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Abstract: Battery management system (BMS) comprises of an electronic circuitry that monitors the battery operation to ensure 

temperature regulation, cell balancing, protection against overcharging and deep discharging, etc. This results in increased 

battery life, prevents degradation of the health of battery, prevention of fire hazards and increased safety. BMS is critical to the 

performance and wider acceptance of electric vehicle (EV) technology. Accurate estimation of the state of charge (SOC) of the 

battery is necessary for the precise operation of BMS. Kalman filters can be employed for SOC estimation. This paper presents 

unscented Kalman Filter (UKF) based SOC estimation for a 3100mAh, 3.7V lithium iron phosphate cell, which is employed 

for developing a battery pack for EVs. Four different Thevenin models of the cell, using (i) zero RC branch, (ii) one RC 

branch, (iii) two RC branches, and (iv) three RC branch, are considered in this work. With the increase in the number of RC 

branches, the accuracy of the model increases. However, consequently the computational burden also increases. The UKF 

based SOC estimation with the four different RC model is analysed with the help of the model developed in 

MATLAB/SIMULINK. The analysis reveals that the root mean square error in SOC estimation is lowest with three RC model, 

resulting in more accurate SOC estimation. This is achieved without significant increase in the execution time as recorded with 

the Raspberry Pi based implementation of the UKF algorithm for each model. 

Keywords: Battery Management System, Battery Modelling, Thevenin Model, RC Model, State of Charge, Unscented Kalman 

Filter 

___________________________________________________________________________ 
 

1. Introduction 

The climate change concerns and the global warming issues mandate a marked reduction in greenhouse gas 

(GHG) emissions. Transportation sector is one of the major sources of GHG emissions resulting from combustion 

of fossil fuels like petrol and diesel(Lu, Iyer, Mukherjee, Ramkumar, & Kar, 2015). To reduce the contribution of 

transport sector towards GHG emissions, it is necessary to have more and more battery powered electric vehicles 

(EVs). The activation of Corporate Average Fuel Economy standards in 2016, has strengthened the case for 

shifting to EVs(Sant, Khadkikar, Xiao, & Zeineldin, 2015). Moreover, the increasing prices of petrol and diesel 

have resulted in increased adoption of EVs. Along with this, the recent advancement in electrochemistry of battery 

and standardization of manufacturing techniques also compliments the EV revolution.  

An EV battery comprises of cells connected in series and parallel to obtain required current and voltage rating. 

The algorithms used to estimate states for a cell can be translated to a battery. Battery management system (BMS) 

is an integral part of any EV. With an electronic circuitry, BMS monitors the battery operation to ensure 

temperature regulation, cell balancing, and protection against overcharging and deep discharging. This supports in 

improving the battery life, preventing degradation of battery health and increase safety against fire hazards. BMS 

necessitates the instantaneous estimation of state of charge (SOC) of battery, which in turn requires mathematical 

modelling of the battery. Battery models are also a key aspect of a dynamic EV simulator(Wipke, Cuddy, & 

Burch, 1999). 
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The techniques used for modelling of batteries can be divided into (i) analytical method. (ii) electrochemical 

method, and (iii) equivalent circuit method. Analytical method when used to develop battery models does not 

correctly interpret the electrochemical processes taking place in the cell (Rakhmatov, 2009). Electrochemical 

models require a huge amount of computational power to solve the time-varying differential equations. Also, it is 

difficult to directly connect this model to the rest of the electronic system (Safari, Morcrette, Teyssot, & 

Delacourt, 2009). The equivalent circuit model uses different circuit elements to replicate battery characteristics. It 

would suffice to say that the equivalent circuit models can model the nonlinear behavior of the battery in an EV 

system and they also can easily integrate it with the rest of the electronic system(Liaw, Nagasubramanian, Jungst, 

& Doughty, 2004). 

Most of the equivalent circuit-based models are categorized as impedance-based models or Thevenin models. 

