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Abstract: In this paper, the mathematical formula for the reliability of a special model from cascade models is found. 

Assuming that the factors of strength and stress follow the binary Weibull distribution, and estimating parameters scale of 

Weibull distribution by using three different estimation methods (ML, Rg and Pe) to estimate the reliability model and made 

simulations to compare results by using the mean square error to find out which estimation method is the best for estimating 

reliability model. As a result, we found that the ML estimator was the best in eight experiments and the Pe estimator was the 

best in two only experiments and finally the performance of ML and Pe were close. 
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1. Introduction 

Obviously in systems, reliability whenever the complexity increases the reliability decreases unless 

compensative measures are taken. By increasing the reliability of associated units of the system we can increase 

the reliability system 𝑅 = (𝑋 ≥ 𝑌) (Ashok, Devi, & Maheswari, 2019; Chaturvedi & Malhotra, 2020), but 

sometimes this cannot be accomplished beyond certain limits. An alternative method to increase the system 

reliability in such case is to have a plus configuration of units in the system. Cascade is one such kind of standby 

system. Cascade system is a hierarchical standby redundancy (Uma Maheswari, 2013), where an order of units 

are arranged in the array of activation. The first unit is active withstands stress and remaining units are at 

standby. If the active unit fails, then the next unit in the order is activating. The stress acting on the next active 

unit will be “𝒦” times the stress of the prior failed units, where “𝒦” signifies stress attenuation factor (Mutkekar 

& Munoli, 2016). 

Review important studies in this field:(Gogoi & Borah, 2012) considered two states to obtain the reliability 

cascade model. (Khan & Jan, 2014) assumed the reliabilities of the system have been obtained with the help of 

the particular forms of density functions of the n-standby system when all stress-strengths are random variables. 

(Karam & Husieen, 2017) discussed the reliability of n- cascade system when the stress and strength are Frechet 

distributed random variables. (Rahman, Mohyuddin, Anjum, & Butt, 2016; Vasanti & Venkata Rao, 2016) 

studied the estimation of reliability for the stress-strength cascade model by comparison between estimators 

made using data obtained through a simulation experiment. (Siju & Kumar, 2016) studied the strength of the 

component in the cycle depending on its strength in the (i − 1) the cycle. (Doloi & Gogoi, 2017) discussed two 

states to get the reliability of the n-cascade system, state one assumed one Lindley stress and one parameter 

exponential strength, state two assumed one-parameter exponential stress and Lindley strength. (Patowary, 

Hazarika, & Sriwastav, 2018) attempted to estimate the reliability of a cascade system when strength-stress 

follow either (gamma, exponential or normal) distributions by using Monte-Carlo Simulation. (Karam & 

Khaleel, 2019) discussed the reliability of  (2+1) cascade model, when the random variables of stress-strength 

follow distributions are generalized inverse Rayleigh distributions. (Mirajkar, Vadgaon, & Kore, 2015) studied 

the system of reliability cascade.  They assumed that all units are independent and follow exponential stress-

strength distributions. (Khaleel & Karam, 2019) studied reliability of (2+1) Cascade model, when the random 

variables of stress-strength follow distributions are inverse Weibull distribution. (Jebur, Kalaf, & Salman, 2020) 

estimated the parameter and system reliability in the stress-strength model when the system contains several 

parallel components. (Hassan, Nagy, Muhammed, & Saad, 2020) studied the estimation problem of a stress-

strength model incorporating the multi-component system. (Kanaparthi, Palakurthi, & Narayana, 2020) presented 

the estimation of stress strength model by considering the cascade stress strength model of New Rayleigh-Pareto. 

This paper aims to find out the mathematical formula that expresses the (2 + 2) cascade reliability model 

when it follows the strength-stress random verbal's of the Weibull distribution and estimates this model by using 

three different estimation methods (ML, Rg and Pe) as well as comparing the results with the mean square error. 
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2.Mathematical Model 

Assuming the strength random variable of the four units ( two units basic (℧1 𝑎𝑛𝑑 ℧2)  and two units (℧3 𝑎𝑛𝑑 ℧4) redundancy standby ) to be X𝔯~W(ℴ, η𝔯) ; 𝔯 = 1,2,3,4  and to suppose that the strength random 

variable of the four units Y𝓋~W(ℴ, δ𝓋) ; 𝓋 = 1,2,3,4  respectively, where X𝔯 and Y𝓋 are independently and 

identically distributedWeibull with common parameter shape ℴ  and scale parameter  η𝔯 ;𝔯 = 1,2,3,4  and scale 

parameter δ𝓋; 𝓋 = 1,2,3,4. 

