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Abstract 

In this paper, some estimators for the shape and scale parameters of Weibull distribution 

have been obtained using Maximum likelihood as non-Bayesian estimators, as well as 

Bayes estimators. Bayesian estimations have been obtained under Scale invariant and 

Entropy loss functions based on exponential priors. Lindley’s approximation has been 

used effectively in Bayesian estimation. Based on the Monte Carlo simulation method, 

those estimators are compared depending on the mean squared errors (MSE’s).  

Keywords: Weibull Distribution; Maximum likelihood estimator; Scale invariant loss 

function; Entropy loss function; Lindley’s approximation. 

 

1.Introduction 

The Weibull distribution is one of the most important common continuous probability 

distributions, it is widely used in reliability and lifetime, Quality Control, weather 

forecasting, life sciences, and engineering [1]. Although it was first identified and used 

by Frenchman Maurice Fréchet in 1927 and applied by R. Rosin and E. Rammler in1933, 

it is named after Waal Obi Weibull in 1939[2]. 

There are some recent works and literature of Weibull distribution, Al Omari and Ibrahim 

(2011) conducted a study on Bayesian estimator for Weibull distribution with censored 

data [3], G. B. Chris and A. I. Noor (2012) indicated the estimated parameters of the 

Weibull distribution form Bayesian estimator under LINEX loss function is the best 

comparatively with respect to other methods [4], P. Ivana and S. Zuzana (2014) 

recommend the Maximum likelihood method to estimate the parameters of Weibull 

distribution [1].  

There are many shapes of Weibull distribution attains for various values of the shape 

parameter, as special cases, if the shape parameter is equal to one it becomes the 

Exponential distribution if the shape parameter is equal to two it becomes the Rayleigh 

distribution, and if x denotes the Weibull variable than (-x) has a type three extreme value 

distribution [5]. 
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The probability density function (pdf) of two parameters Weibull distribution is defined 

as:  f( x ∣ λ, ϑ ) = λ
ϑ

(x
ϑ
)λ−1 e−(x/ϑ)λ                 x > 0          ;   λ, ϑ > 0                          (1) 

The corresponding cumulative distribution function (CDF) of the Weibull distribution is 

given by: F( x ∣ λ, ϑ ) = 1 − e−(x
ϑ)λ

 

The Reliability function defined as: R(X ; λ, ϑ) = 1 − F(X ; λ, ϑ) = e−(x
ϑ)λ

 

2. Estimation Methods 

2.1 Non-Bayesian Estimators 

Maximum Likelihood Estimation 

Let x1,x2,…,xn be a random sample of size n followed Weibull distribution defined by 

equation (1). The likelihood function of the pdf is L(x; λ, ϑ) = ∏  ni=1 (λ
ϑ
) (x

ϑ
)λ−1 e−(x

ϑ)λ

                                                                                                              

(2) 

Taking the natural logarithm for the likelihood function, gives: ln(L) = n ln(λ) − n λ ln(ϑ) + (λ − 1) ∑  n
i=1 ln(xi) − ∑  n

i=1 (xi
ϑ )λ

 

Differentiating ln (L) with respect to ϑ and λ and equating to zero, yields: ∂ln L(λ, ϑ)∂ϑ = −n (λ
ϑ) + (λ

ϑ) ∑  n
i=1 (xi

ϑ )λ = 0                                                                                                              (3)∂ln L(λ, ϑ)∂λ = (n
λ) − n ln ϑ + ∑  ln xin

i=1 − ∑  n
i=1 (xi

ϑ )λ ln (xi
ϑ ) = 0                                                                            (4) 

Notice that, (3) and (4) are difficult to solve analytically. Therefore, ML estimators for λ 

and ϑ  can be derived numerically by using Newton-Raphson method depending on 

Hessian matrix, which is thesecond partial derivative of the log-likelihood function. 