The impedance-based model requires a method called electrochemical impedance spectroscopy (EIS) to determine 

the electrical circuit components. The circuit components represent the electrochemical processes occurring within 

the cell. In Thevenin-based models the values of different circuit components, such as resistors, capacitors and 

voltage sources, are determined based on the measured voltage response. The benefit of using Thevenin models is 

that, using various parameter estimation algorithms the circuit components can be determined from voltage 

measurements without any additional equipment for an EV(Lam, Bauer, & Kelder, 2011).  Various algorithms 

such as Coulomb counting, Kalman filter, extended Kalman filter, unscented Kalman filter, artificial neural 

network, fuzzy logic, genetic algorithm, etc. can be used for estimating battery SOC. All the algorithms have their 

own merits and demerits. Depending on the requirement of accuracy, availability of data, quality of data, 

computational time, etc. the selection of appropriate methods for a particular application can be done. 

1.1. Electric Vehicle Drivetrain Configuration 

The EV drivetrain is very elementary when we compare it with the drive train of Internal Combustion Engine 

Vehicle (ICEV). There are thousands of moving parts in engine of ICEV whereas there are very few moving parts 

in an EV. The reduction of moving parts results in lower wear and tear during operation of vehicle thus enables 

smooth functioning of the vehicle. As shown in Figure 1, EV drivetrain basically comprises of onboard charger, 

dc-dc and dc-ac converters, traction battery pack and electric motor. The battery is charged from the power outlet. 

If ac charger is used then only the onboard charger comes into picture and ac-dc conversion is implemented. On 

the other hand, if dc charger is employed then the onboard charger is not required. The battery stores electricity to 

run the vehicle. The dc-dc converters adjust voltage level requirement of battery pack and electric motor. The 

variable voltage variable frequency supply required by the electric motor is supplied by dc-ac converter. This 

converter ensures that the EV performance requirements, such as starting, accelerating, climbing and other driving 

demands, are met. The power input to the electric motor and subsequently the mechanical power output of motor 

is controlled based on the driving requirement. Electric motor works equivalent to engine in ICEV and generates 

the necessary tractive effort as per the driving requirement. The positive point for electric motor as compared to 

engine is that the engine works optimally only at a certain range of r/min whereas an electric motor works 

efficiently over a wide range on r/min. Thus, the efficiency of an EV is much higher as compared to ICEV. Other 

advantage of having an electric drivetrain is the feature of regenerative breaking, wherein the kinetic energy 

generated during braking is converted into electric energy for charging the battery. During regenerative braking, 

the electric motor acts as an electric generator. In cars significant amount of kinetic energy is generated while 

breaking and gets wasted as heat and friction. However, with the feature of regenerative breaking in EVs this 

energy is not wasted and is converted in electric energy for charging the battery pack. This in turn contributes to 

extending the driving range of the battery.   

Figure 1. EV drivetrain 
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1.2. Energy Storage for Electric Vehicles  

Batteries are reliable, stable, have longer life, less hazardous, provide higher energy density and specific 

energy when compared to other energy storage systems. There are many battery chemistries available in market 

such as lead-acid based battery, lithium-based battery, nickel-based battery, sodium-based battery, etc. Out of all 

the chemistries commercially available, the most preferred choice among EV manufacturers is lithium-based 

battery chemistry (Ali et al., 2019). One of the biggest hurdles in increasing the size of battery pack in an EV is 

the lack of available space and weight of the battery. Higher the weight of battery more energy is required to 

propel the EV, which in turn will reduce the overall driving range of the vehicle. With lithium-based battery for 

the same weight and size for a battery, higher range can be obtained due to its higher energy density. Additionally, 

higher life cycle, nominal voltage and lower cost are also critical factors in selection of lithium-based battery for 

EV application.  

In all the lithium-based battery the negative electrode comprises of some form of graphite composition and 

different chemistries of lithium is used for positive electrode(Ali et al., 2019). The naming of battery is done based 

on the chemical composition of positive electrode. Different lithium-based batteries are Lithium Cobalt Oxide 

(LCO), Lithium Manganese Oxide (LMO), Lithium Nickel Manganese Cobalt Oxide (NMC), Lithium Iron 

Phosphate Oxide (LFP), Lithium Nickel Cobalt Aluminum Oxide (NCA) and Lithium Titanate Oxide (LTO). All 

these battery types are compared for their specific energy, specific power, safety, performance, life span and cost 

in Figure 2. Based on requirement of application, the selection of battery chemistry can be done. For example, in 

EVs, the parameters of focus are specific power, user safetyand life span, hence the most preferred choice of 

manufacturer is LFP battery.  

