 𝐸(𝑇)                                                     (29) 

Where 𝐹(𝑇) ≜ [𝑢 00 𝑤] ,                 𝐸(𝑇) = [𝛿(𝑢, 𝑤)𝛾(𝑢, 𝑤)] 

A constant state 𝑇∗ which is satisfies the condition 𝐸(𝑇∗) = 0 is an equilibrium state (or 

steady state) for the system (29) 

Now it is well known that for any system in the form (27), there exists change of coordinates 

(Riemann coordinates)  𝑍 = 𝜌(𝑇) which enable us to rewrite the system (1) in the 

characteristic form [9]                    𝜕𝑡 [𝑍1𝑍2] + [𝑐1(𝑍) 00 𝑐2(𝑍)] 𝜕𝑥 [𝑍1𝑍2] = 𝑌(𝑍)                          (30) 

Where 𝑐𝑖(𝑍) ≜ 𝜆𝑖(𝛽−1(𝑍)) and 𝑌(𝑍) ≜ (𝜕𝛽𝜕𝑇 (𝛽−1(𝑍))𝑌(𝛽−1(𝑍)) 

Let we put 𝑌(𝑍)  =  𝐻𝑍 then the system (30) can be written as                                                  𝑍𝑡 + 𝐿𝑍𝑥 = 𝐻𝑍                                         (31) 

Where 𝑍 ≜ (𝑍1, 𝑍2)𝑇 , 𝐿 = 𝑑𝑖𝑔{𝑐1, 𝑐2}  
With boundary condition  𝑁0𝑍(0,1) + 𝑁1𝑍(1, 𝑡) = 0                                          (32) 

The system (31) is the linear approximation of the system (30) around the origin 

Consider the Lyapunov function[10]                                 𝑉 = ∫ 𝑍𝑇1
0 𝑃(𝑥)𝑍 𝑑𝑥 (33) 

Where the matrix 𝑃(𝑥) is defined as 𝑃(𝑥) ≜ 𝑑𝑖𝑎𝑔{𝑝𝑖𝑒−𝜎𝑖𝜇𝑥, 𝑖 = 1,2, … ,2𝑛}, With 𝜀 > 0, 𝑝𝑖 > 0 are positive real numbers and 𝜎𝑖 = 𝑠𝑖𝑔𝑛(𝑐𝑖). 
Taking time derivative of function 𝑉 along the solutions of (31)  �̇� = ∫ (𝜕𝑡𝑍𝑇𝑃(𝑥)𝑍 + 𝑍𝑇𝑃(𝑥)𝜕𝑡𝑍) 𝑑𝑥1

0  
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= − ∫ (𝜕𝑥𝑍𝑇𝐿𝑃(𝑥)𝑍1
0 + 𝑍𝑇𝑃(𝑥)𝐿𝜕𝑥𝑍 − 𝑍𝑇𝐻𝑇𝑃(𝑥)𝑍 − 𝑍𝑇𝑃(𝑥)𝐻𝑍)𝑑𝑥 

= − ∫ 𝜕𝑥(𝑍𝑇𝐺(𝑥)𝑍) 𝑑𝑥 + ∫ 𝑍𝑇(𝐻𝑇𝑃(𝑥) + 𝑃(𝑥)𝐻)𝑍 𝑑𝑥1
0

1
0  

Where 𝐺(𝑥) ≜ 𝑑𝑖𝑎𝑔{𝑝𝑖|𝑐𝑖|𝑒−𝜎𝑖𝜇𝑥, 𝑖 = 1, … ,2𝑛}, is positive diagonal matrix. 

