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Abstract 

The ordinary least squares method (OLS) is one of the most common methods for estimating 

the coefficients of linear regression models. However, it is sensitive and not robust against 

the existence of outliers. Therefore, several robust estimation methods have been used and 

then represented by M-estimation using different objective functions. In this paper, a number 

of alternative robust methods have been suggested that represented by using Gastwirth’s 

location estimator instead of the mean in OLS and instead of the median in different M-

estimation methods. In addition to repeating the Hubers' M-estimation method (first method) 

until converged results are reached. A Monte-Carlo simulation study was employed to 

evaluate the performance of different estimation methods depending on the MSE of 

regression coefficients.  

Keywords: Robust regression, Outlier, M-estimation, Gastwirth’s location estimator. 

 

1. Introduction 

The analysis of the linear regression models is one of the important topics in statistics, which 

is widely used in different applied studies. It is used for describing the relationship between 

the response variable and one or more independent variables. The purpose is to predict the 

response variable, which is used for planning and making-decisions purposes. The least 

squares method is the most widely used and accurate method for estimating regression 

models because its estimators have the best linear unbiased estimator BLUE properties. The 

OLS estimation method required. However, the OLS is not robust against the departure of the 

normality assumption of error term. Therefore, a number of some robust regression methods 

and suggested robust methods have been compared based on MSE’s of the regression 

coefficients. The linear regression model is defined as: 𝑌 = 𝑋𝛽 + ∈      (1) 

where,  

Y: The vector of dependent variable in order (n×1). 

X: The matrix of one or more explanatory variables in order (n×(p+1)). 𝛽: The vector of regression coefficients in order ((p+1),1). 𝜀: The vector of the random errors in order (n×1). 

P: The number of explanatory variables. 
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2. Estimation methods of regression coefficients 

    2.1The Ordinary least squares method (OLS) 

The Ordinary least squares method (OLS) was proposed by Karl Gauss in 1794. It is one of 

the most important estimation methods that is widely used for estimating linear models. It has 

the best linear unbiased estimation (BLUE) property. The OLS method aims to minimize ∑ 𝑒𝑖2𝑛𝑖=1  where 𝑒𝑖 the value of the residual of i
th

 observation that defined as: 𝑒𝑖 =  𝑦𝑖 −  �̂�𝑖   ; i = 1, 2, …, n 

In general, the OLS estimators for regression coefficients can be obtained by using the 

following equation: �̂� = (𝑋 𝑋́ )−1𝑋 𝑌́      (2) 

As a special case, the simple linear regression model that is given by: 𝑌 = 𝛽0 + 𝑋𝛽1+ ∈     (3) 

It can be estimated by using the OLS method as follows: �̂�1 = ∑ 𝑦𝑥𝑖−∑ 𝑦𝑖 ∑ 𝑥𝑖𝑛∑ 𝑥𝑖2− (∑ 𝑥𝑖)2𝑛 =  
∑ (𝑥𝑖  −�̅�)(𝑦𝑖 −�̅�)𝑛𝑖=1∑ (𝑥𝑖 − �̅�)2𝑛𝑖=1    (4) �̂�0 = �̅�- �̂�1�̅�      (5) 

where, �̅�=
∑ 𝑦𝑛𝑖=1 i𝑛    and 𝑥 ̅=∑ 𝑥𝑖𝑛𝑖=1𝑛  

The OLS method required the data set that satisfying number of assumptions, represented by: 

1. Normally distributed errors, 𝜀𝑖~𝑁(0, 𝜎2) 

2. 𝑐𝑜𝑣 (𝜀𝑖, 𝜀𝑗) = 𝐸(𝜀𝑖, 𝜀𝑗) = 0  ,     ∀𝑖 ≠ 𝑗  ;  i, j =  1, 2, … n 

3. The explanatory variables (𝑋1, 𝑋2, … , 𝑋𝑖 ; 𝑖 =  1, 2, … p) are uncorrelated with each other, 

i.e, c𝑜𝑣 (𝑋𝑖, 𝑋𝑗) = 0   ; i, j = 1, 2, …,p  
where, p is the number of independent random variables. 