The CDF and PDF  of  W(ℴ, η𝔯) are:  F(x) = 1 − e−ηxℴx > 0; ℴ, η𝔯 > 0  ; 𝔯 = 1,2,3                       …(1)  f(𝑥) = ℴηxℴ−1e−ηxℴx > 0;ℴ, η𝔯 > 0 ; 𝔯 = 1,2,3,4         …(2)  
The CDF and PDF  of  W(ℴ, δ𝓋) are :  G(y) = 1 − e−δ𝑦ℴy > 0; ℴ,  δ𝓋 > 0 ; 𝓋 = 1,2,3,4                        …(3)  ℴδ𝑦ℴ−1e−δ𝑦𝜎y > 0;ℴ,  δ𝓋 > 0 ; 𝓋 = 1,2,3,4              …(4)  

 

There are six cases for calculating reliability (2+2) cascade model. They can be derived as follows : ℛ = p[X1 ≥ Y1, X2 ≥ Y2] + p[X1 < Y1, X2 ≥ Y2, X3 ≥ Y3] + p[X1 < Y1, X2 ≥ Y2, X3 < Y3, X4 ≥ Y4]         +p[X1 ≥ Y1, X2 < Y2, X3 ≥ Y3] + p[X1 ≥ Y1, X2 < Y2, X3 < Y3, X4 ≥ Y4]         +p[X1 < Y1, X2 < Y2, X3 ≥ Y3, X4 ≥ Y4] ℛ = 𝒮1 + 𝒮2 + 𝒮3 + 𝒮4 + 𝒮5 + 𝒮6                                                                                                                     …(5) 

The first case of model work: the two units (℧1 𝑎𝑛𝑑 ℧2) are activated and the two units     (℧3 𝑎𝑛𝑑 ℧4) act as a 

standby unit: (Sandhya, 2013) 𝒮1 = pr[X1 ≥ Y1, X2 ≥ Y2] 𝒮1 = ∫[Fx1(y1)]g(y1)dy1 ∫[Fx2(y2)]g(y2)dy2∞
0

∞
0  

𝒮1 = ∫ [e−η1y1ℴ]ℴδ1y1ℴ−1e−δ1y1ℴdy1∞0  . ∫ [e−η2y2ℴ]ℴδ2y2ℴ−1e−δ2y2ℴdy2∞0  𝒮1 = ∫ ℴδ1y1ℴ−1e−(η1+δ1)y1ℴdy1∞0  . ∫ ℴδ2y2ℴ−1e−(η2+δ2)y2ℴdy2∞0  𝒮1 = [ δ1η1+δ1] [ δ2η2+δ2] …(6) 

The second case of the model work: when the unit ℧1  fails and unit ℧2  remains activated, unit standby ℧3  is 

activated to replace the failed unit ℧1 and unit ℧4 remains in a standby state : 𝒮2 = pr[X1 < Y1, X2 ≥ Y2, X3 ≥ Y3] = p𝑟[X1 < Y1,ℳX1 ≥ 𝒦Y1]pr[X2 ≥ Y2] 
Where "ℳ" and "𝒦" strength – stress attenuation factors: (M. Tirumala Devi, T. Sumathi Uma Maheswari, & N. 

Swathi, 2016; Sundar, 2012) X3 = ℳX1 and Y3 = 𝒦Y1 

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫[Fx1(y1)] [Fx1 (𝒦ℳ y1)] g(y1)dy1∞
0  

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫[1 − e−η1y1ℴ] [e−η1(𝒦ℳ)ℴy1ℴ] ℴδ1y1ℴ−1e−δ1y1ℴdy1∞
0  

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫ [e−η1(𝒦ℳ)ℴy1ℴ − e−η1(1+(𝒦ℳ)ℴ)y1ℴ] ℴδ1y1ℴ−1e−δ1y1ℴdy1∞
0  

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫ ℴδ1y1ℴ−1e−(η1(𝒦ℳ)ℴ+δ1)y1ℴdy1∞
0  

−∫ ℴδ1y1ℴ−1e−(η1(1+𝒦ℳ)ℴ+δ1)y1ℴdy1∞
0  

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = [ η1δ1(η1 (𝒦ℳ)ℴ + δ1) (η1 (1 + (𝒦ℳ)ℴ) + δ1)] 
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As equation (6) can get pr[X2 ≥ Y2] as : pr[X2 ≥ Y2] = [ δ2η2 + δ2] 𝒮2 = [ η1δ1(η1(𝒦ℳ)ℴ+δ1)(η1(1+(𝒦ℳ)ℴ)+δ1)] [ δ2η2+δ2]                                                                                                         ...(7) 

The third case of model work: when the unit ℧1  fails and the replacement unit ℧3  fails and unit ℧2  remains 

activated, unit standby ℧4 is activated to replace the failed unit ℧3 : 𝒮3 = pr[X1 < Y1, X2 ≥ Y2, X3 < Y3, X4 ≥ Y4] 𝒮3 = p𝑟[X1 < Y1,ℳX1 < 𝐾Y1,ℳX3 ≥ 𝒦Y3]pr[X2 ≥ Y2] 𝒮3 = p𝑟[X1 < Y1,ℳX1 < 𝐾Y1,ℳ2X1 ≥ 𝒦2Y1]pr[X2 ≥ Y2] 
Where  X4 = ℳX3 = ℳ(ℳX1) = ℳ2X1 

and Y4 = 𝒦Y3 = 𝒦(𝒦Y1) = 𝒦2Y1 , then : 

p𝑟[X1 < Y1,ℳX1 < 𝐾Y1,ℳ2X1 ≥ 𝒦2Y1] = ∫[Fx1(y1)] [Fx1 (𝒦ℳ y1)] [Fx1 (𝒦2ℳ2 y1)]∞
0 . g(y1)dy1 

