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ABSTRACT  
In this work, a finite element scheme is proposed using a method of Euler-Taylor-Galerkin 
described inPáez (2016), for a non-linear model which describes the behavior of a new chemo-
fluidic oscillator (Donea, 1984). This model is expressed by the coupling of an ordinary 
differential equation describing the hydrogel dynamics, the non-linear transport equation and an 
auxiliary equation determining the flux volume. The numerical solution is constructed by taking a 
semi-discretization in time of the transport equation, employing forward-time Taylor series 
expansions including time derivatives of second order and third order, avoiding instabilities 
problems. In this semi discrete equation, the spatial variable is approximated by the finite element 
formulation according to Galerkin. Some simulations are carried out taking different initial 
conditions for the concentration of the hydrogel. The numerical results describe the oscillatory 
behavior of the system as in Donea (1984), where MatLab tools are used as black box. 

Keywords: [New chemo-fluidic oscillator], [Non-linear model],[Finite element], [hydrogel 
dynamics]. 

 

 

Introduction12 

Self-oscillating systems play an important role in both the natural sciences (biology or chemistry) and 

technology (micro electromechanical or electronic systems) because they can be coupled to other 
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systems; one of their most important applications is the use as a system clock to trigger regular events 

such as circadian rhythm or in electronic systems. 

This work refers to the use of a Taylor-Galerkin method for applying finite element to the nonlinear 

system that controls the behavior of the new chemo oscillator-fluidic and determine its numerical 

modeling. The mathematical problem was raised by Páez[1]who made a numerical approximation of 

the transport PDE using the well-known Line Method, however, the ODEs system provides a very 

rough approximation of the solution of the transport equation. 

First, this is due to the first-order discretization in space and secondly because it can propagate abrupt 

changes or steep fronts, which is a well-known computational problem in the numerical solution of 

hyperbolic PDE. 

In order to describe the dynamics of the chemo-fluidic oscillator a set of mathematical models was 

used, which posed a challenge due to the complexity of the system, since the oscillator is affected by 

various nonlinearities that come from the characteristics of the hydrogel and the bidirectional coupling 

between the chemical and fluidic domains. The hydrogel is designed in such a way that an increase in 

the concentration of alcohol reduces its size and vice versa. Therefore, at low concentrations of alcohol, 

the hydrogel valve is closed, while high concentrations of alcohol open the valve. A bypass channel is 

connected to the valve inlet, to allow a continuous flow of unidirectional fluid near the hydrogel 

independent of whether the hydrogel valve is open or closed. 

Therefore, to facilitate the modeling process, the system was divided into the fluidic domain describing 

the behavior of volumetric flows and system pressures during the operation and chemical domain which 

in turn divided into two parts the description of hydrogel dynamics and the modeling of the delay line, 

resulting in a coupled system composed of the one-dimensional transport PDE, the ODE that models the 

dynamic behavior of the hydrogel and the equation that determines the volume in the buffer. 

To perform this work following very closely to what Donea [2]did, the equation is semi-discretized of 

nonlinear transport using Taylor's serial expansions at the time of first, second and third order to obtain 

a second order differential equation in the space in which we apply Galerkin's variational formulation to 

use the finite element method and obtain the system of linear equations that needs the value of the 

variable that determines the size of the hydrogel that is obtained for each instant of time by applying the 

Runge -Kutta 4 method and the buffer volume that is found using numerical integration methods. 

Analyzing in more detail its mathematical modeling and the numerical solution of this New Chemical-

Fluidic Oscillator based on intelligent hydrogels was one of the reasons for the realization of this work 

in addition to extending the linear method used by Donea [2] for the nonlinear transport equation and 

providing a solution methodology for models of new oscillators involving the nonlinear one-

dimensional transport equation. 

1.Design of a chemo-fluoscillator 
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The new fluidchemo oscillator isbased on a negative feedback circuit containing a delay line, where 

negative feedback is provided by a hydrogel valve that has theability to change its size depending on the 

temperature and concentration of the aqueous solution that is in direct contact with the hydrogel. In this 

new oscillator the temperature remains constant so the only parameter that produces a change in the size 

of the hydrogel is the concentration of alcohol.  