Hessian matrix can be constructed as follows:  

Assume that, h1(ϑ) = ∂ln L(λ,ϑ)∂ϑ
,            h2(λ) = ∂ln L(λ,ϑ)∂λ

 

The partial derivatives of h1(ϑ) with respect to unknown parameters ϑ and λ are: ∂h1(ϑ)∂ϑ = ∂2∂ϑ2 L(λ, ϑ) = nλ
ϑ2 − λ(λ + 1)

ϑ2 ∑  n
i=1 (xi

ϑ )λ
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∂h1(λ)∂λ = ∂2∂ϑ ∂λ L(λ, ϑ) = − n
ϑ + 1

ϑ ∑  n
i=1 (xi

ϑ )λ + (λ
ϑ) ∑  n

i=1 (xi
ϑ )λ ln (xi

ϑ ) 

The partial derivatives of h2(λ)with respect to unknown parameters ϑ and λ are given by: ∂h2(λ)∂λ = ∂2∂λ2 L(λ, ϑ) = − n
λ2 − ∑  n

i=1 (xi
ϑ )λ [ln (xi

ϑ ) ]2 ∂h2(λ)∂ϑ = ∂2∂λ ∂ϑ L(λ, ϑ) = − n
ϑ + 1

ϑ ∑  n
i=1 (xi

ϑ )λ + (λ
ϑ) ∑  n

i=1 (xi
ϑ )λ ln (xi

ϑ ) 

Thus, the Jacobian matrix Jk(λ, ϑ)which is a non-singular symmetric matrix defined as 

follows: Jk(λ, ϑ) = [∂h1(λ,ϑ)∂ϑ
∂h1(λ,ϑ)∂λ∂h2(λ,ϑ)∂ϑ
        ∂h2(λ,ϑ)∂λ

]  =[b11    b12b21    b22] 

so, its inverse can be written as: JK−1 = 1|J| [ b22 −b12−b21 b11 ] 

Hence, according to the Newton-Raphson method, the maximum likelihood estimators 

can be obtained as follows [ϑk+1
λk+1] = [ϑk

λk] − Jk−1(λk, ϑk) [h1(λk, ϑk)h2(λk, ϑk)] 

When k = 0, ϑ0and λ0 are represented the initial values for ϑ and λ respectively which 

should be chosen carefully. 

The absolute value for the difference between the new value for ϑ and λ in new iterative 

value with previous value for ϑ and λ in last iterative represent the error term denoted by 

ε, which is assumed a very small value. The error term is formulated as: [εk+1(ϑ)
εk+1(λ)] = [ϑk+1

λk+1] = [ϑk
λk] 

2.2. Bayesian Estimators 

In this suction, Bayesian estimators are obtained based on two different loss functions 

which are Scale invariant and Entropy loss functions. The Bayesian estimators are 

derived with assuming the exponential prior for each of λ and ϑ i.e., 

λ~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1/ δ) with the following pdf  g1(λ) = δe−δλ             𝛿 > 0                                                                                                      (5)
 

ϑ ~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1/ γ) with the pdf defined as g2(ϑ) = γe−γϑ                  γ > 0                                                                                                 (6) 

λ and γ are assumed independent of each other. Therefore, the joint exponential prior is:  

g (λ, ϑ) =  g1(λ)  g2(ϑ) = δ e−δλγe−γϑ 

The joint posterior distribution of ϑ and λ is given by  
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π(λ, ϑ; X) = e−(γϑ+δλ) ( λ
ϑλ)n ∏  ni=1 xiλ−1 exp (− ∑  ni=1 xiλ

ϑλ )∫  ∞0 ∫ e−(γϑ+δλ)   ∞0 ( λ
ϑλ)n ∏  ni=1 xiλ−1 exp (− ∑  ni=1 xiλ

ϑλ )  dλdϑ
 

2.2.1. The Entropy loss function (ELF) 

     The Entropy loss function is Asymmetric Loss Function, it was first introduced by 

James and Stein [6] for the estimation of the Dispersion (i.e., Variance-Covariance) 

matrix of the Multivariate normal distribution. Dey et al. [7] considered this loss function 

for simultaneous estimation of scale parameters and their reciprocals, for p independent 

gamma distributions. Rukhin and Ananda [8] considered the estimation problem of the 

variance of a Multivariate Normal vector under the Entropy loss and Quadratic loss, it is 

defined as: L(θ,̂  θ) = (θ̂
θ) − ln (θ̂

θ) − 1 

The risk function RE(θ̂, θ) can be derived as  RE(θ̂, θ)=∫ [(θ̂
θ
) − ln (θ̂

θ
) − 1]∞0 π(θ, X) dθ                 

Let ∂RS(θ,̂ θ)∂θ̂
= 0, yields: ∂RS(θ̂, θ)∂θ̂

= ∫ 1
θ π(θ, X) dθ − 1

θ̂
∫ π(θ, X)∞

0
∞

0 dθ = 0 

Hence, 

θ̂E = [E (1
θ

|X)]−1
                                                                                                 (7) 

a-Bayesian estimation for ϑunderELF 

Bayes estimator for ϑ, under ELF can be obtained as follows: 