4. The error term 𝜀𝑖 is uncorrelated with all explanatory variables, i.e,  𝑐𝑜𝑣 (𝑋𝑖, 𝜀𝑖) = 0  ,     𝑖 ≠ 𝑗 

However, the OLS is not robust against the departure of its assumptions.  

3. Robust regression 

The concept of robustness has been introduced at first by Box in 1953. There are several 

definitions of robustness; perhaps the most important definition of robustness is by Huber 

which states that, robustness is a resistance (insensitivity) to the small departures from the 

assumptions of the model. [1] 

The main objective of robustness in estimating the regression models is to find a robust 

regression method when the data set violates one or more of the assumptions of OLS method. 

One of the most important assumptions is the normality assumption for the error term that 

can be violated by the existence of outliers. 

In this paper, a comparison was made between the OLS and M-estimation method with 

different objective functions, in addition to some of the proposed methods to reach the most 

robust method with the existence of outliers in the error term with different percentages. 

 

 



Turkish Journal of Computer and Mathematics Education                      Vol.12 No.14 (2021), 2939- 2949 

 

 

 

2941 

 

 

 

Research Article  

2.2 M-estimation method 

The M-estimation is one of the most common robust regression estimation methods. It is 

regarded as a generalization of the maximum likelihood estimates that maximize the 

likelihood function L(x1, x2, … , xn; θ). 

where, L(x1, x2, … , xn; θ) = πi=1n f(xi; θ) 

The base of M-estimation is obtaining an estimator that minimize the residuals weighted 

function 𝜌 (𝑒𝑖):[1, 2] min 𝜌 (𝑒𝑖) = min 𝜌 (yi − ∑ xij𝛽𝑗     )𝑘𝑗=1  ;    i=1, 2, …, n ; k = 1,2, …, p (6) 

The standardization of the residuals can be obtained by dividing residuals by the scale. The 

solution of Equation (6) can be obtained by solving: 𝑚𝑖𝑛 ∑ 𝜌(𝑢𝑖)𝑛𝑖=1 = 𝑚𝑖𝑛 ∑ 𝜌 (𝑒𝑖𝜎 )𝑛𝑖=1 =  𝑚𝑖𝑛 ∑ 𝜌 (𝑦𝑖−∑ 𝑥𝑖𝑗𝛽𝑗𝑛𝑖=1𝜎 )𝑛𝑖=1 (7) 

To obtain �̂�𝑚, the standard deviation of the residuals (𝜎) should be estimated by using a 

robust estimation of 𝜎 as follows:[3, 4] �̂� = 𝑚𝑒𝑑|𝑒𝑖 − 𝑚𝑒𝑑(𝑒𝑖)|0.6745 =  𝑀𝐴𝐷𝐸0.6745 

The objective function 𝜌 (. ) should be satisfied the following constraints: 

1. 𝜌 (0) = 0 

2. (𝑒𝑖) ≥ 0  (Non-

negativity  .(  

3. 𝜌 (𝑒𝑖) = 𝜌 (−𝑒𝑖)(Symmetric). 

4. 𝜌 (𝑒𝑖) ≥ 𝜌 (𝑒𝑗) ;  𝑖𝑓 |𝑒𝑖| ≥ |𝑒𝑗|(Monotone in |𝑒𝑖|). 

Taking the partial derivative for equation (7) with respect to the regression coefficients and 

equating it to zero, it results in a system of estimated equations for the model parameters, 

yields: ∑ xij Ψni=1 (yi−∑ xij βki=1σ̂ ) =  0           ;                 j = 1, 2, …, p                             (8) 

where, Ψ(ui) =  ρ́(ui) represents the influence function. 