 

Figure 1.  Photography of the manufactured chemo-fluidic oscillator circuit, filled with a highly 
dyed solution for better visibility of the channels. External sources of constant flow and pressure 
are shown schematically. Equivalent fluidic circuit. The hydrogel valve is represented by a 
controlled flow source. 
The oscillator is powered by three constant sources. The first is a constant flow source𝑞𝐴 that supplies 

the system with an alcohol concentration solution𝑐𝑎𝑙𝑐. A second source provides deionized water at a 

constant pressure𝑝𝑊 located at Node 1. Water flows through a long channel called the damping line and 

then is mixed into Node 2 with the alcohol solution provided by𝑞𝐴 , and then the mixed solution enters 

the channel of the long fluid that acts as a delay line. Using this channel, the solution is transported at a 

rate determined by the flow through the delay line 𝑞2(𝑡)and its cross-section. The end of this channel is 

connected to the inlet of the hydrogel valve,whosefluid behavioris controlled by the alcohol 

concentration of the solution. Finally, a bypass channel connects to Node 3 to drain the liquid to a 

conveniently chosen constant flow rate𝑞𝐵 

The micro-fluid system will be modeled through Kirchhoff's laws, within the framework of network 

theory for a circuit. This approach is used by how small the dimensions of the magnitudes that govern 

the operation of the oscillator within the study of the micro fluids since they are in a range of micronano 

and picoliter, therefore, the pressure is considered analogous to the voltage and volumetric flow rate to 

the electric current, as well as the lines of delay to the resistors. In this context, the oscillator can be 

described by the fluid network presented in Figure 2. 
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Figure 2.  Equivalent fluidic circuit. The hydrogel valve is represented by a controlled flow 
source. 

2.Mathematical model of chemical oscillator-fluidic 

The mathematical problem to be studied was raised by Páez et al. in [1], and consists in finding 

functions 𝑙𝑣: [0, 𝑇] × [0,1] → 𝑅+such that: 𝑑𝑙𝑣𝑑𝑡 (𝑡) = 𝛾[𝐶(𝑡, 1)]{𝑙𝑒𝑞[𝐶(𝑡, 1) − 𝑙𝑣(𝑡)]𝑙𝑣(0) = 𝑙𝑣0 ⟹ 𝑙𝑣0 , 𝐶0(𝑥) = 𝐶𝑖𝑛𝑖(𝑥)  ∀𝑥 ∈ (0 , 1](1)𝑙𝑣𝑛+1 = 𝐹(𝑙𝑣𝑛 , 𝐶𝑛(1); ∆𝑡), 𝑛 = 0,1,2, . . . , 𝑁 

 𝜕𝐶𝜕𝑡 (𝑡, 𝑥) + 𝑣(𝑙𝑣(𝑡)) 𝜕𝐶𝜕𝑥 (𝑡, 𝑥) = 0  , ∀(𝑡, 𝑥) ∈ (0, 𝑇] × (0, 1] ;   𝐶(0, 𝑥) = 𝐶𝑖𝑛𝑖(𝑥) ,    ∀𝑥 ∈ [0, 𝐿𝑑];𝐶(𝑡, 0) = 𝐶𝑎(𝑡) ,       ∀𝑡 ≥ [0, 𝑇];     (2)     
The data in this problem arethe functionsΥ, 𝑙𝑒𝑞 , 𝑣𝐶𝑖𝑛𝑖, 𝐶𝑎, 𝑙𝑣0, and where 𝐶(𝑡, 1)is the unknown value to 

be determined from the function 𝐶(𝑡, 𝑥)at the end𝑥 = 1; which must also be determinedsimultaneously, 

in this problem, the function 𝑉𝑏𝑢𝑓𝑓(𝑡)[0, 𝑇] → 𝑅+defined by: 

𝑉_𝑣𝑢𝑓𝑓(𝑡): = ∫ 𝑞2[𝑙𝑣(𝑠)]𝑡
0 𝑑𝑠 − 𝑞𝐴𝑡 ; ∀𝑡 ∈ (0, 𝑇],        (3)      

 

Where 𝑞2is a known function and 𝑞𝐴is a constant also known 

2.1 Semi - discretization in problem time (2)  

The transport equation is considered  𝜕𝐶𝜕𝑡 (𝑡, 𝑥) = −𝑣(𝑙𝑣(𝑡)) 𝜕𝐶𝜕𝑥 (𝑡, 𝑥)  , ∀(𝑡, 𝑥) ∈ (0, 𝑇] × (0, 1] ; 
 