Assumed that w (λ, ϑ) be any function for λ, ϑ. Therefore: E[w(λ, ϑ)] = ∫ ∫ w(λ, ϑ)∞

0
∞

0 π(λ, ϑ) dλ dϑ 

                     = ∫ ∫ w(λ, ϑ) L(x1, x2, … , xn; λ, ϑ)π(λ, ϑ) dλ dϑ ∫ ∫ L(x1, x2, … , xn; λ, ϑ)π(λ, ϑ) dλ dϑ∞0∞0
∞

0
∞

0  

                      = ∫ ∫ w(λ, ϑ)L(x1, x2, … , xn; λ, ϑ)π(λ, ϑ) dλ dϑ∞0∞0 ∫ ∫ L(x1, x2, … , xn; λ, ϑ)π(λ, ϑ) dλ dϑ∞0∞0  

Assuming that 

W (λ, ϑ) = 1
ϑ
 

Thus, 
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E [1
ϑ │X] = ∫  ∞0 ∫  ∞0 1

ϑ
e−(γϑ+δλ) ( λ

ϑλ)n ∏  ni=1 xiλ−1 exp (− ∑  ni=1 xiλ
ϑλ ) dλ dϑ∫  ∞0 ∫ e−(γϑ+δƞ)   ∞0 ( λ

ϑλ)n ∏  ni=1 xiλ−1 exp (− ∑  ni=1 xiλ
ϑλ )  dλ dϑ

 

 

Observed that, it is difficult to obtain the solution of the ratio of two integrals. Hence, the 

solution will be approximately by using the Lindley’s approximation [9], as follows: E [1
ϑ │X] ≈ 1

ϑ̂
+ 12 (w11σ11) + p1w1σ11 + 12 (L30w1σ112 )+ 12 (L12w1σ11σ22)                                    (8)    

Where, w1 = ∂w(λ,ϑ)∂ϑ
=  ∂∂ϑ

(1
ϑ
)  = −1

ϑ2                                                                                                             

(9) w11 = ∂2w(λ,ϑ)∂ϑ2 = 2
ϑ3                                                                                                                        

(10) Lij = ∂i+j∂ϑi ∂λj ln L(λ, ϑ)                                                       i, j = 0,1,2,3 

       = ∂i+j∂ϑi ∂λj [n ln(λ) − n λ ln(ϑ) + (λ − 1) ∑  n
i=1 ln(xi) − ∑  n

i=1 (xi
ϑ )λ] 

L12 = ∂3lnL(λ,ϑ)∂ϑ ∂λ2 = λ
ϑ

∑  ni=1 (x
ϑ
)λ (ln (xi

ϑ
))2 + 2

ϑ
∑  ni=1 (xi

ϑ
)λ ln (xi

ϑ
)                     (11) L20 = ∂2lnL(λ, ϑ)∂ϑ2 = n λ

ϑ2 − λ(λ + 1)
ϑ2 ∑  n

i=1 (xi
ϑ )λ        ,    L02 = ∂2lnL(λ, ϑ)∂λ2

= − n
λ2 − ∑  n

i=1 (xi
ϑ )λ (ln (xi

ϑ ))2
 

L30=
∂3L(λ,ϑ)∂ϑ3 = − 2nλ

ϑ3 + λ(λ+1)(λ+2)
ϑ3 ∑  ni=1 (xi

ϑ
)λ

                                                                                        

(12) 

σ11 = − 1L20 = −ϑ2nλ− λ (λ+1) ∑  ni=1 (xi
ϑ )λ                                                                                                          

(13) 

σ22 = − 1L02 = λ2n+λ2 ∑  ni=1 (xi
ϑ )λ(ln(xi

λ ))2                                                                                                        

(14) 

We have, 

g (λ, ϑ) = γ δ  e−(γϑ+δλ) 
P = ln g (λ, ϑ)= ln(γ) + ln(δ) – γ ϑ – δ λ  
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p1 = ∂p∂ϑ
=−γ                                                                                                                                                              

(15) 

Substituting (9), (10), (11), (12), (13), (14) and (15) into (8), yields the approximated 

solution ofE [1
ϑ

│X]. 