The solution for (8) was given by Draper and Smith [5] which is as follows: 

Assume that W is a diagonal matrix represents the weight function define as: 

wii(ui) =  Ψ(ui)ui  =  Ψ [yi−∑ xij𝛽𝑘i=1�̂� ][yi−∑ xij𝛽𝑘i=1�̂� ]  

The estimated equations for the model parameters (8), can be written in term of the weighted 

function as follows: ∑ xijni=1 𝑤𝑖 [yi−∑ xij𝛽𝑘i=1�̂� ] = 0                        (9) 

The solution of the estimated equations (9) can be obtained by reweighted OLS iteratively 

(IRLS) as follows: 
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�̂�𝑡  = (�́�𝑊𝑡−1𝑋)−1�́�𝑊𝑡−1𝑌 

The initial estimates of the regression coefficients �̂�0 are mostly represented by the OLS 

estimators. There is a set of M-estimators that differ among themselves in terms of accuracy 

depending on 𝜌(𝑢𝑖). In this paper, we use three different objective functions which are as 

follows: 

Huber's (1964) objective function (The first objective function) [6, 7, 8] 

This method is summarized in reducing the effect of the large residual values, by using the 

following influence function: Ψ(e𝑖) = max {−c, min(𝑒𝑖, c)} ;  𝑐 = 1.5, 1.7 

The steps of applying the M-method using Huber's (1964) objective function can be shown 

by the following algorithm: 

1. Obtaining the initial estimations of the regression coefficients by one of the estimation 

methods as OLS method. 

2. Calculate residual values 𝑒i 

3. Calculate the diagonal vales of weighted matrix W where, w𝑖𝑖 =max {−1.5, min(𝑒𝑖, −1.5)}/𝑒𝑖 
4. Calculate �̂�𝐻1 using the weighted least squares (WLS) method as:  �̂�𝐻1  = (�́�𝑊𝑋)−1�́�𝑊𝑌 

5.Repeat steps 2-4 to obtain a convergent value of �̂�𝐻1. 
Huber's objective function (The second objective function) 

Huber proposed the following objective function: 𝜌(𝑢𝑖) ={ 12 𝑢𝑖2                      ;            |𝑢𝑖| ≤ 𝑐c (|𝑢𝑖| − 12 c)        ;            |𝑢𝑖| > 𝑐 

 (𝑢𝑖) ={𝑢𝑖                       ;            |𝑢𝑖| ≤ 𝑐c sign (𝑢𝑖)      ;            |𝑢𝑖| > 𝑐  

w (𝑢𝑖) ={1                    ;       |𝑢𝑖| ≤ 𝑐c/|𝑢𝑖|             ;      |𝑢𝑖| > 𝑐                                              (10) 

c =1.345  

The following algorithm shows the steps of applying the M-estimation method using Huber 

1. Obtaining the initial estimations of the regression coefficients by one of the estimation 

methods as OLS method. 

2. Calculate residual value 𝑒i 

3. Compute the median (mn) of ei 

4. Compute the median MD where MD is the median of |e𝑖 − 𝑚𝑛| 
5. Estimate the scale parameter 𝜎 by compute �̂� as follows: �̂� =  𝑀𝐷0.6745 , where,  

7. Calculate u𝑖, where, u𝑖 = e𝑖/�̂�i 

8. Calculate the diagonal vales of weighted matrix W that defined in (10) 

9. Calculate �̂�𝐻2 using weighted least squares (WLS) method as: �̂�𝑖𝐻2  = (�́�𝑊𝑖−1𝑋)−1�́�𝑊𝑖−1𝑌 

10.Repeat steps 2-9 to obtain a convergent value of �̂�𝑖𝐻2. 
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 Tukey’s Biweight objective function [9] 

Tukey proposed the Biweight objective function, it’s also called the dynamic weight function, 

and it is given by: 

𝜌(𝑢𝑖)={𝑐26 {1 − [1 − (𝑢𝑖𝑐 )2]3}                  ;        |𝑢𝑖| ≤ 𝑐𝑐26                                                 ;            |𝑢𝑖| > 𝑐  

 (𝑢𝑖) ={𝑢𝑖 [1 − (𝑢𝑖𝑐 )2]2                    ;            |𝑢𝑖| ≤ 𝑐0                                            ;            |𝑢𝑖| > 𝑐  

w (𝑢𝑖) ={ [1 − (𝑢𝑖𝑐 )2]2                    ;       |𝑢𝑖| ≤ 𝑐0                                         ;       |𝑢𝑖| > 𝑐                                            (11) 

The constant c = 4.685 or 6. In this paper we use c = 4.685. 