= ∫[1 − e−η1y1ℴ] [1 − e−η1(𝒦ℳ)ℴy1ℴ]∞
0 . [e−η1(𝒦ℳ)2ℴy1ℴ] ℴδ1y1ℴ−1e−δ1y1ℴdy1 

= ∫ [e−η1(𝒦ℳ)2ℴy1ℴ − e−η1(1+(𝒦ℳ)2ℴ)y1ℴ]∞
0 ℴδ1y1ℴ−1e−δ1y1ℴdy1 

. ∫ [e−η1(𝒦ℳ)2ℴy1ℴ − e−η1(𝒦ℳ)ℴy1ℴ]∞
0 ℴδ1y1ℴ−1e−δ1y1ℴdy1 

= [∫ ℴδ1y1ℴ−1e−(η1(𝒦ℳ)2ℴ+δ1)y1ℴdy1∞
0 −ℴδ1y1ℴ−1e−(η1(1+(𝒦ℳ)2ℴ)+δ1)y1ℴdy1] 

. [∫ ℴδ1y1ℴ−1e−(η1(𝒦ℳ)2ℴ+δ1)y1ℴdy1∞
0 −ℴδ1y1ℴ−1e−(η1((𝒦ℳ)ℴ+(𝒦ℳ)2ℴ)+δ1)y1ℴdy1] 

p𝑟[X1 < Y1,ℳX1 < 𝐾Y1,ℳ2X1 ≥ 𝒦2Y1]= [  
 
( 

η12 (𝑘𝑚)ℴ δ12(η1 (𝑘𝑚)2ℴ + δ1)2 (η1 (1 + (𝑘𝑚)2ℴ) + δ1) (η1 ((𝑘𝑚)ℴ + (𝑘𝑚)2ℴ) + δ1)) ]  
 
 

andpr[X2 ≥ Y2] = [ δ2η2+δ2] 
𝒮3 = [( η12(𝑘𝑚)ℴδ12(η1(𝑘𝑚)2ℴ+δ1)2(η1(1+( 𝑘𝑚)2ℴ)+δ1)(η1(( 𝑘𝑚)ℴ+( 𝑘𝑚)2ℴ)+δ1))] [ δ2η2+δ2]                                                              ...(8) 

The fourth case of the model work: when the unit ℧1 remains activated  but the unit ℧2fails, unit standby ℧3 is 

activated to replace the failed unit ℧2 and unit ℧4 remains in a standby state : 𝒮4 = pr[X1 ≥ Y1, X2 < Y2, X3 ≥ Y3] = pr[X1 ≥ Y1]p𝑟[X2 < Y2,ℳX2 ≥ 𝒦Y2] 
Where  X3 = ℳX2 and Y3 = 𝒦Y2 , then : 

As equation (6) can get pr[X1 ≥ Y1] as : pr[X1 ≥ Y1] = [ δ1η1 + δ1] 
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pr[X2 < Y2,ℳX2 ≥ 𝒦Y2] = ∫[Fx2(y2)] [Fx2 (𝒦ℳ y2)] g(y2)dy2∞
0  

pr[X2 < Y2,ℳX2 ≥ 𝒦Y2] = ∫[1 − e−η2y2ℴ] [e−η2(𝒦ℳ)ℴy2ℴ]∞
0 ℴδ2y2ℴ−1e−δ2y2ℴdy2 

pr[X2 < Y2,ℳX2 ≥ 𝒦Y2] = ∫ [e−η2(𝒦ℳ)ℴy2ℴ − e−η2(1+(𝒦ℳ)ℴ) y2ℴ]∞
0 ℴδ2y2ℴ−1e−δ2y2ℴdy2 

pr[X2 < Y2,ℳX2 ≥ 𝒦Y2] = ∫ ℴδ2y2ℴ−1e−(η2(𝒦ℳ)ℴ+δ2) y2ℴdy2∞
0  

−∫ ℴδ2y2ℴ−1e−(η2(1+(𝒦ℳ)ℴ)+δ2) y2ℴdy2∞
0  

pr[X2 < Y2,ℳX2 ≥ 𝒦Y2] = [ η2δ2(η2 (𝒦ℳ)ℴ + δ2) (η2 (1 + (𝒦ℳ)ℴ) + δ2)] 

𝒮4 = [ δ1η1+δ1] [ η2δ2(η2(𝒦ℳ)ℴ+δ2)(η2(1+(𝒦ℳ)ℴ)+δ2)]                                                                                                         ...(9) 