After Substitute (8) into (7) gives the Bayesian estimation for ϑ under ELF denoted byϑ̂E 

b- Bayesian estimation for λ underELF 

Similarly, Bayes estimator forλ, under ELF can be derived as the following: 
Assume that, W (λ, ϑ) = 1

λ
 

The Lindley’s approximation for E [1
λ

│X] is given by: E [1
λ

│X] ≈ 1
λ̂

+ 12 (w22σ22) + p2w2σ22 + 12 (L03w2σ222 ) + 12 (L21w2σ11σ22)                                  

(16) 

Where, w1  = ∂w(λ, ϑ)∂ϑ = ∂∂ϑ  (1
λ)         = 0 = w11 w2 = ∂w(λ, ϑ)∂λ = −1

λ2  w22 = ∂2w(λ, ϑ)∂λ2 = 2
λ3 

L03 = ∂3L(λ, ϑ)∂λ3 = 2n
λ3 − ∑  n

i=1 (xi
ϑ )λ (ln (xi

ϑ ))3
 

L21 = ∂3L(λ, ϑ)∂ϑ2 ∂λ
= n

ϑ2 − 2λ + 1
ϑ2 ∑  n

i=1 (xi
ϑ )λ − λ(λ + 1)

ϑ2 ∑  n
i=1 (xi

ϑ )λ ln (xi
ϑ ) 

P = ln g (λ, ϑ)= ln(γ) + ln(δ) – γ ϑ – δ λ  p2 = ∂p∂λ = ∂∂λ (ln(γ)  +  ln(δ) –  γ ϑ –  δ λ) = −δ                             
2.2.2. The Scale Invariant Squared Error Loss Function (SISELF)  

The Scale invariant squared error loss function is symmetric and continuous and loss 

function [10], it was suggested by De Groot (1970). It is defined as:  L(θ̂, θ) = (1 −  θ̂θ)2
 

The risk function RS(θ̂, θ) can be derived as follows RS(θ̂, θ) = E [L (θ̂, θ)]= ∫ L (∞0 θ̂, θ)  π(θ, X)dθ =∫ (1 −  θ̂
θ
)2∞0 π(θ, X) dθ                 

To obtain the value of  θ̂ that minimize the risk function under SISELF, assume that: 
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∂RS(θ,̂ θ)∂θ̂
= 0, yields: 2 ∫ (1 − θ̂

θ) (− 1
θ) π(θ, X)dθ

∞

0 = 0 

θ̂ ∫ 1
θ2∞

0 π(θ, X)dθ − ∫ 1
θ

∞

0 π(θ, X) = 0 

θ̂S = E[ 1θ│X ]E[ 1
θ2|X] (17) 

a-Bayesian estimation for ϑunderSISELF 

To obtain Bayesian estimation for ϑ, under SISELF, assume that, W (λ, ϑ) = 1
ϑ2 

According to Lindley’s approximation: E [ 1
ϑ2 |X] ≈ 1

ϑ̂2 + 12 (w11σ11) + p1w1σ11 + 12 (L30w1σ112 ) + 12 (L12w1σ11σ22)(18) 

Where, w1 = ∂w(λ, ϑ)∂ϑ  = ∂w∂ϑ ( 1
ϑ2) = −2

ϑ3  w11 = ∂2w(λ, ϑ)∂ϑ2 = 6
ϑ4 

Bayesian estimation ofϑ, under SISELF which is denoted by ϑ̂S  can be getting after 

substituting (8) and (18) into (17). 

b- Bayesian estimation for λ underELF 

To obtain Bayesian estimation for 𝜆, under SISELF, assume that, W (λ, ϑ) = 1
λ2 

According to Lindley’s approximation: E [ 1
λ2 |X] ≈ 1

λ̂2 + 12 (w11σ11) + p1w1σ11 + 12 (L30w1σ112 ) + 12 (L12w1σ11σ22)(19) 

Where, w1 = ∂w(λ, ϑ)∂ϑ  = ∂w∂ϑ ( 1
λ2) = −2

λ3  w11 = ∂2w(λ, ϑ)∂ϑ2 = 6
λ4 

Bayesian estimation ofϑ, under SISELF which is denoted by λ̂S  can be getting after 

substituting (16) and (19) into (17). 