Using integration by parts, we have �̇� = − ∫ 𝜕𝑥[𝑍𝑇𝐺(𝑥)𝑍] 𝑑𝑥 − ∫ 𝑍𝑇(𝜇𝐺(𝑥) − 𝐻𝑇𝑃(𝑥) − 𝑃(𝑥)𝐻)𝑍 𝑑𝑥1
0

1
0  

= −𝑍𝑇𝐺(𝑥)𝑍|01 − ∫ 𝑍𝑇(𝜇𝐺(𝑥) − 𝐻𝑇𝑃(𝑥) − 𝑃(𝑥)𝐻)𝑍 𝑑𝑥1
0  

= −[𝑍𝑇(1, 𝑡)𝐺(1)𝑍(1, 𝑡) − 𝑍𝑇(0, 𝑡)𝐺(0)𝑍(0, 𝑡)] − ∫ 𝑍𝑇(𝜇𝑅(𝑥) − 𝐻𝑇𝑃(𝑥) − 𝑃(𝑥)𝐻)𝑍 𝑑𝑥1
0  

The system (31)-(32) is exponentially stable if there exist 𝜇 > 0 and 𝑝𝑖 > 0, 𝑖 = 1, … ,2𝑛 

satisfy the following two conditions: 

1. 𝑍𝑇(0, 𝑡)𝐺(0)𝑍(0, 𝑡) − 𝑍𝑇(1, 𝑡)𝐺(1)𝑍(1, 𝑡) is positive definite according to linear 

boundary condition 𝑁0𝑍(0, 𝑡) + 𝑁1𝑍(1, 𝑡) = 0 

2. ∀𝑥 ∈ (0,1) the matrix 𝜇𝑀(𝑥) − 𝐻𝑇𝑃(𝑥) − 𝑃(𝑥)𝐻 is positive definite 

The boundary condition which satisfy the condition (1) is [11] 𝑁𝑟(𝑍+(0, 𝑡), 𝑍+(1, 𝑡), 𝑍−(0, 𝑡), 𝑍−(1, 𝑡)) = 0                            (34) 

Assume that the map 𝑁𝑟 is differentiable in a neighborhood of the orgin 

The linearization of the boundary condition (34) about the origin is  [𝑍+(0, 𝑡)𝑍−(1, 𝑡)] = [𝐾00 𝐾01𝐾10 𝐾11] [𝑍+(1, 𝑡)𝑍−(0, 𝑡)]                             (35) 

Again, the linear approximation of system (31) around the origin [𝜕𝑡𝑍+ + 𝐿+𝜕𝑥𝑍+𝜕𝑡𝑍− − 𝐿−𝜕𝑥𝑍−] = 𝑀𝑍 (36) 

Consider the following Lyapunov function              𝑉 = ∫ [(𝑍+𝑇𝑃0𝑍+)𝑒−𝜇𝑥 + (𝑍−𝑇𝑃1𝑍−)𝑒𝜇𝑥] 𝑑𝑥                        (37)1
0  

Where 𝑃0 ∈ 𝒟𝑛, 𝑃1 ∈ 𝒟𝑛 and 𝜇 > 0. Taking the time derivative of 𝑉 we have �̇� = ∫ −𝜕𝑥(𝑍+𝑇𝑃0𝐿+𝑍+)𝑒−𝜇𝑥1
0 𝑑𝑥 + ∫ −𝜕𝑥(𝑍−𝑇𝑃1𝐿−𝑍−)𝑒−𝜇𝑥1

0 𝑑𝑥
+ ∫ 𝑍𝑇(𝑀𝑇𝑃(𝑥) + 𝑃(𝑥)𝑀)𝑍 𝑑𝑥1

0  

By using integration by parts we have �̇� = �̇�1 + �̇�2 

Where �̇�1  ≜ −[𝑍+𝑇𝑃0𝐿+𝑍+𝑒−𝜇𝑥]01 + [𝑍−𝑇𝑃1𝐿−𝑍−𝑒𝜇𝑥]01 �̇�2 ≜ ∫ 𝑍𝑇(−𝜇𝑃(𝑥)𝐿 + 𝑀𝑇𝑃(𝑥) + 𝑃(𝑥)𝑀)𝑍 𝑑𝑥1
0  

