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Abstract: Knowledge is perpetual, a person’s life time isn’t enough to absorb the whole knowledge of the universe. We all 

are homo sapiens who believe in living beyond the nihilism. We try to seek more and more potentiality in our lives by 

seeking knowledge. This knowledge these days is stored in various formats in huge repositories mostly in the form of 

documents, sheets, photos, videos. One finds it difficult to comprehend this whole lot of information. There by, here comes 

the need of text summarization. Summarization of documents, text, data is the vital part and a preliminary step in any field 

whether it is business, social, art, or software. By using machine learning algorithms, the notion of text summarization can be 

achieved with ease. In this paper we summarize the data as per our requirement i.e., it can be based on output. To achieve this 

objective we are going to use abstractive summarization on single documents. In this process, we perform abstractive text 

summarization by using Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Transformers. 

Keywords:  Text Summarization, Abstractive Text Summarization, Long Short Term Memory, Gated Recurrent Unit, 
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1. Introduction 

Text summarization is nothing but obtaining only required information from huge data. Since manual 

text summarization is a time costly, for the most part a relentless task. Programmed text summarization 

establishes a solid inspiration for additional examination. Current endeavors in programmed text summarization 

basically center on summing up single records (for example news, articles, logical papers, climate figures, and 

etc) also, multi reports (for example news from various sources, client surveys, messages and etc), lessening the 

size of the underlying content while simultaneously protecting key enlightening components and the importance 

of substance. Two fundamental ways to deal with programmed text summarization have been ac-counted for in 

the significant writing; extractive and abstractive.  

 

Abstractive text summarization is a really difficult undertaking, it looks like human-composed rundowns, like 

that might restrain reworded decisions instead expressions including current term(for example abstract, 

expressions words which are not exposed in those first content), in this manner improving the created rundown 

as far as union, coherence or repetition . As computer does not understand human language and the idea related 

with it, summarization become a difficult work. To crush this, many simulated intelligence models like machine 

learning and deep learning are used. These models are set up in a manner of comprise to include huge 

information. The principle commitment related to this is to develop an intellectual text summarization strategy. 

2. Literature Survey 

SukirtiVerma et.al, [1], developed a system which upgrades include vector and esteems are attach 

against each sentence to create a score. According to decreasing score value the sentences are arranged. The 

abstract applicable sentence is the main sentence used in this arranged rundown and it is collected as a feature of 

the subclass of sentences will frame the summary. The sentence we select is the main sentence having most 

interesting likeness with the principal sentence, which is selected stringently from the top of the arranged shorted 

list. This interaction is repetitive and gradually iterate to choose more sentences summary limit to reach the user 

deter-mined limit. Then they are re-organized according to the pattern surfacing in the orignal text. This 

disorganized sentences will deliver an appraised outline instead of a group.  

 

ManivannanKaliapan et.al, [2], proposed a subsequent method to handling the archives by utilizing the Naïve 

Bayesian approach. Based on the results the sentences are organized. First the high score sentence will be 

generated, then after the other sentence, etc. The Navie Bayesian process will choose sentences for each record 

to produce results. They consider sentences previously to connate decision chosen of following record 

eventually. To defeat some issues timestamp strategy is carried out. The timestamp technique is carried out by 

allotting a worth to each pronouncement of the document. It depends on sequential situation of report. When the 

determination are chosen they are promptly organized in the climbing request which dependent on checksum. 

The arranged view assists with accomplishing the rundown, this completes a consistent looking encapsulation. 

This complete number of decisions in the abstract is addressed by the squeeze amount. 
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3. Data Description 

For the purpose of single document text summarization we have used “News Summary” dataset from Kaggle. 

The dataset consists of two files “news_summary.csv” and “new_summary_more.csv”. Both of them are used in 

dif-ferent methods. The news_summary file contains 4516 documents of data, where each of it contains 6 

columns namely; author, date, headline, readmore, text, ctext. The news_summary_more file contains 98360 

documents which contain 2 columns, namely headlines and text. 

 

3.1 Deep Learning 

It is a part of ANN. It consists of various architectonics which deal with various human computer interaction 

problems and consists of networks that are based on graphs, convolutions, etc. The problem with linear 

perceptron is that, it does not work as expected for certain problems. This led to the introduction of multiple 

layers, which is known to be deep learning. It increases the precision of computation. These algorithms can be 

implemented with unsupervised learning. Neural Networks (NN) are used for natural language processing from 

more than 20 years. These neural networks mimic the neurons present inside the brain. It consists 3 layers in 

general. It can contain more than three layers, depending on the requirement. These convert the input into 

righteous output. 

 

Figure1  Neural Network 

3.2 Recurrent Neural Network 

RNN have an internal memory unit. These memory units are very useful in models that deals with data which is 

in a sequential form. In other network architectures, the decision at a point only depends on its present input and 

output is produced. Whereas, in RNN previous output is also taken as input for next computation. The concept of 

back propagation is used in RNN. It evaluates the mathematical partial derivation of the error wrt weight, then 

gradient descent is used to reduce the error. Back Propagation Through Time (BPTT) is used to implement RNN. 

It is used with unrolled RNN. It computes the error and changes the weights for every step.The below figure 

shows an unrolled RNN.Here, xt represents the input for time t, ranging from 0 to time t. ht is the output for 

every value of t. A is used to represent neural network. 