If it is denoted by 𝐶𝑛(𝑥)the value of the function𝐶(𝑡, 𝑥) evaluated on the node𝑡 = 𝑡𝑛, then a schema in 

finite differences very simple to approximate the temporal derivative in (4)would be the one obtained 

by the serial expansion of Taylor, in the first order, around the point𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡 : 
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𝐶(𝑡𝑛 + ∆𝑡, 𝑥) = 𝐶(𝑡𝑛 + ∆𝑡) + ∆𝑡 [𝜕𝐶𝜕𝑡 ] (𝑡, 𝑥)|𝑡 = 𝑡𝑛 + 𝑂(∆𝑡) 

From here, despising the 𝑂(∆𝑡)you have:  

 

[𝜕𝐶𝜕𝑡 ] (𝑡, 𝑥) = 𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)∆𝑡 ;         (4) 

which is the well-known forward-time (Euler) scheme. 

If the PDE (4)is now evaluated in𝑡 = 𝑡𝑛 you have for each 𝑛 = 0,1, . . . , 𝑁 the ODE: [𝜕𝐶𝜕𝑡 ] (𝑡, 𝑥)|𝑡 = 𝑡𝑛 = −[𝑣[𝑙𝑣(𝑡)]]𝑡=𝑡𝑛 [𝜕𝐶𝜕𝑥] (𝑡, 𝑥)|𝑡=𝑡𝑛  , ∀𝑥 ∈ (0 , 1](5) 

Now, using the scheme type forward-time the expression(5) is transformed into:  

 𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)∆𝑡 = −𝑣(𝑙𝑣𝑛) 𝜕𝐶𝑛𝜕𝑥 (𝑥) , 0 ≤ 𝑛 ≤ 𝑁 , ∀𝑥 ∈ (0 , 1]    (6) 

 

Here 𝑙𝑣𝑛is the value of 𝑙𝑣(𝑡)in which𝑡 = 𝑡𝑛 is determined using Ruge -Kutta 4 applied to the initial 

problem (1) 

Where, in general, 𝐶𝑛(1)is the unknown value 𝐶(𝑡) = 1 at the border𝑥 = 1 for time𝑡 = 𝑡𝑛. For this 

scheme, the known constant is the initial iteration𝑙𝑣0. In the context of the finite differences method, the 

expression(6) produces an unstable numerical scheme by approximation of the spatial derivative term 

using a centered scheme, i.e.  𝜕𝐶𝑛𝜕𝑥 (𝑥) = 𝐶𝑚+1 𝑛 − 𝐶𝑚𝑛∆𝑥                (7) 

The instability arises because the partial derivative relative to the spatial coordinate is evaluated at a 

time level 𝑛earlier than the time level𝑛where the term temporal derivative is evaluated. Therefore, a 

stable schema can be obtained if the two derivedterms s
𝜕𝐶𝜕𝑡  and

𝜕𝐶𝜕𝑥 areevaluated at the same time level𝑛(at 

least a second order in∆𝑡). In this order of ideas, Donea [1]states that the easiest way to make the 

evaluation of both terms of the expression(6) at the same time level𝑛 is by expressing the 

approximation in difference for the term of temporal derivative at the time level𝑛. One way to achieve 

this is through a forward-looking Taylor serial expansion over time, including second- and third-order 

derivatives. That is, from the expansion 
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𝐶(𝑡𝑛 + ∆𝑡, 𝑥) = 𝐶(𝑡𝑛, 𝑥) + ∆𝑡 [𝜕𝐶𝜕𝑥] (𝑡, 𝑥)|𝑡=𝑡𝑛 + ∆𝑡22 [𝜕2𝐶𝜕𝑥3] (𝑡, 𝑥)|𝑡=𝑡𝑛 + ∆𝑡36 [𝜕3𝐶𝜕𝑥2 ] (𝑡, 𝑥)|𝑡=𝑡𝑛+ 𝑂(∆𝑡3)      (8) 

 

The term is cleared [𝜕𝐶𝜕𝑥] (𝑡, 𝑥)|𝑡=𝑡𝑛and (considering again the notation that was introduced for the 

forward-time scheme) depreciatingthe term𝑂(∆𝑡3)and using discretization over time(5), for the 

transport(4) equation can be replaced by the following: 

 𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)∆𝑡 − ∆𝑡26 [𝜕3𝐶𝜕𝑡3 ]𝑛 (𝑥) = −𝑣(𝑙𝑣𝑛) 𝜕𝐶𝑛𝜕𝑥 (𝑥) + ∆𝑡2 [𝜕2𝐶𝑛𝜕𝑡2 ] (𝑥) , ∀𝑥 (0 , 1](9) 

For each𝑛 = 0,1, . . . , 𝑁. The second and third derived terms that appear in this expression can be 

determined first by successive differentiation of the equation(4) and then by evaluating over time𝑡 =𝑡𝑛. The calculation for the second derivative is illustrated below. On the one hand  𝜕2𝐶𝜕𝑡2 = 𝑣2 𝜕2𝐶𝜕𝑡2 − 𝑑𝑣𝑑𝑡 𝜕𝐶𝜕𝑥 (10) 𝜕3𝐶𝜕𝑡3 = 𝑣2 𝜕2𝜕𝑡2 ∙ (𝜕𝐶𝜕𝑡 ) + 3𝑣 𝑑𝑣𝑑𝑡 (𝜕2𝐶𝜕𝑥2) − 𝜕𝐶𝜕𝑥 ∙ (𝑑2𝑣𝑑𝑡2 ) (11) 

 

Now, combining(10)and(11), evaluated in 𝑡 = 𝑡𝑛, with the equation (9)you have  𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)∆𝑡 − ∆𝑡26 [𝑣(𝑙𝑣𝑛) 𝜕2𝜕𝑥2 (𝜕𝐶𝑛𝜕𝑡 ) (𝑥) + 3𝑣(𝑙𝑣𝑛) 𝑑𝑣(𝑙𝑣𝑛)𝑑𝑡 ∙ 𝜕2𝐶𝑛𝜕𝑥2 (𝑥) − 𝑑2𝑣(𝑙𝑣𝑛)𝑑𝑡2 ∙ 𝜕𝐶𝑛𝜕𝑥 (𝑥)]1
= −𝑣(𝑙𝑣𝑛) 𝜕𝐶𝑛𝜕𝑥 (𝑥) + ∆𝑡2 [𝑣(𝑙𝑣𝑛) 𝜕2𝐶𝑛𝜕𝑡2 (𝑥) − 𝑑𝑣(𝑙𝑣𝑛)𝑑𝑡 ∙ 𝜕𝐶𝑛𝜕𝑥 (𝑥)] (12) 

 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔  𝑥 ∈ (0 , 1] 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑛 = 0,1, . . . , 𝑁                    
The expression (12) is similar to that proposed by Leveque when generating stabilized numerical 

methods by dictating a diffuse term𝜖 𝜕2𝐶𝑛𝜕𝑥2  to the nonlinear transport equation. However, it should be 

noted that the term
𝜕2𝐶𝑛𝜕𝑥2 in (12)appears as part of the approximation in difference for the partial 

derivative of C with respect to time, evaluated at level n. On the other hand, following closely what 

Donea[1] suggested the term of the third-order partial derivative that appears in Taylor's serial 

expansion is expressed on purpose in a mixed space-time form. This mixed form of the derivative will 
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allow the use of type finite elements with a simple modification of the usual and consistent mass matrix 

quite similarly as it is done in the context of weighted residues of petrov-Galerkin. 𝐶0[5] 
By developing the specified products and grouping the terms we have that the problem raised in (11) is 

semi discretized over time and for each 𝑛the next problem arises, 

Given [0,1] ∋ 𝑥 → 𝐶0(𝑥) = 𝐶𝑖𝑛𝑖(𝑥), find, 𝐶𝑛(𝑥)0≤𝑛≤𝑁 , ∀𝑥 ∈ [0,1]such that: 

 𝜕2𝐶𝑛+1(𝑥)𝜕𝑥2 − 𝛼1𝐶𝑛+1(𝑥) = 𝛼2 𝜕2𝐶𝑛(𝑥)𝜕𝑥2 + 𝛼3 𝜕𝐶𝑛(𝑥)𝜕𝑥 − 𝛼1𝐶𝑛(𝑥)          (13) 

∝1= 6∆𝑡2𝑣2   ;   𝛼2 = −2 − 3∆𝑡𝑣 𝑑𝑣𝑑𝑡  ;  ∝3= − ∆𝑡𝑣2 𝑑2𝑣𝑑𝑡2 − 3𝑣2 𝑑𝑣𝑑𝑡 − 6∆𝑡𝑣 

 ∀𝑥 ∈ (0, 1]𝐶𝑛(0) = 𝐶𝑎𝑛 = 𝐶𝑎(𝑡𝑛)      (13)     
 

