
Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2037

Research Article

A Hybrid Framework for Software Clone Detection

Neha Saini1, Sukhdip Singh2

1Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131001, India

2Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131001, India

Abstract

Software systems are becoming increasingly complex, and managing them is a critical topic
in the software business today. Cloning is one of the fundamental factors that makes software
maintenance more difficult. Code cloning is a copy-paste approach for reproducing code
portions. Developers find it simple to copy and paste code throughout the early stages of a
project's development. This paper presents a hybrid framework for detecting code clones. To
detect code clones, it combines a token-based technique with metrics-based technique.
Initially, metric based technique is applied to locate prospective clones. After identifying
prospective clones, token-based comparison is done to confirm that they are indeed clones.

Keywords: Code Clone, Code Clone Detection, Metric, Token

1 Introduction

Code clone detection locates clones, or identical or similar portions of code, within or
between software systems. Clones are made for a variety of reasons, including copy-paste-
modify programming, unintentional code functionality resemblance, plagiarism, and code
generation[1]. Software practitioners rely on code clone detection techniques and tools to
detect and manage code clones;therefore, they've long been a research topic[2].

Clone management is critical for maintaining software quality, detecting and preventing new
issues, as well as lowering development risks and expenses [3]. The availability of high-
quality tools is also critical for clone research. At least 70 different tools have been reported
in the literature, according to Rattan et al[4] Despite the fact that various strategies for clone
identification have been developed over the year the accuracy and scalability of clone
detection tools and techniques is still a hot topic of research.

1.1 Code Clone Terms

 Code Fragment: It's defined as a set of code lines with varying degrees of

resemblance between different code fragments in the source code. There may or may

not be comments in these comparable code fragments. For instance, a series of

sentences, a begin-end block, and so on[5].

 Clone Set: It is defined as a collection of all code fragments that are identical or

comparable[6].

 Clone Pair: A Clone Pair is formed when two code fragments are inspected and there

is a clone relationship between the two code pieces[7].

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2038

Research Article

 Clone Class: The clone class is defined as a set of all clone pairs in which the existing

clone pairs have some clone relationship between them.

1.2 Clone Types

 Type 1: Identical copy with the exception of white space and comments.

 Type 2: As type 1, but with the addition of variable renaming.

 Type 3: Similar to type 2, but with a few changes or additions.

 Type 4: Syntax isn't always the same, but it's semantically same.

2 Related works

A software, according to Tajima et al.[8], is made up of a group of programmers. Each team
member is responsible for writing code for a certain part. Because eachprogrammer works
individually, it's possible that a handful of them will develop the identical code. The
generated code will have a clone when the project leader integrates the entire code. Extra
processing and storage will be required as a result of this. Rainer [9] has published a report on
software redundancy, duplication, and cloning, as well as their various kinds. He has
examined the origins of clones as well as their harmful consequences. The study's
contribution is knowledge on how to avoid clones, as well as an evaluation of existing
methodologies and clone detection benchmarks.

Rattan et al. [4]conducted a thorough examination of the various code clone detection tools
and approaches available. They have identified some open research questions in this subject.
The study can assist users in determining the utility of a tool based on their needs.

Mondal et al. [10] used a common framework to perform an experiential study. Their plan
was to use four tools to deploy nine code clone methods on 15 systems in order to investigate
the impact of code cloning on software preservation. The study's flaw is that it hasn't been
properly applied yet. Nonetheless, the findings reveal that copied code is more likely to be
updated and is less stable.