The following algorithm shows the steps of applying the M-robust estimation as follows: 

1. Obtaining the initial estimations of the regression coefficients by one of the estimation 

methods as OLS method. 

2. Calculate residual value 𝑒i 

3. Compute the median (mn) of ei 

4. Compute the median MD where MD is the median of |e𝑖 − 𝑚𝑛| 
5. Estimate the scale parameter 𝜎 by compute �̂� as follows: �̂� =  𝑀𝐷0.6745 , where,  

7. Calculate u𝑖, where, u𝑖 = e𝑖/�̂� 

8. Calculate the diagonal vales of weighted matrix W by using equation (11) 

9. Calculate �̂�′ using weighted least squares (WLS) method as: �̂�𝑇𝑈 = (𝑋𝑊𝑋)́ −1�́�𝑊𝑌 

10.Repeat steps 2-9 to obtain a convergent values of �̂�𝑇𝑈 

2.3 The suggested robust regression methods  

In this paper, different suggested estimation methods have been applied as follows: 

 Using Gastwirth’s location estimator (G) [10] instead of the mean in OLS method 

where Gastwirth’s estimation (G) is one of the robust estimators of location that represents 

the L-estimator. It is a weighted sum of three order statistics, which are the one-third quantile 

(𝑄13) , the median (𝑄12) , and the two-third quantile (𝑄23) . Gastwirth’s estimation can be 

obtained as follows:  𝐺 = 0.3 𝑄13 + 0.4 𝑄12 + 0.3 𝑄23 

 Using the Gastwirth’s in calculating �̂�instead of the median in different M-estimation 

methods. 

3. Simulation study 

To evaluate the efficiency of different estimation methods, i.e., OLS, OLS using median 

(OLS-MD), OLS using Gastwirth (OLS-GA),  M-estimation by Huber (1964) (Huber1), M-

estimation by Huber with repeated  (Huber1 with repeated), M-estimation by Huber2 

(Huber2), M-estimation by Huber2 with Gastwirth (Huber2-GA), M-estimation by Tukey 

(Tukey), and M-estimation by Tukey with Gastwirth (Tukey-GA). The Monte-Carlo 
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simulation experiments have been employed with different sample sizes (n = 10, 30, 50, 75, 

150) to represent small, moderate, and large sample sizes. The intercept and slop have been 

chosen as (𝛽0 = 2) and (𝛽1 = 4) . In this paper, the distribution of error term has been 

contaminated by outliers with three different percentages (10%, 20%, and 35%). The 

generated samples have been replicated (1000) times (R=1000).  

The Algorithm of simulation experiments can be summarized by the following table: 

Table (1): The Algorithm of Simulation Experiments 

 

The comparison between the different methods was made based on the mean squares of error 

of the regression coefficients, where,  𝑀𝑆𝐸 (�̂�) =  1𝑅 ∑ [(�̂�𝑖 − 𝛽)́(�̂�𝑖 − 𝛽)]𝑅𝑖=1                (14) =  1𝑅 ∑[(�̂�0𝑖 − 𝛽0)2 + (�̂�1𝑖 − 𝛽1)2]𝑅
𝑖=1  

4. Simulation Results 

To examine and compare the behavior of different estimation methods under different 

cases, the simulation experiment results represented by 𝐸(�̂�0), 𝐸(�̂�1) 𝑎𝑛𝑑 𝑀𝑆𝐸(�̂�)  are 

summarized in tables 2-9. The behavior of different estimation methods will be discussed 

briefly according to the percentage of the existence of outliers in terms of error, as follows: 

1. In case of no outlier: 

In case of the optimal state of the data is achieved, i.e., the absence of outliers. The results 

have been summarized in table (3), and it indicates the following: 

 The OLS method is the best compared to the other methods, followed by Huber1 

without repeated, for all different cases. 

 With the increasing sample size, the MSE's for all estimation methods are decreasing 

and converged to each other, which corresponds to the central limit theory. 