The fifth case of model work: when the unit ℧1 remains activated  and unit ℧2 fails, the replacement unit ℧3 fails 

and unit standby ℧4 is activated to replace the failed unit ℧3 : 𝒮5 = pr[X1 ≥ Y1, X2 < Y2, X3 < Y3, X4 ≥ Y4] = pr[X1 ≥ Y1]p𝑟[X2 < Y2,ℳX2 < 𝐾Y2,ℳX3 ≥ 𝒦Y3] = pr[X1 ≥ Y1]p𝑟[X2 < Y2,ℳX2 < 𝐾Y2,ℳ2X2 ≥ 𝒦2Y2] 
Where  X4 = ℳX3 = ℳ(ℳX2) = ℳ2X2 

and Y4 = 𝒦Y3 = 𝒦(𝒦Y2) = 𝒦2Y2 , then : pr[X1 ≥ Y1] = [ δ1η1 + δ1] 
and p𝑟[X2 < Y2,ℳX2 < 𝐾Y2,ℳ2X2 ≥ 𝒦2Y2] = ∫[Fx2(y2)] [Fx2 (𝒦ℳ y2)] [Fx2 (𝒦2ℳ2 y2)]∞

0 . g(y1)dy1 

= ∫[1 − e−η2y2ℴ] [1 − e−η2(𝒦ℳ)ℴy2ℴ] . [e−η2(𝒦ℳ)2ℴy2ℴ] ℴδ2y2ℴ−1e−δ2y2ℴdy2∞
0  

= ∫ [e−η2(𝒦ℳ)2ℴy2ℴ − e−η2(1+(𝒦ℳ)2ℴ)y2ℴ]∞
0 ℴδ2y2ℴ−1e−δ2y2ℴdy2 

. ∫ [e−η2(𝒦ℳ)2ℴy2ℴ − e−η2(𝒦ℳ)ℴy2ℴ]∞
0 ℴδ2y2ℴ−1e−δ2y2ℴdy2 

= [∫ ℴδ2y2ℴ−1e−(η2(𝒦ℳ)2ℴ+δ2)y2ℴdy2∞
0 −ℴδ2y2ℴ−1e−(η2(1+(𝒦ℳ)2ℴ)+δ2)y2ℴdy2] 

. [∫ ℴδ2y2ℴ−1e−(η2(𝒦ℳ)2ℴ+δ2)y2ℴdy2∞
0 −ℴδ2y2ℴ−1e−(η2((𝒦ℳ)ℴ+(𝒦ℳ)2ℴ)+δ2)y2ℴdy2] 
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p𝑟[X2 < Y2,ℳX2 < 𝐾Y2,ℳ2X2 ≥ 𝒦2Y2]= [  
 
( 

η22 (𝑘𝑚)ℴ δ22(η2 (𝑘𝑚)2ℴ + δ2)2 (η2 (1 + (𝑘𝑚)2ℴ) + δ2) (η2 ((𝑘𝑚)ℴ + (𝑘𝑚)2ℴ) + δ2)) ]  
 
 

𝒮5 = [ δ1η1+δ1] [( η22( 𝑘𝑚)ℴδ22(η2( 𝑘𝑚)2ℴ+δ2)2(η2(1+(𝑘𝑚)2ℴ)+δ2)(η2(( 𝑘𝑚)ℴ+( 𝑘𝑚)2ℴ)+δ2))]                                                          ...(10) 

The sixth case of the model work: when the units ℧1 and ℧2 are fails, the standby units  ℧3 and ℧4 are activated to 

replace the failed units ℧1 and ℧4 : 𝒮6 = pr[X1 < Y1, X2 < Y2, X3 ≥ Y3, X4 ≥ Y4] = p𝑟[X1 < Y1,ℳX1 ≥ 𝒦Y1]pr[X2 < Y2, mX2 ≥ kY2] pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫[Fx1(y1)] [Fx1 (𝒦ℳ y1)] g(y1)dy1∞
0  

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫[1 − e−η1y1ℴ] [e−η1(𝒦ℳ𝑦1)ℴ]∞
0 ℴδ1y1ℴ−1e−δ1y1ℴdy1 

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫ [e−η1(𝒦ℳ)ℴy1ℴ − e−η1(1+(𝒦ℳ)ℴ)y1ℴ] ℴδ1y1ℴ−1e−δ1y1ℴdy1∞
0  

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = ∫ ℴδ1y1ℴ−1e−(η1(𝒦ℳ)ℴ+δ1)y1ℴdy1∞
0  

. ∫ ℴδ1y1ℴ−1e−(η1(1+(𝒦ℳ)ℴ)+δ1)y1ℴdy1∞
0  

pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = [( δ1η1 (𝒦ℳ)ℴ + δ1) − ( δ1η1 (1 + (𝒦ℳ)ℴ) + δ1)] 
pr[X1 < Y1,ℳX1 ≥ 𝒦Y1] = [ η1δ1(η1 (𝒦ℳ)ℴ + δ1) (η1 (1 + (𝒦ℳ)ℴ) + δ1)] 

and 

pr[X2 < Y2, mX2 ≥ kY2] = ∫[Fx2(y2)] [Fx2 (𝒦ℳ y2)] g(y2)dy2∞
0  

pr[X2 < Y2, mX2 ≥ kY2] = ∫[1 − e−η2y2ℴ] [e−η2(𝒦ℳ𝑦2)ℴ]∞
0 ℴδ2y2ℴ−1e−δ2y2ℴdy2 

pr[X2 < Y2,ℳX2 ≥ 𝒦Y2] = ∫ [e−η2(𝒦ℳ)ℴy2ℴ − e−η2(1+(𝒦ℳ)ℴ)y2ℴ] ℴδ2y2ℴ−1e−δ2y2ℴdy2∞
0  

