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1.Description of the Problem 

Consider the fourth order random differential inclusions as 

''''( , ) ( , ) ( ( , ), '( , ), ),      0 1 ,  p t t p t p t t                                                    (1.1) 

                                  with respect to boundary conditions 

    (0, ) '(0, ) "(1, ) "'(1, ) 0p p p u                                                                              

(1.2) 

Suppose that  

1(A ).  :[0, ) [0, ) [0, )       is continuous. 

2(A ).  :[0,1] [0, )     is a continuous function such that 
1

0
( , ) 0.t dt    

In classical problem (1.1) has been studied by Ma [11],Bai, Wang [2], Davis, Henderson [4], 

Elgindi,Guan [5], Also, in random problem (1.1) has been studied by D.S. Palimkar[12,13,14].S. 

B. Biradar, D. S. Palimkar[2].  

In here, we have proved existence result of problem (1.1)-( 1.2) applying Krasnosel'skii fixed 

point theorem.  

The Green's function :[0,1] [0,1] [0, )G    for(1.1)-( 1.2) is  

2

2

1
(3 ),       if    0 1,

6
( , )

1
(3 ),       if    0 1.

6

t s t t s

G t s

s t s s t

     
    


 

and (1.1)-(1.2) is equivalent to the integral equation 
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1

0
( , ) ( , ) ( , ) ( ( , ), '( , ), ) ,        0 1, .                    (1.3)p t G t s s p s p s ds t            

The following Krasnosel'skii fixed point theorem is apply to prove key results . 

Theorem1.1[9].Let  , .B  be a Banach space and let K B be a cone. Let 1B  and 2B  be real 

numbers such that 2 1 0B B  , and let 

  ,        1,2.
i i

U q B q B i     

If 2 1M:K ( )U U K  is a completely continuous operator such that, either 

1 1 2( ).    if  q  ,  and   if  q  ,C Mq q K U Mq q U       

Or 

                     2 1 2( ).     q  ,       q .C Mq q if K U and Mq q if K U        

Then M has a fixed point in 2 1( )K U U  . 

2 .Existence Results 

We have listed  some results about  positive solutions of problem (1.1)-( 1.2). 

Define the functions :[0,1] [0, )a     and  :[0,1] [0, )b    by 

2 33 1
( , ) ,               0 1,

2 2
a t t t t      

3 4
2   4   

( , ) 2 ,        0 1.
3 3

t t
b t t t       

Lemma 2.1. If  
4[0,1]p C  satisfies the boundary conditions (1.2), and such that 

                                                                       

""( ) 0      0 1,                                         (2.1)p t for t    

                                                        

"'( ) 0,   p"( ) 0 , p '( ) 0 , p( ) 0    for    [0,1]      (2.2)p t t t t t      

Lemma 2.2. If 
4[0,1]p C  satisfies (1.2) and (2.1), then 

                ( ) (1) ( ) (1)     for    [0,1]                 (2.3)a t p p t t p t    

Lemma 2.3. If 
4[0,1]p C  satisfies (1.2) and (2.1), and ''''( )p t  is non decreasing on [0,1] , then 

        
( ) (1) ( ) ( ) (1)          [0,1]               (2.4)a t p p t b t p for t    

 Lemma 2.4. Suppose that ( 1A ) and ( 2A ) holds. If ( )p t  is a nonnegative solution to the problem 

(1.1)-(1.2), then ( )p t  satisfies (2.2) and (2.3).Define the operator :T P B  by 

1

0
( )( , ) ( , ) ( , ) ( ( , ), '( , ), ) ,      0 1,              T p t G t s s p s p s ds t            

Lemma 2.5. Suppose that ( 1A ), ( 2A ), and the following condition hold. 

( 3A ). Both   and   are non decreasing functions. 
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If ( )p t  is a nonnegative solution to the problem (1.1)-( 1.2), then ( )p t  satisfies (2.2) and (2.4). 

 

 

3. Main Results 

Here, we quote some constants terms 
1 1

0 0
(1, , ) ( , ) ( , ) ,  E (1, , ) ( , )  ,D G s s a s ds G s s s ds           

0 0
00

( ) ( )
limsup ,     liminf ,

ww

w w
F f

w w

 
 

    

( ) ( )
limsup ,     liminf ,

ww

w w
F f

w w

 
  
    

 let [0,1]B C   be with norm
[0,1]

max ( , ) ,      q ,
t

q q t B


 
 

 
and   

let  (1, ) 0,  ( , ) (1, ) ( , ) (1, )    [0,1], .K q B q a t q q t t q for t            
 

Where K
  is a positive cone in B. 