 If the optimal state of the data is achieved, i.e., the absence of outliers, the OLS 

method is the best for all sample sizes where it has the lowest MSE’s followed by a 

method of Huber1 without repeated in terms of accuracy of the results. 

 The results indicate that OLS-MD is the worst estimate of regression coefficients and 

for all sample sizes because it has the largest MSE's compared to other methods of 

estimation. 

n 
Regression 

coefficients 

The 

distributio

n of X 

The distribution of ∈ The distribution of Y 

10 

30 

50 

75 

100 

      𝛽1 = 4 

𝛽0= 2 

𝑋~𝑁(1,1) ∈ ~𝑁(0,1) 𝑌~𝑁(6,1) 

𝑋~𝑁(1,1) 90% ∈ ~𝑁(0,1) + 10% ∈ ~𝑁(0,50) 90% 𝑌~𝑁(6,1) + 10%𝑌~𝑁(6,50) 

𝑋~𝑁(1,1) 80% ∈ ~𝑁(0,1) + 20% ∈ ~𝑁(0,50) 80% 𝑌~𝑁(6,1) + 20%𝑌~𝑁(6,50) 

𝑋~𝑁(1,1) 65% ∈ ~𝑁(0,1) + 35% ∈ ~𝑁(0,50) 65% 𝑌~𝑁(6,1) + 35%𝑌~𝑁(6,50) 
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 The results indicated that the use of the proposed OLS-GA method was better than 

OLS-MD  as the MSE values if the GA statistic is used is lower for all sample sizes 

than when using the medium. 

 Increasing the sample size leads to a decrease in MSE values and for all methods of 

assessment under study. 

 We note that the expected values of different estimates of regression coefficients are 

closer to the default values, and this is further increased by the large sample 

Table (3): The expected values and MSE’s for different estimation methods 

 when 𝑿~𝑵(𝟏, 𝟏), ∈ ~𝑵(𝟎, 𝟏) 

Method Criteria n = 10 n = 30 n = 50  n =75 n = 150 

OLS 

𝐸(�̂�0) 1.991136 1.999987 1.999902 2.000732 1.997645 𝐸(�̂�1) 4.005048 3.999271 3.994431 3.995453 3.995896 

MSE (�̂�) 0.407965 0.107829 0.060450 0.041365 0.020301 

OLS-MD 

𝐸(�̂�0) 2.031086 2.039543 2.020241 2.006474 1.997841 𝐸(�̂�1) 3.975889 3.979554 3.981870 3.983577 3.990346 

MSE (�̂�) 0.672467 0.264030 0.181499 0.133474 0.065672 

OLS-GA 

𝐸(�̂�0) 2.015306 2.018572 2.001818 2.003968 1.998586 𝐸(�̂�1) 3.991028 3.993313 3.990563 3.992205 3.994316 

MSE (�̂�) 0.517250 0.166212 0.101754 0.068781 0.034036 

Huber1 with 

repeated 

𝐸(�̂�0) 2.001574 2.012619 2.011480 2.012999 2.009502 𝐸(�̂�1) 4.003432 3.999912 3.995410 3.995654 3.996550 

MSE (�̂�) 0.415307 0.112343 0.062348 0.042571 0.020815 

Huber1 

𝐸(�̂�0) 1.999373 2.011064 2.010220 2.011710 2.008348 𝐸(�̂�1) 4.004072 3.999832 3.995376 3.995685 3.996492 

MSE (�̂�) 0.413000 0.111267 0.061854 0.042286 0.020698 

Huber2 

𝐸(�̂�0) 1.992316 1.999866 2.000166 2.001262 1.997082 𝐸(�̂�1) 4.001040 4.000774 3.995183 3.995201 3.996568 

MSE (�̂�) 0.431083 0.116750 0.063644 0.043772 0.021253 

Huber2-GA 

𝐸(�̂�0) 1.993777 1.999910 1.999962 2.001177 1.997271 𝐸(�̂�1) 4.000976 4.000747 3.995082 3.995254 3.996505 

MSE (�̂�) 0.429254 0.116234 0.063423 0.043514 0.021159 

Tukey 

𝐸(�̂�0) 1.993865 2.000785 1.999093 2.000878 1.996932 𝐸(�̂�1) 3.997302 4.000713 3.995664 3.995478 3.996796 

MSE (�̂�) 0.459887 0.121543 0.064452 0.043642 0.021258 

Tukey-GA 

𝐸(�̂�0) 1.994404 2.000060 1.999181 2.000958 1.997167 𝐸(�̂�1) 3.998237 4.000963 3.995481 3.995394 3.996712 

MSE (�̂�) 0.450198 0.119638 0.063879 0.043274 0.021125 

 