 

 

Figure 2 Unrolled RNN 

But there are 2 issues with RNN. If the partial derivative values are more than huge, then the values of gradient 

will increase, which leads to exploding gradients. Similarly, if the partial derivatives are very less, the values of 
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the gradient will fall down, which eventually will result in vanishing gradients. To retain the inputs for larger 

time, LSTM networks are used. 

3.3 Long Short Term Memory (LSTM) 

The LSTM architecture consists 4 neural network layers and has 3 gates to operate on the state of a cell. The first 

gate is the “forget gate”. It is used to make a decision by using a sigmoid function whether to preserve the 

information or discard it by rendering a value of 0 or 1 by h t-1 and xt . 

 

Figure 3 Forget Gate 

Then, the process involves in understanding storage of information in a cell state. The “input gate” consists of a 

sigmoid function. Another layer calculates tanh and produces a vector. Both the above layers are then used to 

update the state. 

 

 

Figure 4 Input Gate 

Updation is done by multiplying ftwith cell state ct-1  and then adding it *Ct  

 

 

Figure 5  New Candidate Values 

The last gate is the “output gate”. It is used to obtain the output. For calculating this we use a tanh layer and a 

sigmoid layer. 

 

Figure 6 Output Gate 
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3.4 Gated Recurrent Unit (GRU) 

It is similar to LSTM but has only two gates and is faster. The first gate is “update gate”, it is used to obtain the 

amount of information to be passed forward. This is used to remove the vanishing gradient problem. It is 

obtained by using a sigmoid function. Here, the values obtained will be in between 0 and 1. 

 

The second gate is “reset gate”. It is used to find the part of informatio to be removed. 

 

Current memory content uses the reset gate to remove irrelevant information. A tanh function is applied on sum 

of two elements. The first is the product of weight w and input xt . The second one is product of the reset gate 

and weight of ht-1 by using the hadamard product. 

 

At last we need to find the information that is needed to pass forward. This is done by using the update gate. 

Apply hadamard product between zt and h t-1 nad 1-z t and h
’
t. Information from the current memory and the 

previous memory are obtained and added. 

 

 

 

Figure 7 GRU 

 

3.5 Transformer T5  

 

Transformers are used to obtain parallelization. It is used to solve sequence to se-quence problems. It consists of 

encoders and decoders which are multiple in number and they are stacked . T5 is a text to text transfer 

transformer. It receives input in the form of text and output is also in the form of text. It is used for natural 

language pro-cessing tasks like, summarization, language conversion, etc. This model was original-ly developed 

by Google. 
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4  Methodology 

 

Figure 8 Block Diagram of Proposed Methodology 

4.1 LSTM Implementation  
 

 Import numpy, pandas, re, tensorflow, nltk, attention, etc packages.  

 Clean the data by removing escape characters, url’s, multiple spaces, email con-tent. Use the pipe 

method of spacy to speed up the cleaning of data.  

 Obtaining information on length of text and percentage of data with the obtained length. 

 Split 10% of data as test data set and remaining 90% as training data set.  

 Convert the data into tokens. Find the total count of words, count of unique and rarely used words.  

 Convert these tokens into vectors. Converting to vectors is converting data into integers. To make all 

sentence to have same length, pad zeroes upto maximum length.  

 Now train the model  

 Add a layer of embedding of 200 dimensions for the text data which is in the form of sequences.  

 Add three layers of LSTM for the encoder of latent dimension value equal to 300.  

 Add a LSTM layer for the decoder of latent dimension value equal to 300.  

 Add a dense layer with an activation function. The argument value for the activation function is 

softmax.  

 Start fitting the model with the data. Train on 88517 samples and validate on 9836 samples. 50 epochs 

are used for training.  

 Define decoder function to infer the implementation.  

 Run the model to see the final results.  

 

4.2 GRU Implementation  

 

 Import all the required packages and define contraction mappings.  

 Clean the data by removing unwanted data like punctuation, additional spaces, etc.  

 Split every line into pairs and normalize it.  

 Define the encoder, decoder and the attention functions.  
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 The attention mechanism used is dot product of hidden states. Then these states are passed to a softmax 

activation function and provided as input for next hidden states. 

 Teacher forcing ratio is used to speed up the process and provide the ground truth value instead of 

providing the predicted outputs for the decoder. 

 Train it for 150000 iterations.  

 Run the model to obtain results. 

 

4.3 Tranformer T5 Implementation  

 

 Libraries imported are:Pandas, Pytorch, PytorchUtils for Dataset and Dataloader, Transformers, T5 

Model and Tokenizer.  

 Clean the dataset to remove unwanted columns.  

 The data is divided into 80-20 ratio for test and validation.  

 Train and Validation parameters are defined and passed to the pytorchDataloadercontstruct to create 

train and validation data loaders.  

 Define the model and optimizer that will be used for training and to update the weights of the network.  

 Train the model with all the necessary parameters.  

 Generate the summaries.  

 

5 Results 

 

Inputs and outputs for all three algorithms are provided in this section. 

 

Figure 9Input for LSTM Algorithm 

 

Figure 10 Output for LSTM Algorithm 
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Figure 11 Input for GRU Algorithm 

 

Figure 12  Output for GRU Algorithm 

 

Figure 13 Input for Transformer T5 
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Figure 14 Output for Transformer T5 
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