Figure 2. Lithium based Battery Comparison 

 

Lithium-based batteries are sensitive to overcharging as well as deep discharging. Hence, they require BMS for 

protection. Apart from protection BMS has various functionalities such as sensing and high voltage controls, 

works as an interface between battery pack and controller, performance management and diagnostics. Essentially, 

BMS makes sure that battery is safe from abusive behavior. ICEV has a fuel gauge for estimating remaining fuel 

and thus driving range. Similarly for EV, BMS performs this task through performance management and 

diagnostics. In performance management and diagnostics, BMS estimates SOC and state of health (SOH) of a 

battery. SOC indicates the remaining energy in a battery. The range anxiety concern of EV users could be 

addressed only by accurately estimating remaining driving range of an EV. This is possible through accurate 

estimation of SOC of a battery. Algorithms used for SOC estimation requires efficient battery model. Thus, an 

efficient battery model eventually results in accurate SOC and remaining driving range estimation. I this paper a 

thorough study has been performed to develop a battery model which not only replicates battery performances 

efficiently but is also computationally simpler. 

2. Background 

Reference(Madani, Schaltz, & Kær, 2019) investigated a second order equivalent circuit model for a 13Ah lithium 

titanate oxide cell. The proposed method was based on a comprehensive characterization experiments performed 

to operate battery on a wide range of operating conditions. The outcomes from the experiments were used to 

parameterize the dynamic model of the cell. An experimental study on intermittent discharge and hybrid power 
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pulse characterization to identify the parameters of the battery was presented in(Su et al., 2019). Also, 

MATLAB/SIMULINK based study on splice equivalent circuit model for a lithium-ion battery pack for an EV is 

also presented.  

Parameter identification for a lithium-ion battery in SIMULINK model for a hybrid power system was 

investigated in(Knauff et al., 2007). Additionally, a procedure for obtaining battery cell model parameters using 

the experimental data was developed. To validate the experimental data, it was compared to the simulation 

outcomes and a high degree of efficiency were observed by author in(Knauff et al., 2007). Reference 

(Schweighofer, Wegleiter, Recheis, & Fulmek, 2012)presents a battery model that accurately simulates the 

current-voltage response of the battery. The complexity of the model is low and can be used as a quick simple 

parameter identification method. The author provided values for power loss for use in design and optimization of 

cooling system for the battery. 

The work presented in(Moss, Au, Plichta, & Zheng, 2008) has an equivalent electrical circuit model of a Li 

polymer battery using MATLAB/SIMULINK, ac Impedance method was used for parameter identification. The 

model developed in this paper considers the non-homogeneous behaviors of the battery, such as geometry of pores 

and cell’s particle size. A fast and computationally simple method for the electrical equivalent circuit modelling of 

a Lithium-ion battery was proposed by the author in(Saxena, Raman, Saritha, & John, 2016). No lookup tables 

were involved in this proposed method. Reference(Mehta, Sant, & Sharma, n.d.) proposed an advanced equivalent 

circuit model for a battery with three RC branches. A charge and discharge curves analysis for Li-ion batteries was 

developed. A comparative study for SOC estimation using extended Kalman filter and UKF was presented. From 

the simulation study, it was deduced that with the increase in age of battery the internal resistance of the battery 

increases and the capacity of the battery decreases. 

The general notion in developing battery model is to use Thevenin model with one or two RC branches. This is 

because the battery model developed using Thevenin model can be easily integrated with other electronics of the 

BMS. The method widely used for SOC estimation in the literature is UKF. Hence in this paper, battery model 

with different RC branches is developed and compared using UKF based SOC estimation. 