2. In case of the random error variable is contaminated with outliers by 10% 

The results are shown in Table (4) indicate the following important points: 

• OLS method efficiency decreases due to an increase in the MSE values compared to 

MSE values for other methods. 

• The proposed method of estimating regression coefficients Tukey-GA was the best 

for all sample sizes compared to other methods. Followed by the Tukey method where the 

MSE value is lower than other methods. 
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• The worst method to estimate regression coefficients was OLS-MD because of the 

large MSE values compared to other methods and for all sample sizes. 

• The proposed OLS-GA method yielded better results than OLS-MD and for all 

sample sizes, i.e., the use of OLS with the robust GA statistics resulted in more accurate 

estimates than if it were replaced by the median. 

Table (4): The expected values and MSE’s for different estimation methods 

when 𝑿~𝑵(𝟏, 𝟏), ∈ ~𝟎. 𝟗𝟎 𝑵(𝟎, 𝟏) + 𝟎. 𝟏𝟎 𝑵(𝟎, 𝟓𝟎) 

Method Criteria n = 10 n = 30 n = 50  n =75 n = 150 

OLS 

𝐸(�̂�0) 1.979675 1.987213 1.984935 1.984257 2.000257 𝐸(�̂�1) 4.018295 3.998626 3.999363 3.999170 3.991270 

MSE (�̂�) 2.779872 0.656185 0.350283 0.253894 0.120755 

OLS-MD 

𝐸(�̂�0) 2.040513 2.044871 2.009006 2.000808 2.000848 𝐸(�̂�1) 3.972387 3.976157 3.985472 3.986578 3.985543 

MSE (�̂�) 2.833915 0.778850 0.460883 0.328103 0.159826 

OLS-GA 

𝐸(�̂�0) 2.007765 2.019646 1.992332 1.989400 2.000907 𝐸(�̂�1) 3.994502 3.990916 3.994292 3.995191 3.989509 

MSE (�̂�) 2.579290 0.659048 0.364698 0.251669 0.121579 

Huber1 with 

repeated 

𝐸(�̂�0) 2.003510 2.020134 2.022118 2.022376 2.019527 𝐸(�̂�1) 4.015652 4.004127 3.993844 3.993662 3.996811 

MSE (�̂�) 0.732960 0.169719 0.091468 0.059628 0.029296 

Huber1 

𝐸(�̂�0) 2.012360 2.017587 2.019205 2.019068 2.017559 𝐸(�̂�1) 4.015192 4.004183 3.994734 3.994269 3.996354 

MSE (�̂�) 1.140782 0.209946 0.108219 0.071737 0.033749 

Huber2 

𝐸(�̂�0) 1.988968 1.996695 2.000624 2.001689 1.997510 𝐸(�̂�1) 4.008330 4.005011 3.993163 3.992711 3.996443 

MSE (�̂�) 0.704846 0.166988 0.090497 0.058928 0.028753 

Huber2-GA 

𝐸(�̂�0) 1.987982 1.997081 2.001013 2.001518 1.997536 𝐸(�̂�1) 4.009062 4.004546 3.993043 3.992874 3.996540 

MSE (�̂�) 0.689489 0.167131 0.090657 0.058927 0.028762 

Tukey 

𝐸(�̂�0) 1.993372 1.998929 2.003891 2.004868 1.997596 𝐸(�̂�1) 4.002834 4.005271 3.991971 3.992023 3.997045 

MSE (�̂�) 0.614509 0.146300 0.082145 0.050541 0.025463 

Tukey-GA 

𝐸(�̂�0) 1.996038 1.998586 2.004419 2.004648 1.997515 𝐸(�̂�1) 4.002291 4.005833 3.991552 3.992144 3.997115 

MSE (�̂�) 0.595782 0.143976 0.081585 0.050293 0.025498 

3. In case of the random error variable is contaminated with outliers by 20% 

The results shown in Table-5 indicate that: 

• Decrease efficiency of OLS method due to increasing the MSE values 

compared to other methods' MSE values. 