Result-I 

Suppose that ( 1A ) and ( 2A ) holds. If 0 1 ,E F D f  then the problem (1.1)-( 1.2) has at least 

one positive random solution. 

Proof. Firstly, choose 0  such that 0( ) 1F E  . From 0F ,  there exists 1 0H   such that 

0 1( ) ( )       0 .f w F w for w H     

For each p K  with 
1p H , we have 

1

0
( )(1, ) (1, , ) ( , ) ( ( , ), '( , ), ) T p G s s p s p s ds          

                       

1

0
0

(1, , ) ( , )( ) ( , ) G s s F p s ds        

                     

1

0
0

( ) (1, , ) ( , ) F p G s s ds       

                     0( )F p B   

                             
,p  

which means .T p p Thus, if we let  1 1 U p B p H   then 

                       1        p .T p p for k U    

For 2U , choose 0   and (0,1/ 4)c  such that 

                                

1

0
(1, , ) ( , ) ( , ) .( ) 1.G s s a s ds f        

There exists 3 0H   such that 
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                    3( ) ( )     w .f w f w for H    

Let  2

2 3 1max ,2 .H H c H
  If p K such that 

2 ,p H then for each [ ,1],t c  

         We have , 2 2

2 2 2 3( , ) ( , ) .p t H a t H t H c H       

           Therefore, for each p K with 
2 ,p H we have 

1

0
( )(1, ) (1, , ) ( , ) ( ( , ), '( , ), ) T p G s s p s p s ds          

                       

1

(1, , ) ( , ) ( ( , ), '( , ), ) 
c
G s s p s p s ds         

                     

1

(1, , ) ( , )( ) ( , ) 
c
G s s f p s ds       

                  

1

0
 (1, , ) ( , ) ( , )  . ( )G s s a s ds f p       

                  
 ,p  

which means .Tp p  Thus, if we let  2 2  ,U p B p H   then 
1 2,U U  and 

                      2      p .T p p for K U    

Now, condition first of Theorem 1.1 is satisfied, there exists a random fixed point of T in 

2 1( ).K U U    

Result-II 

Assume that ( 1A ) and ( 2A ) holds. If 01 ,E F D f   then the problem (1.1)-( 1.2) has at least one 

random positive solution. 

Proof. Firstly , choose 0  such that 0( ) 1.f D   There exists 1 0H  such that 

0 1( ) ( )         0 .f w f w for w H     

For each p K with 
1,p H  we have 

1

0
( )(1, ) (1, , ) ( , ) ( ( , ), '( , ), ) T p G s s p s p s ds          

                        

1

0
0

(1, , ) ( , ) ( , )  . ( )G s s p s ds f       

                         

1

0
0

(1, , ) ( , ) ( , )  . ( )G s s a s ds f p       

                      0( )D f p   

                  
 ,p  

which means .Tp p  Thus, if we let  1 1  ,U p B p H   , then 

                        1      p .Tp p for K U    

For 2 ,U  choose (0,1)   such that ( ) 1.F D    There exists 3 0H   such that 
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                 3( ) ( )       w .w F w for H     

If we let 
30

max ( ),
w H

M w
 

  then ( ) ( )       w 0.w M F w for      

      Let
1

0
(1, , ) ( , ) ,N M G s s ds    and let  12 1max 2 , (1 ( ) ) .        H H N F B 

    

from (3.2) implies that 2 2( ) .N F EH H    

For each p K with 
2 ,p H we have 

1

0
( )(1, ) (1, , ) ( , ) ( ( , ), '( , ), ) Tp G s s p s p s ds          

                    

1

0
(1, , ) ( , )( ( ) ( , )) G s s M F p s ds        

                  

1

0
( ) (1, , ) ( , ) ( , ) N F G s s p s ds         

                  

1

2
0

( ) (1, , ) ( , )  N F H G s s s ds        

                 2( ) ,N F H E    

   2           ,H  

which means Tp p Thus, if we let  2 2  ,U p B p H    then
1 2,U U and 

                      2      p .Tp p for K U    

Therefore, condition ( 2C ) of Theorem 1.1 is verified. Hence ,T has at least one random fixed 

point. Obviously , the problem (1.1)-( 1.2) has at least one random positive solution.  

4. Conclusion 

We have proved the criteria for  existence of random solution of the problem. This type of results 

are obtained in classical differential inclusions but not in random differential inclusions. Hence, 

this result is basic and new results in random differential inclusions. 
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