On regular graph, thathas two types of facesthat havingtwo consecutive numbers of edges
 Wafiq Hibi
 Assistant Professor
 Wafiq.hibi@gmail.com, Wafiq.hibi@sakhnin.ac.il
 Head of the Mathematics Department in Sakhnin College.
 The AcademicCollege of Sakhnin

Abstract

: It is known that any three - Regulargraph, planar and connected, and all the faces in it are pentagonal or hexagonal, thenthe number of pentagons in it is double the number of hexagonal edges, i.e. 12. [6]. The purpose of this paper is to prove the following: Given ans-regular graph,planar and connected, and all the faces in it contain only (l) or $(l+1)$ edges, also $l=\frac{s+2}{s-2}$, then if (k) marks the number of faces, which contain (l) edges, will be $2(l+1)$. In fact, I will present here, (inan s-regular graph, planar and connected) thenecessary and sufficient general condition, whichcauses thatthe number of faces containing (l) edges to be doubleof the number $(l+1)$, (I.e. equal to $2(l+1)$).

Keywords: Euler formula, regular graph, planar graphandconnected graph.

Introduction:

Wecalled a graph d-regular, if the degree of each vertex in the graphis d.
A basic law in graph theory guaranteesthatfor a graph $G:(V, E)$,the next is always true
$\sum_{x \in V} \operatorname{deg}(x)=|E|$.
We define a connected graphto be the graph in which all two verticesin itbe connected in a path. Moreover, we also define; a planar graph is a graph thatwe can draw on the plane without cutting between its edges.
A face in a planar graph is a boundedareaof connected vertices with edges that unambiguously describe the face, that is, the boundary of a face.
Obviously, each planar graph has an outer face, which is usually marked with F_{∞}
We let $F(G)$ denote the set of all faces of G, and $f=|F(G)|$.
Euler's formula states the following:
Given a planar and connected graph, and denote by n, m, f to the number of its vertexes, edges and facesrespectively, then it holds that, $n+f-m=2$. [5,6].

New result:

The new result presented in the following theorem:

Theorem:

For all s-regular graph, planar and connected, and all the faces in it contain only (l) or $(l+l)$ edges, and if (k) marks the number of faces, which contain (l)edges, then
$k=2(l+1)$, if and only if $l=\frac{s+2}{s-2}$.

Proof:

Let $G=(V, E)$, an s-regular graph, planar and connected, and all the faces in it contain only (l)or $(l+1)$ edges.
Denote byn $=|V|$ and by $m=|E|$.let so, f denotethe number of all the faces of G.
We summarize the valuesdegreeof all the vertices in the graph G, in two different ways:
From the fact that thesum of the values degree of all the vertices in every graph, is always equal to twice the number of edges, we get that,
$\sum_{i=1}^{n} \operatorname{deg}\left(x_{i}\right)=2|E|=2 m$, When $x_{i} \in V$ for all $1 \leq x_{i} \leq n$.
Furthermore, as it is given that the graph G, an s-regular graph, we get that,
$\sum_{i=1}^{n} \operatorname{deg}\left(x_{i}\right)=s \cdot n$.
From this, we will get:
$2 m=\sum_{i=1}^{n} \operatorname{deg}\left(x_{i}\right)=s \cdot n$, so:

$$
\text { (I) } \quad n=\frac{2}{s} m
$$

Denotenow in $F=\left\{F_{1}, F_{2}, F_{3}, \ldots, F_{f}\right\}$ to the set ofall the f faces in G.denote also byt $t_{F_{i}}$ for the number of edges that participate in the construction of the face F_{i}, to all $F_{i} \in F$.
It is clear that $\sum_{F_{i} \in F} t_{F_{i}}=2 m$.
Now, if the graph has k faces each of thembounded by l edges, there will stay $(f-k)$ faceseach of them boundedby $l+l$ edges, hence

$$
\sum_{F_{i} \in F} t_{F_{i}}=k \cdot l+(f-k) \cdot(l+1),
$$

Thus, we get that:
$2 m=k \cdot l+(f-k) \cdot(l+1)$
Twice the number of edges, this is because each edge participates in exactly two faces.
If we isolate the f from the last equation, we get:

$$
\text { (II) } \quad f=\frac{2}{l+1} m+\frac{1}{l+1} k
$$

We will set the value of n from (a) and the value of m from (b) in the Euler's formula:

$$
2=n+f-m
$$

We get:

$$
\begin{aligned}
& 2=\frac{2}{s} m+\frac{2}{l+1} m+\frac{1}{l+1} k-m \\
\text { (III) } \quad & 2=\left(\frac{2}{s}+\frac{2}{l+1}-1\right) m+\frac{1}{l+1} k
\end{aligned}
$$

To proceed with proof of the theorem, we must prove two directions:
First direction:
Let $l=\frac{s+2}{s-2}$, we will prove that $k=2(l+1)$.
If we set $l=\frac{s+2}{s-2}$ in the factor of m in the last equation(III):

$$
\begin{gathered}
2=\left(\frac{2}{s}+\frac{2}{\frac{s+2}{s-2}+1}-1\right) m+\frac{1}{l+1} k \\
2=\left(\frac{2}{s}+\frac{2}{\frac{2 s}{s-2}}-1\right) m+\frac{1}{l+1} k \\
2=\left(\frac{2}{s}+\frac{s-2}{s}-1\right) m+\frac{1}{l+1} k \\
2=\left(\frac{2+s-2-s}{s}\right) m+\frac{1}{l+1} k \\
2=\frac{1}{l+1} k \\
2(l+1)=k
\end{gathered}
$$