To be able to solve the differential equation of second order posed in (15) we need 2 conditions, but the 

problem only provides us with one condition so it was necessary to impose asecond condition to solve 

theproblem, which we inducted from the mathematical model for the problem of transport proper to the 

chemo-fluidoscillator: 

 

{𝑑𝑙𝑣𝑑𝑡 (𝑡) = 𝛾[𝐶(𝑡, 1)]{𝑙𝑒𝑞[𝐶(𝑡, 1) − 𝑙𝑣(𝑡)]𝑙𝑣(0) = 𝑙𝑣0 ⟹ 𝑙𝑣0 , 𝐶0(𝑥) = 𝐶𝑖𝑛𝑖(𝑥)  ∀𝑥 ∈ (0 , 1](14)𝑙𝑣𝑛+1 = 𝐹(𝑙𝑣𝑛 , 𝐶𝑛(1); ∆𝑡), 𝑛 = 0,1,2, . . . , 𝑁 

 

Deduction of the condition in 𝑥 = 1 

 

FromthePDE:   v[lv(t)] ∂C∂x (t, x) = − ∂C∂t (t, x)(15) 

semi-discretization of
𝜕𝐶𝜕𝑡 ⟹ 𝐶𝑛+1(𝑥)−𝐶𝑛(𝑥)∆𝑡  

⇒ v[lv(𝑡𝑛+1)] ∂C∂x (𝑡𝑛+1, x) = − [𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)∆𝑡 ] 
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⇒ v[𝑙𝑣𝑛+1] ∂𝐶𝑛+1∂x (x) = − 𝐶𝑛+1(𝑥)∆𝑡 + 𝐶𝑛(𝑥)∆𝑡  

⇒ v[𝑙𝑣𝑛+1] ∂𝐶𝑛+1∂x (x) + 𝐶𝑛+1(𝑥)∆𝑡 = 𝐶𝑛(𝑥)∆𝑡 (16) 

That by evaluating her in𝑥 = 1, we have a Condition of Robin. 

 

2.2 Taylor Method-Galerkin 

Considering the internal product 𝐿2on the range:(0,1) 〈𝑢, 𝑣〉𝐿2: = ∫ 𝑢(𝑥) ∙ 𝑣(𝑥)𝑑𝑥1
0 (17) 

 

〈𝜕2𝑐(𝑥)𝑛+1𝜕𝑥2 − 𝛼1𝑐(𝑥)𝑛+1 − 𝛼2 𝜕2𝑐(𝑥)𝑛𝜕𝑥2 +∝3 𝜕𝑐(𝑥)𝑛𝜕𝑥 − 𝛼1𝑐(𝑥)𝑛  , 𝑣(𝑥)〉 = 0  (18) 

Applying the definition of the internal product in the spaces𝐿2, with border conditions of Dirilecht and 

Robin, applying the integration formula in parts and replacing the functions in a way in (18) that we 

have for the problem: 

 ∑ 𝑐𝑗𝑛+1 𝑑𝜑𝑗(1)𝑑𝑥𝑀
𝑗=1 𝜑𝑖(1) − ∑ 𝑐𝑗𝑛+1 ∫ 𝑑𝜑𝑗(𝑥)𝑑𝑥 𝑑𝜑𝑖(𝑥)𝑑𝑥1

0
𝑀

𝑗=1 𝑑𝑥 + 𝛼1 ∫ (∑ 𝑐𝑗𝑛+1𝜑𝑗(𝑥)𝑀
𝑗=1 )1

0 𝜑𝑖(𝑥)𝑑𝑥   
= −𝛼2 ∑ 𝑐𝑗𝑛 𝑑𝜑𝑗(1)𝑑𝑥 𝑗

𝑀
𝑗=1 𝜑𝑖(1)  + 𝛼2 ∑ 𝑐𝑗𝑛 ∫ 𝑑𝜑𝑗(𝑥)𝑑𝑥 𝑑𝜑𝑖(𝑥)𝑑𝑥1

0
𝑀

𝑗=1 𝑑𝑥   
+ 𝛼3 ∑ 𝑐𝑗𝑛𝑀

𝑗=1
𝑑𝜑𝑗(𝑥)𝑑𝑥 𝜑𝑖(𝑥)𝑑𝑥  − 𝛼1 ∑ 𝑐𝑗𝑛 ∫ 𝜑𝑖(𝑥)𝜑𝑗(𝑥)𝑑𝑥1

0
𝑀

𝑗=1 ∀𝜑𝑖, 𝜑𝑗 ∈ 𝑉ℎ(19) 