4. Simulation Study 

In this section, we employed the Monte–Carlo simulation to compare the performance of 

different estimates (Maximum likelihood and Bayes Estimators under Scale invariant 

squared error loss function and Entropy loss function) for unknown shape and scale 

parameters of Weibull distribution based on the mean squared errors (MSE’s) which can 

be written as: 
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MSE (θ̂) = ∑  li=1 (θ̂i − θ)2I  

Where, I is the number of replications.  

We generated I = 5000 samples from two parameters Weibull distribution with different 

sizes (n = 20, 50, and 100). With assuming ϑ = 0.7, 1.4 and λ = 0.5, 1.5.   

 The values of the prior’s parameter of ϑ have been chosen as δ = 0.5, 1.5, and for λ ' s 
prior parameter  γ = 0.5, 1.5. 

5. Discussion and Conclusion 

The expected values and (MSE's) for estimating ϑ and λ are tabulated in Tables (1-8). 

 The results of the Tables can be summarized by the following points  

1. The performance of Bayes estimates under Scale invariant squared error loss function 

for the parameter ϑ are the best, since they give smallest mean square error, as indicated 

for all combinations of initial values of parameters. While the performance of Bayes 

estimates under Entropy loss function for the parameter λ are the best, since they give 

smallest mean square error. 

2. It is clear that, the results for ϑ (expected values and MSE's) at λ, ϑ = 1.5 are the best as 

the corresponding result when λ, ϑ = 0.5. 

3. It is observed that, MSE's of all estimators of shape parameter is increasing with the 

increase of the value of the shape parameter. Also, MSE values for all estimates of scale 

parameter are increasing with the increase of the scale parameter value in all cases. 

4. In general, the preference of Bayesian methods is the best compared to Maximum 

likelihood estimators. 

5. Finally, all estimates of the two parameters of Weibull distribution shows that the 

averages are close to the default values for all sample sizes and that the average 

estimation of parameters are always approaching the true values with the increase of the 

sample size. 

Table 1: Expected values and MSE’s for λ̂ when λ = 0.5 andϑ = 0.7 

n 
 

Criterion 
�̂�𝐌𝐋 

�̂�𝐄 �̂�𝐒 𝛄 =0.5,  𝛅=0.5 

𝛄 =1.5,  𝛅 

=1.5 

𝛄 =0.5,  𝛅=0.5 

𝛄 =1.5,  𝛅 

=1.5 

20 
Mean 0.536731 0.478716 0.472610 0.453667 0.459517 

MSE 0.011540 0.000469 0.000776 0.002215 0.001690 

50 
Mean 0.514674 0.496608 0.493936 0.484495 0.487114 

MSE 0.003707 0.000013 0.000040 0.000249 0.000172 

100 
Mean 0.507513 0.503162 0.501784 0.496685 0.498050 

MSE 0.001679 0.000010 0.000004 0.000012 0.000005 
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Table 2: Expected values and MSE’s for λ̂ when λ = 1.5 andϑ = 0.7 

n 
 

Criterion 
�̂�𝐌𝐋 

�̂�𝐄 �̂�𝐒 𝛄 =0.5,  𝛅=0.5 

𝛄 =1.5,  𝛅 

=1.5 

𝛄 =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

20 
Mean 1.605435 1.407234 1.352672 1.363062 1.418063 

MSE 0.103945 0.008687 0.022077 0.019052 0.006763 

50 
Mean 1.541936 1.466723 1.442692 1.444852 1.468918 

MSE 0.033172 0.001114 0.003319 0.003073 0.000971 

100 
Mean 1.522649 1.487981 1.475620 1.476272 1.488638 

MSE 0.015092 0.000145 0.000600 0.000568 0.000130 

 

