
Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2404

Research Article

Abstractive Text Summarization By Using Deep Learning Models

 Soma Shrenika

a
, GouriPriyaRamini

a
, LunsavathBhagavathiDevi

a
, B Geetavani

b

aUnder Graduate Student, Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, India
bAssistant Professor, Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, India.

Abstract: Knowledge is perpetual, a person’s life time isn’t enough to absorb the whole knowledge of the universe. We all

are homo sapiens who believe in living beyond the nihilism. We try to seek more and more potentiality in our lives by

seeking knowledge. This knowledge these days is stored in various formats in huge repositories mostly in the form of

documents, sheets, photos, videos. One finds it difficult to comprehend this whole lot of information. There by, here comes

the need of text summarization. Summarization of documents, text, data is the vital part and a preliminary step in any field

whether it is business, social, art, or software. By using machine learning algorithms, the notion of text summarization can be

achieved with ease. In this paper we summarize the data as per our requirement i.e., it can be based on output. To achieve this

objective we are going to use abstractive summarization on single documents. In this process, we perform abstractive text

summarization by using Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Transformers.

Keywords: Text Summarization, Abstractive Text Summarization, Long Short Term Memory, Gated Recurrent Unit,

Transformers

1. Introduction

Text summarization is nothing but obtaining only required information from huge data. Since manual

text summarization is a time costly, for the most part a relentless task. Programmed text summarization

establishes a solid inspiration for additional examination. Current endeavors in programmed text summarization

basically center on summing up single records (for example news, articles, logical papers, climate figures, and

etc) also, multi reports (for example news from various sources, client surveys, messages and etc), lessening the

size of the underlying content while simultaneously protecting key enlightening components and the importance

of substance. Two fundamental ways to deal with programmed text summarization have been ac-counted for in

the significant writing; extractive and abstractive.

Abstractive text summarization is a really difficult undertaking, it looks like human-composed rundowns, like

that might restrain reworded decisions instead expressions including current term(for example abstract,

expressions words which are not exposed in those first content), in this manner improving the created rundown

as far as union, coherence or repetition . As computer does not understand human language and the idea related

with it, summarization become a difficult work. To crush this, many simulated intelligence models like machine

learning and deep learning are used. These models are set up in a manner of comprise to include huge

information. The principle commitment related to this is to develop an intellectual text summarization strategy.

2. Literature Survey

SukirtiVerma et.al, [1], developed a system which upgrades include vector and esteems are attach

against each sentence to create a score. According to decreasing score value the sentences are arranged. The

abstract applicable sentence is the main sentence used in this arranged rundown and it is collected as a feature of

the subclass of sentences will frame the summary. The sentence we select is the main sentence having most

interesting likeness with the principal sentence, which is selected stringently from the top of the arranged shorted

list. This interaction is repetitive and gradually iterate to choose more sentences summary limit to reach the user

deter-mined limit. Then they are re-organized according to the pattern surfacing in the orignal text. This

disorganized sentences will deliver an appraised outline instead of a group.

ManivannanKaliapan et.al, [2], proposed a subsequent method to handling the archives by utilizing the Naïve

Bayesian approach. Based on the results the sentences are organized. First the high score sentence will be

generated, then after the other sentence, etc. The Navie Bayesian process will choose sentences for each record

to produce results. They consider sentences previously to connate decision chosen of following record

eventually. To defeat some issues timestamp strategy is carried out. The timestamp technique is carried out by

allotting a worth to each pronouncement of the document. It depends on sequential situation of report. When the

determination are chosen they are promptly organized in the climbing request which dependent on checksum.

The arranged view assists with accomplishing the rundown, this completes a consistent looking encapsulation.

This complete number of decisions in the abstract is addressed by the squeeze amount.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2405

Research Article

3. Data Description

For the purpose of single document text summarization we have used “News Summary” dataset from Kaggle.

