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Abstract: 

It is known that any three - Regulargraph, planar and connected, and all the faces in it are 

pentagonal or hexagonal, thenthe number of pentagons in it is double the number of hexagonal 

edges, i.e. 12. [6]. 

The purpose of this paper is to prove the following: 

Given ans-regular graph,planar and connected, and all the faces in it contain only (l)or 

(l+1)edges, also 𝑙 = 𝑠+2𝑠−2, then if(k) marks the number of faces, which contain (l)edges, will 

be 2(𝑙 + 1). 
In fact, I will present here, (inan s-regular graph, planar and connected) thenecessary and 

sufficient general condition, whichcauses thatthe number of faces containing (l) edges to be 

doubleof the number (l+1), (I.e. equal to2(l+1)). 

Keywords: Euler formula, regular graph, planar graphandconnected graph. 

 

 

Introduction: 

Wecalled a graphd-regular, if the degree of each vertex in the graphisd. 

A basic law in graph theory guaranteesthatfor a graph𝐺:(𝑉, 𝐸),the next is always true ∑ deg (𝑥) = |𝐸|𝑥∈𝑉 . 

We define a connected graphto be the graph in which all two verticesin itbe connected in a path. 

Moreover, we also define;a planar graph is a graph thatwe can draw on the plane without cutting 

between its edges. 

 A face in a planar graph is a boundedareaof connected vertices with edges that unambiguously 

describe the face, that is, the boundary of a face. 

Obviously, each planar graph has an outer face, which is usually marked with𝐹∞ 

We let 𝐹(𝐺)denote the set of all faces of G, and 𝑓 = |𝐹(𝐺)|. 
Euler's formula states the following: 

Given a planar and connected graph, and denote by n,m,fto the number of its vertexes, edges and 

facesrespectively, then it holds that, 𝑛 + 𝑓 − 𝑚 = 2. [5,6]. 
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New result: 

The new result presented in the following theorem: 

Theorem: 

For all s-regular graph, planar and connected, and all the faces in it contain only (l)or (l+1) 

edges, and if (k) marks the number of faces, which contain (l)edges,then 𝑘 = 2(𝑙 + 1), if and only if 𝑙 = 𝑠+2𝑠−2. 

Proof: 
Let 𝐺 = (𝑉, 𝐸),an s-regular graph, planar and connected,and all the faces in it contain only (l)or 

(l+1) edges. 

Denote by𝑛 = |𝑉|and by 𝑚 = |𝐸|.let so,𝑓denotethe number of all the faces of G. 

We summarize the valuesdegreeof all the vertices in the graphG, in two different ways: 

From the fact that thesum of the values degree of all the vertices in every graph, is always equal 

to twice the number of edges,we get that, ∑ deg (𝑥𝑖𝑛𝑖=1 ) = 2|𝐸| = 2𝑚,When 𝑥𝑖 ∈ 𝑉 for all 1 ≤ 𝑥𝑖 ≤ 𝑛. 

Furthermore, as it is given that the graph G, an s-regular graph, we get that, ∑ deg (𝑥𝑖𝑛𝑖=1 ) = 𝑠 ∙ 𝑛. 

From this, we will get: 2𝑚 = ∑ deg (𝑥𝑖𝑛𝑖=1 ) = 𝑠 ∙ 𝑛, so: (𝐼)              𝑛 = 2𝑠 𝑚 

Denotenow in 𝐹 = {𝐹1 , 𝐹2 , 𝐹3, … , 𝐹𝑓} to the set ofall the 𝑓 faces in G.denote also by𝑡𝐹𝑖  for the 

number of edges that participate in the construction of the face 𝐹𝑖, to all 𝐹𝑖 ∈ 𝐹. 

It is clear that∑  𝑡𝐹𝑖 = 2𝑚𝐹𝑖∈𝐹 . 

Now, if the graph has k faces each of thembounded by l edges, there will stay(f-k) faceseach of 

them boundedby l+1edges, hence ∑  𝑡𝐹𝑖𝐹𝑖∈𝐹 = 𝑘 ∙ 𝑙 + (𝑓 − 𝑘) ∙ (𝑙 + 1), 

Thus, we get that: 2𝑚 = 𝑘 ∙ 𝑙 + (𝑓 − 𝑘) ∙ (𝑙 + 1) 

Twice the number of edges,this is because each edge participates in exactly two faces. 

