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Abstract: Software Requirements Specification (SRS) is considered a highly critical artifact in the software development. All 

phases in software development are influenced by this artifact. Defects in software requirements may higher the risk of 

project overschedule that contributes to cost overrun of the project. Researchers have shown that finding defects in the initial 

software development phase is important because the cost of the bug is cheaper if it is fixed early. Hence, our main goal is to 

provide a platform for requirement engineers to produce better requirement specifications. We propose AmbiDetect, a 

(prototype) tool to automatically classify ambiguous software requirements. AmbiDetect combines text mining and machine 

learning for ambiguous requirement specification detection. The text mining technique is used to extract classification 

features as well as generating the training set. AmbiDetect uses a machine learning technique to perform the ambiguous 

requirement specification detection. From an initial user study to validate the tool, the result indicates that the accuracy of 

detection is reasonably acceptable. Although AmbiDetect is an early experimental tool, we optimist that this tool can be a 

platform to improve SRS quality. 
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1. Introduction 

 

Software requirements specification (SRS) is the foundation of software and considered a highly critical 

document in software development. It records all stakeholders‟ requests of the system to be developed. This 

document is normally produced in the early phase of software development and influences all subsequent phases 

in the software development lifecycle. Therefore, we strongly believe that a high-quality software requirement 

increases the quality of software. It is similar to the term “Garbage in, Garbage out” that has been commonly 

used in computer programming which denotes “If there is a logical error in software, or incorrect data are 

entered, the result will probably be either a wrong answer or a system crash”, Dictionary.com, 2018. For 

instance, if we look at the V-Model, high-level testing is often depicted as the Verification and Validation 

activity to requirements elicitation, analysis and specification. This means the relationship between requirements 

engineering and testing is an important part of our software engineering knowledge, Unterkalmsteiner et al. 

(2014). A key characteristic of software requirements is that it should be possible to verify that the finished 

product meets the requirements, Bourque and Fairley (2014).  

 

{Problem statement}. Incomplete, unverifiable, incorrect, and ambiguous are several examples of issues in 

software requirements that influence the acceptance testing of software. This may lead to overruns in project 

time and costs, Fernández and Wagner, (2015). The cost of bugs that found late is more expensive than if it 

found early. Hence, software defects need to be detected as early as possible, Berry et al. (2006). A method that 

provides a quick detection to several defects in software requirement could give useful feedback to the 

requirement engineer, Femmer et al., (2014), Hussain et al., (2017). 

 

As recommended by ISO/IEC/IEEE 29148, ISO (2011), an individual software requirement should have the 

following characteristics: (i) unambiguous, (ii) consistent, (iii) complete, (iv) singular, (v) feasible, (vi) traceable 

and (vii) verifiable. To this end, most of the work used to classify defects in the requirements specification refers 

to several requirements templates, such as Pohl and Rupp (2011), Mudavath et al. (2020), Mavin et al. (2009), 

IEEE (1998) and ISO (2011). Based on our observations and experiences, not all requirements specifications 

follow the requirements template, but they can still be understood or the quality is acceptable. It is necessary to 

have a technique for classifying defects based on the truly unstructured text in requirements specifications. 

 

{Goal}. Our main goal is to provide a platform for requirement engineers to produce better SRSs. As an 

initial step, we propose AmbiDetect, a (prototype) tool to automatically detect ambiguous software requirements 

specification. AmbiDetect combines supervised machine learning techniques and text mining to provide defect 

classification model. The text mining technique is used for feature extraction, and the tools „learns‟ to detect the 

ambiguous SRS by using the supervised machine learning technique. We apply the ambiguous SRS detection 

proposed by Osman and Zaharin (2018) for developing the classification model.  
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To this end, the tool capable to perform ambiguity detection only for SRS that is written in Malay (language) 

because the generated dataset is originated from Malaysian industrial software developments which are only 

written in Malay. However, the tool is developed in such a way that it can use any dataset from any language. 

Even though this tool is still a prototype, we received good feedback after conducting an initial user study. 

Hence, we optimist that the ambiguous SRS detection technique and tool may contribute to enhance the quality 

of SRS. The tool‟s demonstration can be found at Osman (2018). 

 

2. System Overview 

 

The development of AmbiDetect is based on the architecture in Figure 1. We applied a simple two-tier 

architecture that is easy to scale for future expansion. The description of two-tier architecture is (i) First Tier: 

Contain web browser which covers front end-users to provide a graphical user interface and interface windows; 

and (ii) Second Tier: Consist of Web Server (Apache) and Application Server (PHP) that execute (business) 

logic of this tool.  

 

 
Figure 1. AmbiDetect  System Architecture 

 
The description of several elements in the system architecture is the following: 

a) Input - The user interface to collect the SRS statement from the user. 

b) Data Preparation - Responsible to (i) chunk the text input (i.e. SRS statement) into words, (ii) map each word 

with the word that is stored in the MySQL database (derived from training data), (iii) calculate the word 

occurrence and (iv) transform SRS into data for classification.  

c) Data Processing - Execute the machine learning component to classify the SRS. The SRS is classified as 

ambiguous if the classification value = 1 and classified as unambiguous if the classification value = 0. Python 

scikit-learn library is used for machine learning classification purposes. 

d) Output - The user interface to present the output (i.e. ambiguous/unambiguous and the words that possibly 

contribute the classification) 

 

3. AmbiDetect Features 

 

There are three (3) main features of the AmbiDetect tool: (i) Information of Software Requirement & Dataset, 

(ii) Requirement Validation, and (iii) Classification Features. 