The dataset consists of two files “news_summary.csv” and “new_summary_more.csv”. Both of them are used in

dif-ferent methods. The news_summary file contains 4516 documents of data, where each of it contains 6

columns namely; author, date, headline, readmore, text, ctext. The news_summary_more file contains 98360

documents which contain 2 columns, namely headlines and text.

3.1 Deep Learning

It is a part of ANN. It consists of various architectonics which deal with various human computer interaction

problems and consists of networks that are based on graphs, convolutions, etc. The problem with linear

perceptron is that, it does not work as expected for certain problems. This led to the introduction of multiple

layers, which is known to be deep learning. It increases the precision of computation. These algorithms can be

implemented with unsupervised learning. Neural Networks (NN) are used for natural language processing from

more than 20 years. These neural networks mimic the neurons present inside the brain. It consists 3 layers in

general. It can contain more than three layers, depending on the requirement. These convert the input into

righteous output.

Figure1 Neural Network

3.2 Recurrent Neural Network

RNN have an internal memory unit. These memory units are very useful in models that deals with data which is

in a sequential form. In other network architectures, the decision at a point only depends on its present input and

output is produced. Whereas, in RNN previous output is also taken as input for next computation. The concept of

back propagation is used in RNN. It evaluates the mathematical partial derivation of the error wrt weight, then

gradient descent is used to reduce the error. Back Propagation Through Time (BPTT) is used to implement RNN.

It is used with unrolled RNN. It computes the error and changes the weights for every step.The below figure

shows an unrolled RNN.Here, xt represents the input for time t, ranging from 0 to time t. ht is the output for

every value of t. A is used to represent neural network.

Figure 2 Unrolled RNN

But there are 2 issues with RNN. If the partial derivative values are more than huge, then the values of gradient

will increase, which leads to exploding gradients. Similarly, if the partial derivatives are very less, the values of

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2406

Research Article

the gradient will fall down, which eventually will result in vanishing gradients. To retain the inputs for larger

time, LSTM networks are used.

3.3 Long Short Term Memory (LSTM)

The LSTM architecture consists 4 neural network layers and has 3 gates to operate on the state of a cell. The first

gate is the “forget gate”. It is used to make a decision by using a sigmoid function whether to preserve the

information or discard it by rendering a value of 0 or 1 by h t-1 and xt .

Figure 3 Forget Gate

Then, the process involves in understanding storage of information in a cell state. The “input gate” consists of a

sigmoid function. Another layer calculates tanh and produces a vector. Both the above layers are then used to

update the state.

Figure 4 Input Gate

Updation is done by multiplying ftwith cell state ct-1 and then adding it *Ct

Figure 5 New Candidate Values

The last gate is the “output gate”. It is used to obtain the output. For calculating this we use a tanh layer and a

sigmoid layer.

Figure 6 Output Gate

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2407

Research Article

3.4 Gated Recurrent Unit (GRU)

It is similar to LSTM but has only two gates and is faster. The first gate is “update gate”, it is used to obtain the

amount of information to be passed forward. This is used to remove the vanishing gradient problem. It is

obtained by using a sigmoid function. Here, the values obtained will be in between 0 and 1.

The second gate is “reset gate”. It is used to find the part of informatio to be removed.

Current memory content uses the reset gate to remove irrelevant information. A tanh function is applied on sum

of two elements. The first is the product of weight w and input xt . The second one is product of the reset gate

and weight of ht-1 by using the hadamard product.

At last we need to find the information that is needed to pass forward. This is done by using the update gate.

Apply hadamard product between zt and h t-1 nad 1-z t and h
’
t. Information from the current memory and the

previous memory are obtained and added.

Figure 7 GRU

3.5 Transformer T5

Transformers are used to obtain parallelization. It is used to solve sequence to se-quence problems. It consists of

encoders and decoders which are multiple in number and they are stacked . T5 is a text to text transfer

transformer. It receives input in the form of text and output is also in the form of text. It is used for natural

language pro-cessing tasks like, summarization, language conversion, etc. This model was original-ly developed

by Google.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2408

Research Article

4 Methodology

Figure 8 Block Diagram of Proposed Methodology

4.1 LSTM Implementation

 Import numpy, pandas, re, tensorflow, nltk, attention, etc packages.