If we isolate the 𝑓 from the last equation, we get: (𝐼𝐼)              𝑓 = 2𝑙 + 1 𝑚 + 1𝑙 + 1 𝑘 

We will set the value of n from(𝑎)and the value of m from(𝑏) in the Euler’s formula:  2 = 𝑛 + 𝑓 − 𝑚. 
We get:        2 = 2𝑠 𝑚 + 2𝑙 + 1 𝑚 + 1𝑙 + 1 𝑘 − 𝑚 (𝐼𝐼𝐼)             2 = (2𝑠 + 2𝑙 + 1 − 1)𝑚 + 1𝑙 + 1 𝑘 
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To proceed with proof of the theorem, we must prove two directions: 
First direction: 

Let𝑙 = 𝑠+2𝑠−2  , we will prove that 𝑘 = 2(𝑙 + 1). 

If we set𝑙 = 𝑠+2𝑠−2in the factor of m in the last equation(𝐼𝐼𝐼): 2 = (2𝑠 + 2𝑠+2𝑠−2 + 1 − 1)𝑚 + 1𝑙 + 1 𝑘 

2 = (2𝑠 + 22𝑠𝑠−2 − 1)𝑚 + 1𝑙 + 1 𝑘 

2 = (2𝑠 + 𝑠 − 2𝑠 − 1)𝑚 + 1𝑙 + 1 𝑘 2 = (2 + 𝑠 − 2 − 𝑠𝑠 )𝑚 + 1𝑙 + 1 𝑘 2 = 1𝑙 + 1 𝑘 2(𝑙 + 1) = 𝑘 

As required for proof of First direction. 

Second direction: 
Let 𝑘 = 2(𝑙 + 1), we will prove that𝑙 = 𝑠+2𝑠−2. 

If we set 𝑘 = 2(𝑙 + 1) in the equation(𝐼𝐼𝐼): (𝐼𝐼𝐼)             2 = (2𝑠 + 2𝑙 + 1 − 1)𝑚 + 1𝑙 + 1 𝑘 2 = (2𝑠 + 2𝑙 + 1 − 1)𝑚 + 1𝑙 + 1 2(𝑙 + 1) 2 = (2𝑠 + 2𝑙 + 1 − 1)𝑚 + 2 0 = (2𝑠 + 2𝑙 + 1 − 1)𝑚 0 = 2𝑠 + 2𝑙 + 1 − 1 0 = 2 − 𝑠𝑠 + 2𝑙 + 1 𝑠 − 2𝑠 = 2𝑙 + 1 (𝑠 − 2)(𝑙 + 1) = 2𝑠 𝑙 = 𝑠 + 2𝑠 − 2 

As required for proof of Second direction. 

This completes the proof of the theorem. 
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Corollary 1: 

For s-regular graph, planar and connected, and all the faces in it contain only (l)or (l+1) edges, 

and if (k) marks the number of faces, which contain (l)edges, if𝑙 = 𝑠+2𝑠−2, then 𝑘 = 4𝑠𝑠−2. 

ProofCorollary 1: 

If we set𝑙 = 𝑠+2𝑠−2 in equation(𝐼𝐼𝐼): (𝐼𝐼𝐼)             2 = (2𝑠 + 2𝑙 + 1 − 1)𝑚 + 1𝑙 + 1 𝑘 2 = (2𝑠 + 2𝑠+2𝑠−2 + 1 − 1)𝑚 + 1𝑠+2𝑠−2 + 1 𝑘 

2 = 0 ∙ 𝑚 + 12𝑠𝑠−2 𝑘 

2 = 𝑠 − 22𝑠 𝑘 4𝑠𝑠 − 2 = 𝑘 

This completes the proof of theCorollary 1. 

 

Corollary 2: 

There are only three different graphs in the terms of the previous theorem: 

1. 3-regular graphand all the faces in it are pentagonal or hexagonal. 

2. 4-regular graph and all the faces in it are Triangles and squares. 

3. 6-regular graph and all the faces in it are Triangles and double edges.(It is clear that this 

graph is not simple, because it contains double edges). 

ProofCorollary 2: 

The following table describes the possibility for a graphG, s-regular, planar, connected, and all 

the faces in it contain only (l)or (l+1) edges, and 𝑙 = 𝑠+2𝑠−2 , and (k) marks the number of faces, 

which contain (l)edges. 

 

s 𝒍 = 𝒔 + 𝟐𝒔 − 𝟐 
l+1 𝒌 = 𝟐(𝒍 + 𝟏) 

 

1 abnormal   

2 abnormal   

3 5 6 12 

4 3 4 8 

5 abnormal   

6 2 3 6 

7 abnormal   
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8 abnormal   ⋮ ⋮   

 

Since that, 𝑙𝑖𝑚𝑠→∞ (𝒔+𝟐𝒔−𝟐) = 1, it is clear that there will be no other possiblevalues forl. 

This completes the proof of the Corollary 2. 

 

Remark: 

To demonstratethe graph, which is, 6-regular and all the faces in it are triangles and double 

edges, look at the following two figures: 

 

 

 

 

 

 

 

 

 

                               

                              Figure 1                                                           Figure 2 
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