• The proposed method for estimating the regression coefficients Tukey-GA 

was the best for all sample sizes compared to other methods. Followed by the Tukey 

method, where MSE’s are less than the other methods. 

• The worst method of estimation was OLS-MD because of the increase in MSE 

compared to other methods and for all sample sizes. 
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• The proposed OLS-GA method gave better results than the OLS-MD method 

for all sample sizes, meaning that the use of the OLS method with the robust GA 

resulted in more accurate estimates than if it was replaced by the median. 

Table (5): The MSE values and the expected values of the coefficients of simple linear 

regression when 𝑿~𝑵(𝟏, 𝟏) , ∈ ~𝟎. 𝟖𝟎 𝑵(𝟎, 𝟏) + 𝟎. 𝟐𝟎 𝑵(𝟎, 𝟓𝟎) 

Method Criteria n = 10 n = 30 n = 50 n =75 n = 150 

OLS 

𝐸(�̂�0) 1.988665 2.018226 1.987979 1.972414 1.992878 𝐸(�̂�1) 4.020236 3.989466 3.988709 3.997353 3.992082 

MSE (�̂�) 4.733328 1.213448 0.632722 0.457615 0.217800 

OLS-MD 

𝐸(�̂�0) 2.073517 2.066055 2.017217 1.997176 1.999512 𝐸(�̂�1) 3.961802 3.966077 3.974208 3.983998 3.985821 

MSE (�̂�) 4.641670 1.283283 0.724710 0.515888 0.245166 

OLS-GA 

𝐸(�̂�0) 2.025667 2.038355 1.997171 1.981085 1.999628 𝐸(�̂�1) 3.987620 3.980122 3.983183 3.992910 3.989892 

MSE (�̂�) 4.363669 1.167067 0.621823 0.433461 0.204878 

Huber1 with 

repeated 

𝐸(�̂�0) 2.041333 2.031149 2.033502 2.037112 2.030956 𝐸(�̂�1) 3.997253 4.005606 3.993665 3.990581 3.995744 

MSE (�̂�) 1.409876 0.245415 0.127059 0.087012 0.041135 

Huber1 

𝐸(�̂�0) 2.045412 2.034403 2.028835 2.029344 2.025950 𝐸(�̂�1) 4.002264 4.002304 3.993286 3.991577 3.995482 

MSE (�̂�) 2.179730 0.366412 0.177532 0.119792 0.053817 

Huber2 

𝐸(�̂�0) 2.010686 1.994745 1.998656 2.002965 1.996923 𝐸(�̂�1) 3.993664 4.006885 3.992991 3.990148 3.995592 

MSE (�̂�) 1.502172 0.249403 0.129091 0.087488 0.040948 

Huber2-GA 

𝐸(�̂�0) 2.011067 1.995600 1.999097 2.002880 1.996789 𝐸(�̂�1) 3.992058 4.006031 3.992712 3.990356 3.995773 

MSE (�̂�) 1.508893 0.252564 0.131244 0.088266 0.041412 

Tukey 

𝐸(�̂�0) 2.011084 1.991682 2.001838 2.009940 1.999145 𝐸(�̂�1) 3.991201 4.009220 3.993316 3.989318 3.994902 

MSE (�̂�) 1.280112 0.195811 0.108055 0.068999 0.032170 

Tukey-GA 

𝐸(�̂�0) 2.014876 1.992238 2.002695 2.010361 1.998895 𝐸(�̂�1) 3.985702 4.009245 3.992731 3.988904 3.994932 

MSE (�̂�) 1.344102 0.197513 0.108717 0.069078 0.032457 

4. In case of the random error variable is contaminated with outliers by 35% 

The results shown in Table-6 indicate that: 

 Decrease efficiency of OLS method due to increase the MSE values compared to 

other methods' MSE values. 