As required for proof of First direction.
Second direction:
Let $k=2(l+1)$, we will prove that $l=\frac{s+2}{s-2}$.
If we set $k=2(l+1)$ in the equation(III):

$$
\begin{gathered}
\text { (III) } \begin{array}{c}
2=\left(\frac{2}{s}+\frac{2}{l+1}-1\right) m+\frac{1}{l+1} k \\
2=\left(\frac{2}{s}+\frac{2}{l+1}-1\right) m+\frac{1}{l+1} 2(l+1) \\
2=\left(\frac{2}{s}+\frac{2}{l+1}-1\right) m+2 \\
0=\left(\frac{2}{s}+\frac{2}{l+1}-1\right) m \\
0=\frac{2}{s}+\frac{2}{l+1}-1 \\
0=\frac{2-s}{s}+\frac{2}{l+1} \\
\frac{s-2}{s}=\frac{2}{l+1} \\
(s-2)(l+1)=2 s \\
l=\frac{s+2}{s-2}
\end{array}
\end{gathered}
$$

As required for proof of Second direction.
This completes the proof of the theorem.

Corollary 1:

For s-regular graph, planar and connected, and all the faces in it contain only (l)or $(l+l)$ edges, and if (k) marks the number of faces, which contain (l) edges, if $l=\frac{s+2}{s-2}$, then $k=\frac{4 s}{s-2}$.

ProofCorollary 1:

If we set $l=\frac{s+2}{s-2}$ in equation (III):

$$
\begin{gathered}
2=\left(\frac{2}{s}+\frac{2}{l+1}-1\right) m+\frac{1}{l+1} k \\
2=\left(\frac{2}{s}+\frac{2}{\frac{s+2}{s-2}+1}-1\right) m+\frac{1}{\frac{s+2}{s-2}+1} k \\
2=0 \cdot m+\frac{1}{\frac{2 s}{s-2}} k \\
2=\frac{s-2}{2 s} k \\
\frac{4 s}{s-2}=k
\end{gathered}
$$

This completes the proof of theCorollary 1.

Corollary 2:

There are only three different graphs in the terms of the previous theorem:

1. 3-regular graphand all the faces in it are pentagonal or hexagonal.
2. 4-regular graph and all the faces in it are Triangles and squares.
3. 6-regular graph and all the faces in it are Triangles and double edges.(It is clear that this graph is not simple, because it contains double edges).

ProofCorollary 2:

The following table describes the possibility for a graph G, s-regular, planar, connected, and all the faces in it contain only (l) or $(l+l)$ edges, and $l=\frac{s+2}{s-2}$, and (k) marks the number of faces, which contain (l)edges.

\boldsymbol{s}	$\boldsymbol{l}=\frac{\boldsymbol{s}+\mathbf{2}}{\boldsymbol{s}-\mathbf{2}}$	$\boldsymbol{l}+\boldsymbol{1}$	$\boldsymbol{k}=\mathbf{2}(\boldsymbol{l}+\mathbf{1})$
1	abnormal		
2	abnormal		
3	5	6	12
4	3	4	8
5	abnormal		
6	2	3	6
7	abnormal		

8	abnormal		
\vdots	\vdots		

Since that, $\lim _{s \rightarrow \infty}\left(\frac{s+2}{s-2}\right)=1$, it is clear that there will be no other possiblevalues forl. This completes the proof of the Corollary 2.

Remark:

To demonstratethe graph, which is, 6-regular and all the faces in it are triangles and double edges, look at the following two figures:

Figure 1

Figure 2

References:

1. Branko, G. (2021). Euler's theorem on polyhedrons. Britaaica, University of Washington, Seattle.
2. Castellanos, D. (1988). "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98.
3. Conway, J. H. and Guy, R. K. (1996). "Euler's Wonderful Relation." The Book of Numbers. New York: Springer-Verlag, pp. 254-256.
4. Derbyshire, J. (2004). Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin.
5. Euler, L. (1743). "De summis serierum reciprocarum ex potestatibus numerorum naturalium ortarum dissertatio altera." Miscellanea Berolinensia 7, 172-192.
6. Euler, L. (1748). Introductio in Analysin Infinitorum, Vol. 1. Bosquet, Lucerne, Switzerland: p. 104.
7. Hibi, W. (2021).General uses in intermediate value theorems.The Journal of Multicultural Education. (Accepted).
8. Hibi, W. (2021).Girth inequality in planar graphs.The Journal of Multicultural Education. (Accepted).

Research Article

9. Hibi, W. (2021).Non-isomorphism between graph and its complement. The Journal of Multicultural Education, 7(6), 256-258 .
10. Hibi, W. (2021).Relationships between faces in regular, connected and planar graphs.The Journal of Multicultural Education. (Accepted).
11. Hibi, W. (2021). The four-color theorem in the service of Euclidean distance into the $\left(n_{0}, \rho_{0}\right)-R^{2}$ graphsThe Journal of Multicultural Education. (Accepted).
12. Hoffman, P. (1988). The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for Mathematical Truth. New York: Hyperion, p. 212.
13. Trott, M. (2004). The Mathematica GuideBook for Programming. New York: SpringerVerlag, 2004. https://www.mathematicaguidebooks.org/.