pr[X2 < Y2,ℳX2 ≥ 𝒦Y2] = ∫ ℴδ2y2ℴ−1e−(η2(𝒦ℳ)ℴ+δ2)y2ℴdy2∞
0  

. ∫ ℴδ2y2ℴ−1e−(η2(1+(𝒦ℳ)ℴ)+δ2)y2ℴdy2∞
0  
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pr[X2 < Y2, mX2 ≥ kY2] = [( δ2η2 (𝒦ℳ)ℴ + δ2) − ( δ2η2 (1 + (𝒦ℳ)ℴ) + δ2)] 

pr[X2 < Y2, mX2 ≥ kY2] = [ η2δ2(η2 (𝒦ℳ)ℴ + δ2) (η2 (1 + (𝒦ℳ)ℴ) + δ2)] 

𝒮6 = [ η1δ1(η1(𝒦ℳ)ℴ+δ1)(η1(1+(𝒦ℳ)ℴ)+δ1)] [ η2δ2(η2(𝒦ℳ)ℴ+δ2)(η2(1+(𝒦ℳ)ℴ)+δ2)]                                                                    ...(11) 

 

Now , substituting (6),(7),(8),(9),(10) and (11) in (5) ;will get reliability function for (2+2) cascade model of 

Weibull distribution : 

ℛ = [ δ1η1 + δ1] [ δ2η2 + δ2] + [ η1δ1(η1 (𝒦ℳ)ℴ + δ1) (η1 (1 + (𝒦ℳ)ℴ) + δ1)] [ δ2η2 + δ2] 
+ [  

 
( 

η12 (𝑘𝑚)ℴ δ12(η1 (𝑘𝑚)2ℴ + δ1)2 (η1 (1 + (𝑘𝑚)2ℴ) + δ1) (η1 ((𝑘𝑚)ℴ + (𝑘𝑚)2ℴ) + δ1)) ]  
 [ δ2η2 + δ2] 

+ [ δ1η1 + δ1] [ η2δ2(η2 (𝒦ℳ)ℴ + δ2) (η2 (1 + (𝒦ℳ)ℴ) + δ2)] 

+[ δ1η1 + δ1] [  
 
( 

η22 (𝑘𝑚)ℴ δ22(η2 (𝑘𝑚)2ℴ + δ2)2 (η2 (1 + (𝑘𝑚)2ℴ) + δ2) (η2 ((𝑘𝑚)ℴ + (𝑘𝑚)2ℴ) + δ2)) ]  
 
 

+[ η1δ1(η1(𝒦ℳ)ℴ+δ1)(η1(1+(𝒦ℳ)ℴ)+δ1)] [ η2δ2(η2(𝒦ℳ)ℴ+δ2)(η2(1+(𝒦ℳ)ℴ)+δ2)]                                                                …(14) 

3.Parameter Estimation: 

3-1Maximum likelihood Estimation Method (ML):- 

If the random sample x1, x2, x3, … , x𝓃   from W(ℴ, η) , the likelihood function "L" , is:(Bhattacharya & 

Bhattacharjee, 2009; Ismail, 2012) L(x1, x2, x3 … , x𝓃, ℴ, η) = f(x1; ℴ, η)f(x2; ℴ, η)f(x3; ℴ, η) … f(xn; ℴ, η) = ∏ f(x𝔯; ℴ, η)𝓃
𝔯=1  

likelihood function will be: L(x1, x2, x3 … , x𝓃; ℴ, η) = ℴ𝓃η𝓃 ∏ xiℴ−1e−∑ ηx𝔯ℴ𝓃𝔯=1𝓃𝔯=1        …(15) 
By taking natural logarithm for equation (15) it can be written as: ln L = 𝓃Lnℴ + nLnη + (ℴ − 1)∑ ln xr𝓃

𝔯=1 − η∑ x𝔯ℴ𝓃
𝔯=1  ∂ ln L∂η = 𝓃η − ∑ x𝔯ℴ𝓃

r=1  𝓃η̂ − ∑ x𝔯ℴ𝓃r=1 = 0      ...(16) 

From (16) we obtain the maximum likelihood estimator of η: η̂(ML) = 𝓃∑ x𝔯ℴ𝓃𝔯=1              ...(17) 

Assume that strength random samples X1r1 ; 𝔯1 = 1, 2, … ,𝓃1, X2𝔯2 ; 𝔯2 = 1, 2, … ,𝓃2, X3𝔯3 ; 𝔯3 = 1, 2, … ,𝓃3and X4𝔯4 ; 𝔯4 = 1, 2, … ,𝓃3from W(ℴ, η1), W(ℴ, η2),W(ℴ, η3)and W(ℴ, η4), with samples size(𝓃1 , 𝓃2, 𝓃3 and 𝓃4) 

respectively where η1, η2, η3and η4 are unknown parameters: 
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η̂ζ(ML) = 𝓃ζ∑ xζ𝔯ζℴ𝓃ζ𝔯ζ=1 , ζ = 1,2,3,4                       ...(18) 