3 Proposed Framework

The proposed hybrid framework combines metrics-based clone detection with token-based

clone detection. There are three stages to the process. To find probable clones in the first

stage, a metric-based technique is applied. Potential clones are chosen based on how closely

the two source files' metrics matches. The metrics are calculated at the class, function, and

threshold levels, with the threshold level being defined for metric matching. In the second

phase, only actual clones are recognized using a token-based technique if the metrics match

count above the threshold value; otherwise, there is no need to calculate actual clones

because there is no potential clone between the source files. The current work describes a

method for choosing a collection of relevant metrics for code clone detection approaches that

use metrics. A set of metrics is evaluated from a large number of metrics presented in the

literature of code clone detection such that the metrics in the set are independent of one

another, i.e there is no correlation between the metrics, and these metrics also produced good

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2039

Research Article

results in code clone detection. To reduce the comparison cost and make the approach

computationally efficient, independent metrics are used. Two tools [11], [12]for identifying

software metrics are utilized to determine the values of required metrics for implementing the

strategy. The metrics values can be exported as a Comma Separated Values (CSV) file using

these tools. Starting with all combinations of one metric, metrics are evaluated on precision

and recall before gradually increasing the number of metrics in the metrics combinations until

the entire set of metrics involved in the approach is utilized. The suggested method

overcomes a fundamental drawback of metrics-based code clone detection strategies, namely,

low precision.

3.1 Architecture of Proposed Metric and Token Based Software Clone Detection and

Management

The proposed framework is divided in to three steps (1) Selection of prospective clones on

the basis of metrics match, (2)Processing of prospective clone candidates by token-based

technique to determine whether two prospective clones really are clone of each other and (3)

Clone Management by Ranking of Clones on the basis of Management Overhead. All three

steps are discussed in detail in the subsequent sections. The architecture of the proposed

framework is depicted in Figure 1.

Figure1: Architecture of Proposed MTB-SCDM Framework

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2040

Research Article

3.2 Selection of prospective clones on the basis of the metric match.

In the first step, selection of prospective clone candidates is done on the basis of selected

software metrics. The output of this step is passed on to the next step for further refinement of

detected clones.

1. Software Metrics: Software metrics are numerical numbers for some software properties

or software units. Metrics that quantify functions as software units are necessary in the

suggested approach.

2. Metrics Classification

Metrics can be broadly classified in to three:

 Product

 Process

 Project

The literature on clone detection has a vast number of measures. Among such metrics,

however, only a set of nine is picked. These metrics were chosen because they are

independent of one another, i.e. there is no correlation between them, and they also

produced good results in terms of code clone identification. NOR is a novel statistic that

results in a significant increase in precision for the experiment done. As a result, the

suggested method evaluates a total of nine metrics which are given in Table 1.

Table 1 Metrics Name and Meaning

Metric Number Metric Name Metric Meaning

1 Cyclomatic

Complexity

Number of decision points+1 or Edges – Nodes

+Connected components

2 Depth The maximum level of nesting of control

constructs

3 LOC The number of lines in a function

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2041

Research Article

4 CountInput The number of functions that a function uses plus

the number of unique subprograms calling the

function i.e. Functions called by+ Parameters

read + Variables read

5 CountOutput The number of outputs that are set i.e. Functions

Call+ Parameter set/exchange+ variables

set/exchange

6 CountPath Number of Unique paths through a function

7 CountStmtDecl Number of Declarative Statements

8 CountStmtExe Number of Executable Statements

9 NOR Number of return statements in a function

We began by applying a single statistic from the metrics listed above, which resulted in nine

distinct combinations: (1), (2), (3), (4), (5), (6), (7), (8) and (9). The stages for each of these

combinations are as follows:

1. Calculation of metrics and creation of CSV files

Two tools are used to calculate the metrics indicated inside each combination. LOC,

Complexity, CountInput, CountOutput, CountPath, CountStmtDecl, and CountStmtExe

are seven metrics calculated using the tool, Understand [11], which is a tool for calculating

metrics. The metrics, Depth and NOR are calculated with the help of a tool called Source

Monitor [12]. The metrics values can be exported as a CSV file using these tools. The data

from the CSV files is then entered into the database.

2. Formation of Clone Pairs and Clone Classes

By using a comparison algorithm, clone classes and clone pairs are formed for each

combination. The pseudocode for proposed comparison algorithm is given in Table 2. It is

possible to distinguish between type-1 and type-2 clones using this method.