Where 𝑃(𝑥) ≜ 𝑑𝑖𝑎𝑔{𝑃0𝑒−𝜇𝑥, 𝑃1𝑒𝜇𝑥} and 𝐿 ≜ 𝑑𝑖𝑎𝑔{𝐿+, 𝐿−} 

Let 𝑍0− ≜ 𝑍−(0, 𝑡), 𝑍1+ ≜ 𝑍+(1, 𝑡) 



  Turkish Journal of Computer and Mathematics Education                 Vol.12 No.14 ( 2021), 3093-3101 

 

 

 

3100 

 

 

 

Research Article  

1) Analysis of �̇�1 terms: 

By using boundary condition (35), we have �̇�1 = −[𝑍+𝑇𝑃0𝐿+𝑍+𝑒−𝜇𝑥]01 + [𝑍−𝑇𝑃1𝐿−𝑍−𝑒𝜇𝑥]01 = −(𝑍+𝑇𝑃0𝐿+𝑍+𝑒−𝜇𝑥 + 𝑍−𝑇𝑃1𝐿−𝑍−𝑒𝜇𝑥) + (𝑍1+𝑇𝐾00𝑇 + 𝑍0−𝑇𝐾01𝑇 ) 𝑃0𝐿+(𝐾00𝑍1+ + 𝐾01𝑍0−)+ (𝑍1+𝑇𝐾00𝑇 + 𝑍0−𝑇𝐾01𝑇 ) 𝑃0𝐿+(𝐾00𝑍1+ + 𝐾01𝑍0−)𝑒𝜇 

Theorem (1):if 𝜌(𝐾) < 1, there exist 𝜇 > 0 such that, if ‖𝑀‖ < 𝜀, then the linear hyperbolic 

system (35)-(36) is exponentially stable.[12] 

Now since 𝜌(𝐾) < 1, there exist 𝐿0 ∈ 𝒟𝑛, 𝐿1 ∈ 𝒟𝑛 and ∆≜ 𝑑𝑖𝑎𝑔{𝐿0, 𝐿1}, such that ‖∆𝐾∆−1‖ < 1                           (38) 

We selected the matrices 𝑃0 and 𝑃1 such that 𝑃0𝐿+ = 𝒟02 and 𝑃1𝐿− = 𝒟12 

Let 𝑞0 ≜ 𝒟0𝑍0− , 𝑞1 ≜ 𝒟1𝑍1+and 𝑞𝑇 ≜ (𝑞0𝑇 , 𝑞1𝑇) Then, by using the inequality (38), we get (𝑍1+𝑇𝐾00𝑇 + 𝑍0−𝑇𝐾01𝑇 ) 𝑃0𝐿+(𝐾00𝑍1+ + 𝐾01𝑍0−)+ (𝑍1+𝑇𝐾00𝑇 + 𝑍0−𝑇𝐾01𝑇 ) 𝑃0𝐿+(𝐾00𝑍1+ + 𝐾01𝑍0−)𝑒𝜇 = ‖∆𝐾∆−1𝑞‖2 < ‖𝑞‖2 = 𝑍1+𝑇𝑃0𝐿+𝑍1+ + 𝑍0−𝑇𝑃1𝐿−𝑍0− 

By selecting 𝜇 small enough such that �̇�1 is negative definite. 

2) Analysis of �̇�2 term: 

It is clear that for any 𝜇 > 0 there exist 𝜀 and 𝛼 are two positive constants such that ‖𝑀‖ < 𝜀 ⇒  �̇�2 ≤ −𝛼𝑉 ⇒ �̇� = �̇�2 + �̇�2 ≤ −𝛼𝑉then the linear system (35)-(36) is exponentially stable 

in𝐿2-norm. 

 

Conclusion 

In this paper, stability analysis for non-linear partial differential equation scrutinized by 

Lyapunov direct method. We have introduced affair of locating sufficient boundary condition 

for exponential stability of some models of PDE in𝐿2-norm. We also consider the system of 

balance laws as example of hyperbolic systems and deduced the exponential stability of the 

steady-state in the linear case for the given example, but the same Lyapunov function cannot 

be used directly to analyze the stability of the nonlinear case in 𝐿2-norm( as shown in detail in 

[13]) . 
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