Like the above steps, for the random stress variables with the samples size (𝓂1,𝓂2,𝓂3 and 𝓂4) the maximum 

likelihood estimators for unknown parameters δ1, δ2, δ3 and δ4 will be as : δ̂ζ(ML) = 𝓂ζ∑ yζ𝓋ζℴ𝓂ζ𝓋ζ=1   , ζ = 1,2,3,4              …(19) 

3-2 Regression Estimation Method (Rg) :- 

Assume the random samplex1, x2, x3, … , x𝓃 from W(ℴ, η): (Al-nasser & Radaideh, 2008; Lewis & Linzer, 2005) F(x(𝔯)) = 1 − 𝑒−ηx(𝔯)ℴ
 (1 − F(x(𝔯)))−1 = 𝑒ηx(𝔯)ℴ

 

Ln[(1 − F(x(𝔯)))−1] = ηx(𝔯)ℴ  

Changing F(x(𝔯)) by the plotting position P𝔯, where P𝔯 = 𝔯𝓃+1 

Ln[(1 − P𝔯)−1] = ηx(𝔯)ℴ ...(20) 

by using equation standard regression :  z𝔯 = a + bu𝔯 + e𝔯…(21) 
Compare equation (21) with equation (20) : z𝔯 = Ln[(1 − P𝔯)−1], a = 0, b = η, u𝔯 = x(𝔯)ℴ   where ; 𝔯 = 1,2, … , 𝓃     ...(22) 

Where b can be estimated by minimizing summation of the squared error for b :  b̂ = 𝓃 ∑ z𝔯u𝔯𝓃𝔯=1 −∑ z𝔯𝓃𝔯=1 ∑ u𝔯𝓃𝔯=1𝓃 ∑ (u𝔯)2𝓃𝔯=1 −(∑ u𝔯𝓃𝔯=1 )2              ...(23) 

Substation equation (22) in equation (23), the estimator for β : η̂(Rg) = 𝓃 ∑ x(𝔯)ℴ  Ln[(1−P𝔯)−1]𝓃𝔯=1 − ∑ x(𝔯)ℴ𝓃𝔯=1 ∑ Ln[(1−P𝔯)−1]𝓃𝔯=1𝓃 ∑ [x(𝔯)ℴ ]2𝓃𝔯=1 − [∑ x(𝔯)ℴ𝓃𝔯=1 ]2           ...(24) 

Now, the Regression estimators of the unknown scale parameters (η1, η2, η3and η4) and (δ1, δ2, δ3 and δ4)are : η̂ζ(Rg) = 𝓃ζ ∑ xζ(𝔯ζ)ℴ ln[(1−P𝔯ζ)−1]𝓃ζ𝔯ζ=1 −∑ xζ(𝔯ζ)ℴ𝓃ζ𝔯ζ=1 ∑ ln[(1−P𝔯ζ)−1]𝓃ζ𝔯ζ=1
𝓃ζ ∑ [xζ(𝔯ζ)ℴ ]2𝓃ζ𝔯ζ=1 −[∑ xζ(𝔯ζ)ℴ𝓃ζ𝔯ζ=1 ]2  ; ζ = 1,2,3,4        …(25) 

and  δ̂ζ(Rg) = 𝓂ζ ∑ yζ(𝓋ζ)ℴ ln[(1−P𝓋ζ)−1]𝓂ζ𝓋ζ=1 −∑ yζ(𝓋ζ)ℴ𝓂ζ𝓋ζ=1 ∑ ln[(1−P𝓋ζ)−1]𝓂ζ𝓋ζ=1
𝓂ζ ∑ [yζ(𝓋ζ)ℴ ]2𝓂ζ𝓋ζ=1 −[∑ yζ(𝓋ζ)ℴ𝓂ζ𝓋ζ=1 ]2  ; ζ = 1,2,3,4   ...(26) 

3-2 Percentile Estimation Method (PE) : 

Suppose that random sample x𝔯; 𝔯 = 1,2, … , 𝓃  with size 𝓃 from W(ℴ, η) , Since the CDF defined in 

equation: (Gupta & Kundu, 2001) F(x(𝔯)) = 1 − e−ηx(𝔯)ℴ
 ln (1 − F(x(𝔯))) = −ηx(𝔯)ℴ  x(𝔯) = (−ln(1−F(x(𝔯)))η )1ℴ

               ...(27) 

Since 𝑃𝔯;𝔯 = 1,2, … , 𝓃 denotes some estimate of  F(x(𝔯); ℴ, η), then : x(𝔯) = (−ln (1−P𝔯)η )1ℴ
...(28) 

Minimizing equation defined as : ∑ [x(𝔯) − 𝐹(x(𝔯))]2𝓃𝔯=1               ...(29) 

Substitution (28) in (29), will get as : ∑ [x(𝔯) − (−ln (1−P𝔯)η )1ℴ]2𝓃𝔯=1                ...(30) 

The partial derivative of equation (30): 
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∑ 2[(x(𝔯)) − η−1ℴ(−ln (1 − P𝔯))1ℴ]𝓃
𝔯=1 (1ℴ η−(1ℴ+1)) (−ln (1 − P𝔯))1ℴ =  0 