Table 2 Pseudocode for Comparison Algorithm

Input: ∀funi∈ FS input values of m1k, m2k,……. mrk.

Output: Clone classes cc1, cc2,…………ccn for MCk.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2042

Research Article

The different notations used in the algorithm are:

• N: total number of functions in the system where we need to find out clones

• FS: set of all functions of software system s.t. FS={fun1, fun2,……………………..funN}

• funi:i
th function of software system where i=1 to N

• MCkMetric combination for which clone classes need to be detected.

• mrkr
th metric in metric combination MCks.t.MCk= (m1k, m2k, , mrk).

• fi. mrkValue of metric mrk for function fi.

• CRep: Clone Repository where all detected clones are stored

CRep<-NULL

for i=1 until N

{

if (funi∉ cci) ∀ cci ∈CRep then

 cci {funi}

end if

for j = i+1 until N

 {

 if (funim1k == funjm1k && funim2k == funjm2k &&…………………..funimrk ==

funjmrk)

 then

 cci {funj}

 end if

 }

CRep cci

}

3.3 Processing of prospective clone candidates by token-based technique to determine

whether two prospective clones really are clone of each other.

The clone classes generated in the previous step are input to the token-based algorithm.After

that precision and recall values are calculated for the generated clone classes and selection of

subset of metrics is done on the basis of precision and recall values.

4 Results and Discussion

The proposed approach is implemented on wget[13] which is a large sized software system

and is described in below Table 3:

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2043

Research Article

Table 3 Description of case used

Case

LOC Functions

wget 17K 247

Table 4 shows the maximum precision and recall scores for each metric combination as we

progressed from single-metric combinations to combinations comprising all nine metrics.

Table 4 Precision and Recall Value for different Metrics Combination

Number of

Metrics used

Metrics

Combinations

Precision Recall No. of

Detected

Clone

Classes

One (1) 0.15 1 26

Two (1,3) 0.25 1 24

Three (1,3,6) 0.5 0.8 22

Four (1,3,6,7) 0.61 0.76 21

Five (1,3,4,6,7) 0.8 0.8 19

Six (1,2,4,6,7,9) 0.95 0.87 17

Seven (1,2,3,4,5,6,7) 0.88 0.38

14

Eight (1,2,3,4,5,6,7,8) 0.89 0.55 15

Nine (1,2,3,6,7,4,5,8,9) 0.90 0.86 18

When only one metric is used to detect clones, the maximum precision is 15 percent and the

highest recall is 100 percent. When metric number one, complexity, is utilised, these values

are obtained. In the event of a combination of two measurements, the highest precision and

recall are 25 percent and 100 percent respectively. Table 4 shows that the value of greatest

precision grows as the number of metrics increases, although is only applicable up to six

metrics. The precision value declines when seven metrics were utilized. The best combination

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2044

Research Article

is (1,2,4,6,7,9), which yielded a precision of 95% and a recall of 87%. As a result, the

combination (1, 2, 4, 6, 7, 9) is regarded as a set of significant code clone detection metrics.

The highest precision and recall values for combinations of multiple metrics are shown in

Figure 2.

Figure 2: Precision Graph for different metrics combination

Table 5 Precision and Recall Value for different Metrics Combination

Number of

Metrics used

Metrics

Combinations

Precision Recall No. of

Detected

Clone

Classes

One (1) 0.15 1 26

Two (1,3) 0.25 1 24

Three (1,3,6) 0.5 0.8 22

Four (1,3,6,7) 0.61 0.76 21

Five (1,3,4,6,7) 0.8 0.8 19

Six (1,2,4,6,7,9) 0.95 0.87 17

Seven (1,2,3,4,5,6,7) 0.88 0.38

14

Eight (1,2,3,4,5,6,7,8) 0.89 0.55 15

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

One Two Three Four Five Six Seven Eight Nine

P
re

ci
si

o
n

 V
al

u
e

Metric Combination

Precision Graph for Different Metric Combinations

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2045

Research Article

Nine (1,2,3,6,7,4,5,8,9) 0.90 0.86 18

5 Conclusion

In this paper, a hybrid framework for detecting and managing clones is proposed which