In this paper a new three RC model of battery is proposed. Moreover, this paper presents unscented Kalman 

Filter (UKF) based SOC estimation for four different battery models (i) zero RC branch, (ii) one RC branch, (iii) 

two RC branches, and (iv) three RC model. The UKF based estimation of SOC for each model is analyzed 

considering the estimation accuracy and computational intensity. A 3100mAh, 3.7V LFP cell is considered, which 

can be employed for developing a battery pack for EVs. This work implements the Thevenin model for a battery 

using different RC branches. The accuracy of the model increases with the increase in the number of RC branches. 

Theoretically, this number can be increased to any number to improve accuracy. However, in terms of practical 

implementation increasing this number after a certain level greatly adds computational burden and execution time, 

while having little or negligible impact on the accuracy. Based on the root mean square error in SOC estimation, 

the three RC branch battery model is selected as it provides the most accurate estimation. From implementation 

perspective, the computational time taken for all the three models is also compared with Raspberry Pi based 

implementation of the UKF algorithm for different RC models. Based on analysis performed in the study it was 

observed that the root mean square error is lowest for the battery model with three RC branches. The delayed 

estimation for application like battery modelling, because of increased computational time may lead in estimations 

which are not in accordance with the present state of the battery. EV application is highly dynamic and it is 

required to get the instantaneous results for better performance of battery management system. This can be 

achieved with UKF SOC estimation using 3-RC model to have the necessary accuracy and computational 

simplicity. 

3. Battery Model 

To monitor various battery parameters, like SOC, health, cell balancing, etc., the mathematical model of 

battery is essentially required. Thevenin models are largely used for battery modelling in EV applications (You, 

Bae, Cho, Lee, & Kim, 2018). Thevenin models essentially comprises of a voltage source to simulate the open 

circuit voltage of the battery, a resistor for instantaneous voltage drop effect when load is connected across the 

battery terminals and several RC networks to imitate delayed voltage drop effect of a battery(Ahmed et al., 2015) 

By increasing the number of RC networks, a better estimation of battery’s internal working can be obtained. 

Theoretically, the number of RC branches can be increased to a larger number to get exact model of battery(Lam 

et al., 2011). The downside to this is, increasing the number of RC branches increases the computational load on 

BMS, this effects in increase in computational time. Determining the number of RC branches for a battery model 

involves trade-off between accuracy and computational speed. 
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Figure 3. Ideal Battery Model Figure 4. Thevenin Battery Model 
  

Figure 3. shows the ideal battery consisting of internal voltage 𝐸𝑚, internal resistance, 𝑅𝑛, and terminal voltage 𝑈0. The drawback for this model is that it does not take into account the delay in voltage response of the cell and 

consequently the battery. Figure 4. shows the most basic form of Thevenin model. The model uses an OCV 𝐸𝑚, 

and internal resistance, 𝑅𝑆, a parallel RC network comprising of 𝑅𝑇ℎ and 𝐶𝑇ℎ to predict battery response under 

different loads. Based on this model, different models have been developed by adding additional components so 

as to have increased accuracy in terms of predicting the runtime and dynamic response of the cell and battery. 

3.1. State of Charge 

SOC of a battery indicates how much charge can be extracted from the battery at that particular time instant. 

The Coulomb counting method, which is one of the widely used method for SOC estimation, involves integration 

of current being supplied by the battery(Mehta et al., n.d.). When the battery is supplying the load the SOC 

reduces and with the direction of current being reversed during the charging operation SOC increases. The 

mathematical representation of SOC estimation with Coulomb counting method shown in Equation 1 as: 

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 + 𝐶−1∫ 𝐼 𝑑𝑡   (1) 

where, 𝑆𝑂𝐶𝑡 is existing state of charge, 𝑆𝑂𝐶𝑡−1 is the initial or previous state of charge, 𝐶 is the ampere-hour 

capacity of the battery, 𝐼 is the current being supplied by the battery. There is an error in measurement of current 

at any instant or determination 𝑆𝑂𝐶𝑡−1 can not only result in incorrect estimation of 𝑆𝑂𝐶𝑡 at that instant. This 

error would keep accumulating and result in erroneous estimation of 𝑆𝑂𝐶𝑡. This would result in degradation of the 

performance of the BMS and may end up harming the battery life. A battery is said to be out at end of life when 

the initial capacity of the battery is reduced to 80% (Moss et al., 2008). 