2.3 Finite Element Method  

We will consider a discretization of finite elements as explained above, but adapted to the working [0,1] 
interval. In effect the partition of this interval corresponds to the longitudinal discretization of the delay 

line channel (𝑀 − 1)into length elements𝐼𝑗 = [𝑥𝑗 , 𝑥𝑗+1] for beingℎ𝑗 = ℎ, the partition represents a mesh 

of points that we will denote by 𝑥𝑗+1 − 𝑥𝑗𝑗 = 1,2,3, . . . , 𝑀. ℎ𝑖 = ℎ𝑥𝑗𝜏ℎ 

If we write (19) using the elementary formulation we would have: 
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[ 𝑑𝜑𝑖, (1)𝑑𝑥 ∙ 𝜑𝑖(1) 𝑑𝜑𝑖, (1)𝑑𝑥 ∙ 𝜑𝑖+1(1)𝑑𝜑𝑖+1, (1)𝑑𝑥 ∙ 𝜑𝑖(1) 𝑑𝜑𝑖+1, (1)𝑑𝑥 ∙ 𝜑𝑖+1(1)] [𝐶𝑖𝑛+1𝑐𝑖+1𝑛+1 ] − [ 𝑑𝜑𝑖, (0)𝑑𝑥 ∙ 𝜑𝑖(1) 𝑑𝜑𝑖, (0)𝑑𝑥 ∙ 𝜑𝑖+1(1)𝑑𝜑𝑖+1, (0)𝑑𝑥 ∙ 𝜑𝑖(1) 𝑑𝜑𝑖+1, (0)𝑑𝑥 ∙ 𝜑𝑖+1(1)] [𝐶𝑖𝑛+1𝑐𝑖+1𝑛+1 ]
+ 1ℎ𝑖 [ 1 −1−1 1 ] [𝐶𝑖𝑛+1𝑐𝑖+1𝑛+1 ] + 𝛼16 ℎ𝑖 [2 11 2] [𝐶𝑖𝑛+1𝑐𝑖+1𝑛+1 ] + −∝3112 [−1 1−1 1] [𝐶𝑖𝑛+1𝑐𝑖+1𝑛+1 ] [𝑐𝑀𝑛+1]
=∝2 [ 𝑑𝜑𝑖, (1)𝑑𝑥 ∙ 𝜑𝑖(1) 𝑑𝜑𝑖, (1)𝑑𝑥 ∙ 𝜑𝑖+1(1)𝑑𝜑𝑖+1, (1)𝑑𝑥 ∙ 𝜑𝑖(1) 𝑑𝜑𝑖+1, (1)𝑑𝑥 ∙ 𝜑𝑖+1(1)] [ 𝐶𝑖𝑛𝑐𝑖+1𝑛 ]
−∝2 [ 𝑑𝜑𝑖, (0)𝑑𝑥 ∙ 𝜑𝑖(0) 𝑑𝜑𝑖, (0)𝑑𝑥 ∙ 𝜑𝑖+1(0)𝑑𝜑𝑖+1, (0)𝑑𝑥 ∙ 𝜑𝑖(0) 𝑑𝜑𝑖+1, (1)𝑑𝑥 ∙ 𝜑𝑖+1(0)] [ 𝐶𝑖𝑛𝑐𝑖+1𝑛 ] + −∝2ℎ𝑖 [ 1 −1−1 1 ] [ 𝐶𝑖𝑛𝑐𝑖+1𝑛 ]
+ ∝3222 [−1 1−1 1] [ 𝐶𝑖𝑛𝑐𝑖+1𝑛 ] + ∝1 ℎ𝑖6 [2 11 2] [ 𝐶𝑖𝑛𝑐𝑖+1𝑛 ] (20) 

3.Numerical experimentation 

After raising the mathematical part for the model and obtaining the system of equations, a program was 

designed in Matlab for the coupled system where several tests were performed with their respective 

numerical adjustments based on the theoretical definitions explained in chapters 2 and 3. 