 

A. Information on Requirement Specification & Dataset 

 

As mentioned in section 1, the main purpose of our work is to provide a platform for software engineers to 



Ambi Detect: An Ambiguous Software Requirements Specification Detection Tool  

2025 

 

produce a better SRS. Hence, in this tool, we present the following information at the tool‟s landing page (as 

shown in Figure 2): 

 How to construct a good requirement? This information shows the step of constructing software requirements 

suggested by the International Requirement Engineering Board (IREB). 

 How to avoid ambiguity? The tool describes the information on how a user can avoid ambiguity. This 

information is gathered from ISO/IEC/IEEE 29148. 

 List of the ambiguous word. The information about the possible ambiguous words is derived from Haron et 

al. (2015) and Kamsties et al. (2001).  

 Top words in the dataset. The tool lists (top) ten words that are extracted from the training data. 

 

B. Ambiguous Requirement Detection 

 

The ambiguous requirement detection is the primary feature of this tool. This feature detects the ambiguity of 

an individual requirement specification that is entered by the user (Figure 3). The tool shows the result (i.e. 

ambiguous or non-ambiguous requirement specification) and also lists the words are possibly influence the 

classification. 

 

C. Configure Classification Features 

 

This feature allows the user to manually configure the classification features (i.e. the feature-words) for 

classifying ambiguous and non-ambiguous requirements. The tool listed all the feature-words that are used for 

machine learning classification (Figure 4). In this way, the user may exclude the words that are not influential in 

classifying the requirements. 

 

4. Building The Classification Model 

 

The classification model was built based on the framework illustrated in Figure 5. The explanation of the 

phases in building the classification model are the following: 

 

A. Data Collection 

 

We collected four (4) SRS documents that derived from four (4) separated Malaysian Industrial Software 

Development Projects for this tool. In total, 180 software requirements specifications were extracted from the 

SRS documents to generate the dataset.   

 

B. Document Preprocessing 

 

Supervised machine learning needs labeled data. In this phase, we conduct a data labeling task and perform 

data cleansing. 

 

 Data Labeling. This tool aims at providing the information of ambiguous and unambiguous requirements based 

on the classification model. The training dan testing dataset should consist of labeled data which is ambiguous 

„Y‟ and Unambiguous „N‟. Each of the extracted requirements is manually labeled. Two (2) requirement 

engineers performed the labeling activity. Both engineers have more than three (3) years in the field of 

requirements engineering. As a reference, the following definition of unambiguous (defined by the 

ISO/IEC/IEEE 29148) is used for this task: “The requirement is stated in such a way so that it can be interpreted 

in only one way. The requirement is stated simply and is easy to understand”.  
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Figure 2. AmbiDetect Landing Page 

 

 
Figure 3. Ambiguity Detection Feature 

 
 

Figure 4. Configure Feature-words 

 

 Data Cleansing. In this activity, we cleaned or scrubbed software requirement specifications (in unstructured 

text form). The task consists of (i) word filtering, (ii) stop word removal, and (iii) stemming. This task was 

conducted manually since the Malay language currently does not have a library or tool to perform stop word 

removal and stemming.  

 

C. Text Processing 

 

From 108 requirement specifications, we gathered 405 feature-words. We formulate a text dictionary by 

calculating the number of occurrences for each feature-words (in each requirement specification) and integrate 

with the requirement labels. The text dictionary will be used as the training set.  
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Figure 5. Requirement Specification Detection Framework 

 
D. Text Classification 

 

The Random Forests classification algorithm (Breiman (2001)) was used to classify the ambiguous and 

unambiguous software requirements. This classification algorithm was selected since it performed well in our 

dataset based on the work by Osman and Zahrin (2018). 

 

5. User Study 

 

We conducted a user study to evaluate our initial approach to detecting an ambiguous requirement 

specification. Ten (10) respondents (i.e. working as System Analysts and/or Requirement Engineers) were 

selected. Three (3) of the respondents have < 2 years of experience, four (4) respondents have 2 – 5 years of 

experience and three (3) respondents have more than 5 years of experience in requirements engineering. At first, 

the respondents were asked to use the prototype. Then, they were asked to answer several questions. A (six-

level) Likert scale format was used in this survey: strongly agree, agree, moderately agree, moderately disagree, 

disagree, and strongly disagree. This user study mainly focuses to collect this information: 

 

i. The accuracy of the ambiguity detection result. Seven (7) of the respondents moderately agree, two (2) of 

the respondents strongly agree while only one (1) agree on the accuracy of the result of the tool. We may 

summarize that the result of this tool is reasonably accepted. 

ii. The tool increases the productivity of developing SRS. Three (3) of the respondents strongly agree that the 

tool increases the productivity of developing SRS. One (1) respondent agree while six (6) moderately agree 

that the tool increased the productivity in developing SRS. The result may indicate that the tool can facilitate 

software engineers in producing SRS. 

 

6. Conclusions & Future Work 

 

As part of our goal in providing a platform for requirement engineers to produce better requirement 

specifications, we introduce AmbiDetect, an ambiguous requirements specification detection tool. The 

ambiguous requirement specification detection engine is based on the combination of supervised machine 

learning and text mining to extract the classification features to formulate an ambiguous requirement 

specification model. AmbiDetect is now only available for requirement specifications that are written in the 

Malay language; however, the tool may easily be changed to other requirements that are written in other 

languages by changing the dataset. The initial validation of the tool showed that the classification result is 

reasonably acceptable and may improve the productivity of formulating SRS. We believe that tools have made a 

significant contribution to improving the quality of SRS and supporting requirements testing or review tasks. 
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For future work, we see that this work can be improved by (i) improving the ground truth of the training dataset, 

(ii) increase the volume of the dataset, (iii) formulating more feature-words, (iv) applying other text mining 

techniques, and (v) improving feature selection.   
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