Table 3: Expected values and MSE’s for λ̂ when λ = 0.5 andϑ = 1.4 

n 
 

Criterion 
฀̂฀฀ 

฀̂฀ ฀̂฀ 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

20 
Mean 0.536587 0.478772 0.472683 0.453781 0.459618 

MSE 0.011534 0.000467 0.000772 0.002204 0.001682 

50 
Mean 0.514739 0.496636 0.493972 0.484550 0.487162 

MSE 0.003711 0.000013 0.000039 0.000247 0.000171 

100 
Mean 0.507493 0.503180 0.501808 0.496722 0.498081 

MSE 0.001680 0.000010 0.000004 0.000012 0.000005 

 

Table 4: Expected values and MSE’s for λ̂ when λ = 1.5 andϑ = 1.4 

n 
 

Criterion 
฀̂฀฀ 

฀̂฀ ฀̂฀ 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

20 
Mean 1.604768 1.407571 1.353449 1.363767 1.418318 

MSE 0.103543 0.008629 0.021860 0.018870 0.006724 

50 
Mean 1.542262 1.466873 1.443038 1.445181 1.469048 

MSE 0.033334 0.001104 0.003281 0.003038 0.000963 

100 
Mean 1.522649 1.488060 1.475810 1.476455 1.488709 

MSE 0.015092 0.000144 0.000591 0.000559 0.000128 

 

Table 5: Expected values and MSE’s for ϑ̂ when ϑ = 0.7 and λ =0.5 

n 
 

Criterion 
฀̂฀฀ 

฀̂฀ ฀̂฀ 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

20 
Mean 0.84895 0.84748 0.71541 0.67457 0.59707 

MSE 0.13325 0.04659 0.00218 0.00243 0.01149 

50 
Mean 0.74866 0.75742 0.71179 0.69439 0.65718 

MSE 0.04358 0.00467 0.00037 0.00013 0.00194 
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100 
Mean 0.71694 0.73177 0.71015 0.70153 0.68196 

MSE 0.02174 0.00118 0.00014 0.00001 0.00035 

 

Table 6: Expected values and MSE’s for ϑ̂ when ϑ = 0.7 and λ =1.5 

n 
 

Criterion 
฀̂฀฀ 

฀̂฀ ฀̂฀ 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

20 
Mean 0.71229 0.73882 0.72565 0.72095 0.70795 

MSE 0.01059 0.00165 0.00071 0.00048 0.00007 

50 
Mean 0.70111 0.72094 0.71600 0.71407 0.70916 

MSE 0.00474 0.00045 0.00026 0.00020 0.00008 

100 
Mean 0.70024 0.71528 0.71290 0.71195 0.70958 

MSE 0.00245 0.00023 0.00017 0.00014 0.00009 

 

Table 7: Expected values and MSE’s for ϑ̂ when ϑ = 1.4 and λ =0.5 

n 
 

Criterion 
฀̂฀฀ 

฀̂฀ ฀̂฀ 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

20 
Mean 1.69505 1.53565 1.17961 1.24897 1.07400 

MSE 0.53235 0.04746 0.05171 0.02431 0.11321 

50 
Mean 1.49522 1.45703 1.30108 1.34020 1.22530 

MSE 0.17433 0.00573 0.01024 0.00372 0.03245 

100 
Mean 1.43336 1.43115 1.35202 1.37349 1.30571 

MSE 0.08715 0.00130 0.00239 0.00073 0.00938 

 

Table 8: Expected values and MSE’s for ϑ̂ when ϑ = 1.4 and λ =1.5 

n 
 

Criterion 
฀̂฀฀ 

฀̂฀ ฀̂฀ 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

฀ =0.5,  

฀=0.5 

฀ =1.5,  ฀ 

=1.5 

20 
Mean 1.42478 1.45324 1.40438 1.41853 1.37209 

MSE 0.04233 0.00316 0.00005 0.00040 0.00096 

50 
Mean 1.40206 1.42659 1.40774 1.41321 1.39471 

MSE 0.01900 0.00073 0.00006 0.00018 0.00005 

100 
Mean 1.40048 1.41803 1.40888 1.41154 1.40247 

MSE 0.00981 0.00033 0.00008 0.00013 0.00001 
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