Each experiment details the change in the initial concentration 𝐶(0, 𝑥) = 𝑐𝑖𝑛𝑖(𝑥)which is a unique 

experimental value for the operation of the hydrogel that is not listed as data in Páez[1]and has been 

imposed on it according to the physical model. 

Experiment 1  

Values are taken in the space of 𝑀 = 20 (nodes); 𝑑𝑥 = 1𝑀−1 ;  𝐶𝑜𝑢𝑟𝑎𝑛𝑡 = 𝑑𝑡𝑑𝑥 ; 𝑑𝑡 = 𝑐𝑜𝑢𝑟𝑎𝑛𝑡 ∙𝑑𝑥 ;  Courant = 0.1 

A constant value was taken 𝐶(0, 𝑥) = 𝑐𝑖𝑛𝑖(𝑥)as a condition which in this case is the experimental value 

with which the numerical part worked in the initial study.𝑐𝑖𝑛𝑖(𝑥) = 2.2635 

The values of those derived from the concentration found in𝛼3 are replaced by forward differences 

(Euler) for 𝑡 ≥ 0 
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Figure 3. Response of the chemo-fluidicoscillator modeled by the system. 
 

Periodic behavior can be observed in the Hidrogel which is what allows the device to function as an 

oscillator with negative feedback resulting from the increase and decrease of the alcohol mixture in the 

hydrogel chamber, but at the beginning of the flow of mixture of alcohol and water there is instability in 

the wave fronts that are then regularized as the process of opening and closing the valve progresses that 

because the hydrogel suffers deformation greater than the length of the camera. 

 

Figure 4. Response of the chemo-fluidic oscillator modeled by state variables. 
 
Experiment 2 

In this trial, a quadratic profile was taken as an initial condition since there is a mixture of water and 

alcohol in the canal resulting from deionized water flows and alcohol, but not reaching the minimum 

concentration level so that the hydrogel reacts and begins to compress due to the increase in alcohol, 
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periodic behavior occurs, but with less disturbance at the beginning of the process allowing a more 

stable and smooth concentration flow on the wave fronts. 

 

Figure 5. Response of the chemo-fluidic oscillator modeled by state variables. 
 

 

Figure 6. Response of the chemo-fluidicoscillator modeled by the system. 
 

4. Conclusions and recommendations 

The first observation that can be made is that the method applied to the system composed of  (15), (16)𝑎𝑛𝑑(17)  equations reproduces the dynamics of the original numerical model of Páez[1], 
with small differences in amplitude and period, but that it is able to produce stable periodic signals for 

aparameter configuration without needing any external forging, which means that the oscillating 

behavior is self-excited. 

The second observation is that from a numerical approximation of the linear transport equation 

(constant velocity) based on the Euler-Taylor-Galerkin method for discretization over time and the 

Finite Elements Method for discretization in the space posed by Donea, by applying the same method 

with some variations in the initial conditions and border equation in the equation of the transport of the 

nonlinear system that is also coupled to a nonlinear ordinary differential equation that governs the 
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behavior of the hydrogel and another equation that controls the volume of the buffert resulting in a 

complex system of solving, satisfactory results were obtained in relation to its oscillation and its 

periodic and dimensioned movement. It is very important to note that this numerical model makes it 

possible to observe that if we change the initial value 𝐶𝑖𝑛𝑖there will be a variation at the beginning of the 

hydrogel's operation that would be in the stationary regimen, but that after this initial regimen, the 

hydrogel shows an oscillating and periodic behavior typical of Páez's initial analysis. 

The third observation is that this numerical analysis applied to the chemo-fluidic oscillator analytically 

contributes to the understanding that the valve composed of the hydrogel is extremely sensitive to the 

variation of the parameters, i.e. it has the ability to drastically change its volume under small variations 

of special thermodynamic parameters. 

In this research another option could be given to mathematically model the domains of the oscillator, in 

the fluidic domain given by the flow network, the transport of concentration through the delay line and 

in the chemical domain given by the behavior of the hydrogel and the concentration of alcohol that 

produce a smooth dynamic system in parts.  

It is recommended to use for future studies a mathematical refinement method such as the Galerkin-

Discontinuous method to be able to model in more detail the behavior of the Chemo-fluidic Oscillator. 
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