The Percentile estimator ofη : η̂(PE) = [ ∑ (−ln (1−P𝔯))2ℴ𝓃𝔯=1∑ (x(𝔯))(−ln (1−P𝔯))1ℴ𝓃𝔯=1 ]ℴ
                                            ...(31) 

Now the Percentile estimators parameters (η1, η2, η3and η4) and (δ1, δ2, δ3 and δ4)are : 

η̂ζ(PE) = [   
 ∑ (−ln (1−P𝔯ζ))2ℴ𝓃ζ𝔯ζ=1
∑ (xζ(𝔯ζ))(−ln (1−P𝔯ζ))1ℴ𝓃ζ𝔯ζ=1 ]   

 ℴ ;  ζ = 1,2,3,4                       ...(32)  

and  

δ̂ζ(PE) = [   
 ∑ (−ln (1−P𝓋ζ))2ℴ𝓂ζ𝓋ζ=1
∑ (yζ(𝓋ζ))(−ln (1−P𝓋ζ))1ℴ𝓂ζ𝓋ζ=1 ]   

 ℴ ;  ζ = 1,2,3,4                  ...(33) 

 

4.The simulation study and discussions 

We conduct extensive simulations to compare the performances of the different methods, mainly for their mean 

square errors, for different sample sizes and different parameters values. The parameters of the Weibull 

distribution can be estimated with ten experiments, while the best estimation method to estimate ℛ described in 

equation (14) is being explored. Experiments performed were based on run size K=10000. Results have been 

recorded for (𝑛1, 𝑛2, 𝑚1, 𝑚2) = (10,10,10,10) (small samples) , (25,25,25,25)  (moderate samples) and (75,75,75,75)(large samples). 
 

The following different values of parameters ( ℴ, η1, η2, η3, δ1, δ2, δ3)  and attenuation factors (𝒦 and ℳ) in the table (1): 
 

Experiment 𝓸 𝛈𝟏 𝛈𝟐 𝛅𝟏 𝛅𝟐 𝓚 𝓜 𝓡 

1 0.7 0.7 0.7 0.7 0.7 1.8 0.2 0.2773 

2 1.8 0.7 0.7 0.7 0.7 1.8 0.2 0.2503 

3 0.7 1.9 1.9 0.7 0.7 1.8 0.2 0.0792 

4 0.7 0.7 0.7 1.5 1.5 1.8 0.2 0.5220 

5 0.7 0.7 0.7 0.7 0.7 1.2 0.9 0.4599 

6 1.8 0.7 0.7 0.7 0.7 1.2 0.9 0.3765 

7 0.7 1.9 1.9 0.7 0.7 1.2 0.9 0.1464 

8 0.7 0.7 0.7 1.5 1.5 1.2 0.9 0.8528 

9 1.6 1.2 1.6 0.6 0.9 1.1 0.95 0.2311 

10 0.7 0.9 0.7 1.5 1.7 1.1 0.95 0.9002 

For the ten experiments, (𝑛1 = 𝑛2 = 𝑚1 = 𝑚2)should be noted, where (𝑛1, 𝑛2, 𝑚1 𝑎𝑛𝑑 𝑚2)  are the sample 

sizes drawn  from stress and strength variables : 

 

 

 

 

 

 

 

Table (2): Values (Mean and MSE) for an experiment (1) 

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.2791 0.2789 0.2790 

MSE 0.0078 0.0121 0.0092 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.2774 0.2772 0.2772 

MSE 0.0032 0.0056 0.0042 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.2769 0.2777 0.2776 

MSE 0.0010 0.0021 0.0016 

 

Table (3): Values (Mean and MSE) for an experiment (2)          

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.2509 0.2512 0.2508 

MSE 0.0062 0.0098 0.0063 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.2496 0.2502 0.2497 

MSE 0.0025 0.0045 0.0027 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.2504 0.2508 0.2506 

MSE 0.0008 0.0017 0.0009 
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4.Objectives Of The Study 

 

 

 

 

 

 

experiments reveal some very clear common points : 

 

 

Tables (1,2,3,4,5,6,7,8,9,10 and 11) show the results of the ten experiments. Tables showing both of the ten 

experiments reveal some very clear common points : 

1. It was noticed that when the amount of the shape parameter ℴ was increased, the model reliability decreased, 

this can be noticed clear when comparing experiment (1) with experiment (2) and also when comparing 

experiment (5) with experiment  (6) in a table (1). 

Table (4): Values (Mean and MSE) for an experiment (3)          

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.0847 0.0879 0.0857 

MSE 0.0016 0.0028 0.0020 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.0814 0.0835 0.0824 

MSE 0.0006 0.0011 0.0008 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.0800 0.0809 0.0805 

MSE 0.0002 0.0008 0.0004 

 

Table (5): Values (Mean and MSE) for an experiment (4) 

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.5093 0.5029 0.5073 

MSE 0.0111 0.0175 0.0132 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.5164 0.5118 0.5144 

MSE 0.0045 0.0082 0.0060 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.5205 0.5190 0.5198 

MSE 0.0016 0.0030 0.0023 

 

Table (6): Values (Mean and MSE) for an experiment (5)          

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.4569 0.4368 0.4445 

MSE 0.0174 0.0251 0.0196 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.4581 0.4465 0.4510 