 The Huber1 with repeated method was the best when sample size n=10 compared to 

other methods. Followed by the Tukey method,  

 The performance of Tukey method is the best when the sample size 𝑛 ≥ 30 

compared to the other methods. Followed by the Tukey-GA method, where the value of 

MSE is less than the other methods when the sample size is n=30,75,150, while the 

sample size is n=50, which is Huber1 with repeated. 
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 The worst method of estimation was OLS due to the large MSE relative to the other 

methods when the sample size is n = 10, and the worst method of estimating OLS-

MD due to the large MSE relative to the other methods when the sample size is 𝑛 ≥ 30. 

 The proposed OLS-GA method gave better results than the OLS-MD method for all 

sample sizes, meaning that the use of the OLS method with the robust GA resulted in 

more accurate estimates than if it was replaced by the median. 

Table (6): The MSE values and the expected values of the coefficients of simple linear 

regression when 𝑿~𝑵(𝟏, 𝟏) , ∈ ~𝟎. 𝟔𝟓 𝑵(𝟎, 𝟏) + 𝟎. 𝟑𝟓 𝑵(𝟎, 𝟓𝟎) 

Method Criteria n = 10 n = 30 n = 50  n =75 n = 150 

OLS 

𝐸(�̂�0) 1.951986 2.025625 2.011581 1.979795 1.978178 𝐸(�̂�1) 4.022936 3.972101 3.970678 3.992656 3.994381 

MSE (�̂�) 6.697178 2.071986 1.009795 0.746066 0.374650 

OLS-MD 

𝐸(�̂�0) 2.067501 2.086262 2.041235 2.002890 1.996362 𝐸(�̂�1) 3.956559 3.946403 3.953665 3.978452 3.987397 

MSE (�̂�) 6.477293 2.106375 1.117663 0.791860 0.390525 

OLS-GA 

𝐸(�̂�0) 2.028870 2.057825 2.022497 1.989220 1.988593 𝐸(�̂�1) 3.984689 3.960656 3.963214 3.986773 3.991603 

MSE (�̂�) 6.189917 1.970847 0.998235 0.707440 0.352771 

Huber1 with 

repeated 

𝐸(�̂�0) 2.055077 2.055965 2.057909 2.064031 2.049506 𝐸(�̂�1) 4.001651 4.001820 3.992231 3.987106 3.996094 

MSE (�̂�) 2.465477 0.412102 0.211376 0.143942 0.067997 

Huber1 

𝐸(�̂�0) 2.032371 2.063637 2.055240 2.049012 2.036577 𝐸(�̂�1) 4.009899 3.990110 3.985861 3.988248 3.996069 

MSE (�̂�) 3.689130 0.765408 0.335332 0.227431 0.103742 

Huber2 

𝐸(�̂�0) 1.983756 2.003063 1.999678 2.005872 1.991942 𝐸(�̂�1) 4.002844 3.997565 3.991778 3.986595 3.996465 

MSE (�̂�) 3.065918 0.528523 0.249486 0.168208 0.078454 

Huber2-GA 

𝐸(�̂�0) 1.977841 2.003198 1.998447 2.005596 1.991218 𝐸(�̂�1) 4.004754 3.998547 3.991767 3.986196 3.996686 

MSE (�̂�) 3.101569 0.548470 0.267439 0.177992 0.083779 

Tukey 

𝐸(�̂�0) 1.986722 1.989431 1.993856 2.012499 1.997801 𝐸(�̂�1) 4.008048 4.008096 3.998253 3.985371 3.993691 

MSE (�̂�) 2.954632 0.370322 0.204869 0.126553 0.056252 

Tukey-GA 

𝐸(�̂�0) 2.013001 1.987057 1.992433 2.013538 1.997187 𝐸(�̂�1) 3.979294 4.011380 3.998161 3.984782 3.994367 

MSE (�̂�) 3.206710 0.393554 0.222145 0.134493 0.061171 
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