 Clean the data by removing escape characters, url’s, multiple spaces, email con-tent. Use the pipe

method of spacy to speed up the cleaning of data.

 Obtaining information on length of text and percentage of data with the obtained length.

 Split 10% of data as test data set and remaining 90% as training data set.

 Convert the data into tokens. Find the total count of words, count of unique and rarely used words.

 Convert these tokens into vectors. Converting to vectors is converting data into integers. To make all

sentence to have same length, pad zeroes upto maximum length.

 Now train the model

 Add a layer of embedding of 200 dimensions for the text data which is in the form of sequences.

 Add three layers of LSTM for the encoder of latent dimension value equal to 300.

 Add a LSTM layer for the decoder of latent dimension value equal to 300.

 Add a dense layer with an activation function. The argument value for the activation function is

softmax.

 Start fitting the model with the data. Train on 88517 samples and validate on 9836 samples. 50 epochs

are used for training.

 Define decoder function to infer the implementation.

 Run the model to see the final results.

4.2 GRU Implementation

 Import all the required packages and define contraction mappings.

 Clean the data by removing unwanted data like punctuation, additional spaces, etc.

 Split every line into pairs and normalize it.

 Define the encoder, decoder and the attention functions.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2409

Research Article

 The attention mechanism used is dot product of hidden states. Then these states are passed to a softmax

activation function and provided as input for next hidden states.

 Teacher forcing ratio is used to speed up the process and provide the ground truth value instead of

providing the predicted outputs for the decoder.

 Train it for 150000 iterations.

 Run the model to obtain results.

4.3 Tranformer T5 Implementation

 Libraries imported are:Pandas, Pytorch, PytorchUtils for Dataset and Dataloader, Transformers, T5

Model and Tokenizer.

 Clean the dataset to remove unwanted columns.

 The data is divided into 80-20 ratio for test and validation.

 Train and Validation parameters are defined and passed to the pytorchDataloadercontstruct to create

train and validation data loaders.

 Define the model and optimizer that will be used for training and to update the weights of the network.

 Train the model with all the necessary parameters.

 Generate the summaries.

5 Results

Inputs and outputs for all three algorithms are provided in this section.

Figure 9Input for LSTM Algorithm

Figure 10 Output for LSTM Algorithm

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2410

Research Article

Figure 11 Input for GRU Algorithm

Figure 12 Output for GRU Algorithm

Figure 13 Input for Transformer T5

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2404– 2411

2411

Research Article

Figure 14 Output for Transformer T5

References

1. SukirtiVerma and VagishaNidhi, Extractive Summarization Using Deep Learning, Inter-national Conference On

Computational Linguistics and Intelligent Text Processing, 2017.

2. ManivannanKaliapan and Neduchelian, Ramanujam, Automatic Multi Document Text Summarization Approach

Based On Naïve Bayesian Classifier Using Timestamp Strategy, The Scientific World Journal, 2016.

3. M Afzal, F Alam, KM Malik, GM Malik, Clinical Context–Aware Biomedical Text Sum-marization Using Deep

Neural Network: Model Development and Validation, Journal of medical Internet research, 2020 .

4. R Kotadiya, S Bhatt, U Chauhan, Advancement of Text Summarization Us-ing Machine Learning and Deep

Learning: A Review, Proceedings of First International Conference on Computing, Communications, and Cyber-

Security, 2020.

5. S Abujar, AKM Masum, MS Islam, F Faisal A Bengali text generation approach in context of abstractive text

summarization using rnn, Innovations in Computer Science and Engi-neering, 2020.

6. PG Magdum, S Rathi, A Survey on Deep Learning-Based Automatic Text Summariza-tion Models, Advances in

Artificial Intelligence and Data Engineering, 2021.

7. N Dang, A Khanna, VR AlluguntI, TS-GAN with Policy Gradient for Text Summariza-tion, Data Analytics and

Management, 2021.