MSE 0.0072 0.0121 0.0092 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.4599 0.4545 0.4564 

MSE 0.0024 0.0046 0.0035 

 

Table (7): Values (Mean and MSE) for an experiment (6)          

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 

MSE 

0.3766 0.3707 0.3748 

0.0128 0.0195 0.0127 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.3767 0.3721 0.3757 

MSE 0.0053 0.0093 0.0050 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.3766 0.3744 0.3762 

MSE 0.0018 0.0034 0.0016 

 

Table (8): Values (Mean and MSE) for an experiment (7)          

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.1561 0.1565 0.1545 

MSE 0.0055 0.0086 0.0064 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.1511 0.1520 0.1509 

MSE 0.0020 0.0036 0.0026 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.1480 0.1474 0.1473 

MSE 0.0006 0.0012 0.0009 

 

Table (11):Values (Mean and MSE) for an experiment(10)         

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.8875 0.8097 0.8385 

MSE 0.0279 0.0429 0.0319 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.8948 0.8423 0.8617 

MSE 0.0105 0.0194 0.0140 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.8973 0.8695 0.8791 

MSE 0.0034 0.0072 0.0053 

 

Table (10): Values (Mean and MSE) for an experiment(9)          

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.2402 0.2367 0.2367 

MSE 0.0097 0.0144 0.0093 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.2356 0.2341 0.2339 

MSE 0.0037 0.0064 0.0036 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 

MSE 

0.2323 0.2308 0.2315 

0.0012 0.0023 0.0010 

 

Table (9): Values (Mean and MSE) for an experiment (8)          

Simple size Criterion ML Rg Pr 

(𝟏𝟎, 𝟏𝟎, 𝟏𝟎, 𝟏𝟎) 
Mean 0.8376 0.7772 0.8007 

MSE 0.0227 0.0349 0.0261 

(𝟐𝟓, 𝟐𝟓, 𝟐𝟓, 𝟐𝟓) 
Mean 0.8479 0.8080 0.8231 

MSE 0.0085 0.0155 0.0113 

(𝟕𝟓, 𝟕𝟓, 𝟕𝟓, 𝟕𝟓) 
Mean 0.8507 0.8285 0.8362 

MSE 0.0028 0.0058 0.0043 
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2. It was noticed that when increasing the amount of the two-scale parameters 𝜂1and 𝜂2 , the model reliability 

decreased. This is clear when comparing experiment (1) with experiment (3) and also when comparing 

experiment (5) with experiment (7) in a table (1). 

3. The model's reliability value increased with the increase in the value of the scale parameters 𝛿1 and 𝛿2, and 

this can be seen when comparing experiment (1) with experiment (4) and also when comparing experiment (5) 

with experiment (8) in a table (1) 

4. As for the attenuation (𝒦 and ℳ ) factors, it should be noted that the inverse relationship   between the value 

of the reliability model with the value of (𝒦 ℳ⁄ )so that if the value of (𝒦 ℳ⁄ ) increases, the value of the 

reliability model decreases, and if the value of (𝒦 ℳ⁄ ) decreases the reliability of the model increases. This 

can be seen when comparing experiments (1, 2,3,4) with experiments (5,6,7,8) respectively in a table (1). 

The following can be listed to compare the performances of all three methods to estimate the reliability for 

(2+2) cascade model of Weibull distribution : 

1.  The decrease in the mean square errors with increases in sample size in all estimation methods. It confirms 

asymptotic impartiality and consistency of all estimators. 

2. The performances of Rg's and Pe's are according to their order. 

3. The performances of ML's and Pe's are close to each other. 

4. The ML estimator is the best of the three deferent estimation methods and this is shown in the simulation of 

the results of the tables (2,3,4,5,7,8,10). 

5. The Pe estimator is the best of the three deferent estimation methods and appears in the simulation results 

of tables (6 and 9). 

5. Conclusions 

A- In this study, we conclude from ten experiments for different values of parameters that are presented in Table 1 

include: 
1. The numerical value of reliability increases with decreasing value of the saucepan of the shape parameter (ℴ) , 

and the relationship between them is inverse. 

2. The numerical value of reliability decreases with increasing the value of the amount of the two-scale 

parameters(𝜂1 𝑎𝑛𝑑 𝜂2), and the relationship between them is inverse. 
3. The numerical value of reliability increases with the increase in the value of the two-scale parameters (𝛿1 𝑎𝑛𝑑 𝛿2), and the relationship between them is positive. 
4. The numerical value of reliability increases when the ratio between the two attenuation factors (𝒦 ℳ⁄ ) 

decreases, meaning that the relationship between them is inverse. 

B-We concludes from simulation study results of the in tables (2,3,4,5,6,7,8,9,10 and 11) the following: 

1. The performance of the ML estimator and the Pe estimator are approximate in estimating model reliability in 

most experimental results and for different sizes sample. 

2. The ML estimator is best for estimating the reliability of model in 80% of simulation results. 

3. Pe estimator is the best at estimating the reliability of model in 20% of simulation results. 

4. This model can be applied to real data and different estimation methods can be used to estimate model 

reliability. 
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