combines metric-based techniques with token-based techniques. Selection of prospective

clones, comparison of prospective clones and their management are three main steps of the

proposed framework. Type-1 and Type-2 clones are detected using the proposed framework,

which starts with a metric based match and then moves on to a token based match. The

proposed technique uses metric and token based matching to detect clones. The proposed

method searches for clones at function levels. The proposed method uses metric matching to

identify probable clones. To establish whether two prospective clones are truly clones of one

other, potential clones are compared token by token.

The proposed technique significantly improves the process of managing code clones.

Although code clone detection is the essence of clone management, the detected clones need

to be treated very carefully. They can either be eliminated or refactored inside the code base,

as deleting the code clones is not always viable. It is also not always required to refactor the

complete code clone set; some of the less damaging clones can be omitted.

References

[1] H. A. Basit and S. Jarzabek, “A Data Mining Approach for Detecting Higher-Level Clones in
Software,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 497–514, Jul. 2009, doi:
10.1109/TSE.2009.16.

[2] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent approach for detecting
duplicated code,” in Proceedings IEEE International Conference on Software Maintenance - 1999

(ICSM’99). “Software Maintenance for Business Change” (Cat. No.99CB36360), Aug. 1999, pp.
109–118. doi: 10.1109/ICSM.1999.792593.

[3] P. Kumar, Nitin, V. Sehgal, K. Shah, S. S. P. Shukla, and D. S. Chauhan, “A novel approach
for security in Cloud Computing using Hidden Markov Model and clustering,” in 2011 World

Congress on Information and Communication Technologies, Dec. 2011, pp. 810–815. doi:
10.1109/WICT.2011.6141351.

[4] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A systematic review,”
Information and Software Technology, vol. 55, no. 7, pp. 1165–1199, Jul. 2013, doi:
10.1016/j.infsof.2013.01.008.

[5] T. Kamiya, “Agec: An execution-semantic clone detection tool,” in 2013 21st International

Conference on Program Comprehension (ICPC), May 2013, pp. 227–229. doi:
10.1109/ICPC.2013.6613854.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 2037- 2046

2046

Research Article

[6] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An Empirical Study on the
Maintenance of Source Code Clones,” Empirical Software Engineering, vol. 15, pp. 1–34, Feb. 2010,
doi: 10.1007/s10664-009-9108-x.

[7] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “ARIES: refactoring support tool for code
clone,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–4, May 2005, doi:
10.1145/1082983.1083306.

[8] R. Tajima, M. Nagura, and S. Takada, “Detecting functionally similar code within the same
project,” in 2018 IEEE 12th International Workshop on Software Clones (IWSC), Mar. 2018, pp. 51–
57. doi: 10.1109/IWSC.2018.8327319.

[9] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection Using Abstract Syntax Suffix Trees,”
in 2006 13th Working Conference on Reverse Engineering, Benevento, Italy, 2006, pp. 253–262. doi:
10.1109/WCRE.2006.18.

[10] M. Mondal, C. K. Roy, and K. A. Schneider, “A comparative study on the bug-proneness of
different types of code clones,” in 2015 IEEE International Conference on Software Maintenance and

Evolution (ICSME), Sep. 2015, pp. 91–100. doi: 10.1109/ICSM.2015.7332455.

[11] “Scitools Licensing | Download Understand.” https://licensing.scitools.com/download
(accessed Apr. 10, 2021).

[12] “SourceMonitor.” http://www.campwoodsw.com/sourcemonitor.html (accessed Apr. 10,
2021).

[13] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and Evaluation of
Clone Detection Tools,” IEEE Transactions on Software Engineering, vol. 33, no. 9, pp. 577–591,
Sep. 2007, doi: 10.1109/TSE.2007.70725.

	Neha Saini1, Sukhdip Singh2
	4 Results and Discussion