Battery SOC is one of the key states to properly control the EV. It can also be used to response the changes in 

bower requirement for an EV as a result of change in operating conditions. Battery SOC reflects the performance 

of a battery therefore, precise estimation of battery SOC will protect battery from abusive operating condition, 

improve life and performance of battery. It also provides protection against overcharging and deep discharge. 

Precise battery SOC estimation also helps in cell balancing and realistic control strategies. This solves the purpose 

of efficient energy saving through BMS in EV. 

3.2. Open Circuit Voltage 

OCV is the potential measured across the terminals of the battery when it is disconnected from the load. OCV 

is one of the many parameters that needs to be determined while modelling a battery. In this paper, a 2-D lookup 

table is used to determine various model parameters such as voltage, internal resistor and RC branches. This 2-D 

lookup table gives values for the model parameter as a function of SOC vs temperature. OCV is considered as a 

function of temperature, current and SOC. OCV for the cell was determined over the whole range of SOC.  

A voltage source is used to replicate the open circuit voltage of battery, whereas the other components model 

the internal resistance and time dependent behavior of battery cell. The internal resistance replicates instantaneous 

voltage drop response and the RC branch models the delayed voltage drop response. Figure 5 shows the voltage 

response of a typical lithium-ion cell when supplying a load(Ahmed et al., 2015). 
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Figure 5. Typical Voltage Response of Lithium-Ion Battery 

 

 

4. Unscented Kalman Filter 

Kalman filter is a method for extracting parameters that cannot be accessed or measured directly, from 

inaccurate, indirect and uncertain data(Wan & Van Der Merwe, 2000). In contrast to any processing algorithm 

which processes on batch of data, Kalman filter works on the instantaneous data for extracting the necessary 

information. Hence, Kalman filter is ideally suited for estimating the SOC of the battery during each sampling 

instant based on the data sampled during that instant. The recursive nature of Kalman filter also helps in reducing 

mean square error between estimated and measured value. This is because the error can be corrected based on the 

available data, which results in precise parameter estimation. Kalman filter is implemented in two steps (i) predict 

step and (ii) measurement step (Marelli & Corno, 2021). In the predict step the states are predicted using 

previously measured values and previously predicted states. The measurement step in UKF calculates Kalman 

gain, updates state estimates and error covariance based on measured value. These steps are repeated at each 

sampling instant. 

Kalman filters are applied to estimate states for a linear model. However, this filter is not suitable for nonlinear 

models. The mathematical model that replicates the electrochemical nature of battery is highly nonlinear. Hence, 

the conventional Kalman filters are not preferred for SOC estimation of cell or battery. Alternately, extended 

Kalman Filter (EKF) can be employed for SOC estimation. In EKF, the state distribution is approximated by 

Gaussian random variable (GRV) that are propagated through first order linearization function. This linearization 

can add large error in mean and covariance of the transformed function. This can be overcome with the use of 

UKF, a variant of Kalman filter that can handle higher nonlinearities. UKF gives better result than extended 

Kalman filter when it comes to battery modelling and SOC estimation(Konatowski, Kaniewski, & Matuszewski, 

2017).  

UKF involves approximation of the probability distribution, rather than to approximation of a random 

transformation function or nonlinear function(Julier & Uhlmann, 2004). In UKF sigma points are chosen which 

have mean and covariance exactly equal to state space 𝑋𝑘−1𝑎  and covariance 𝑃𝑘−1. Each sigma point is then passed 

through the nonlinearity giving a collection of transformed points. The new mean and covariance are calculated 

after this, based on the statics of transformed points. This technique for calculating the statistics of random 

variable that has undergone a nonlinear transformation is termed as unscented transformation (Wan & Van Der 

Merwe, 2000). The number of sigma points are calculated based on the dimension of the state space. Suppose n is 

the dimension of the state space then number of sigma points are 2𝑛 + 1. The UKF was selected to estimate 

battery SOC as the filter does not make use of linearization to calculate state parameters, predictions, covariance 

matrices. This helps in providing accurate Kalman gain. 

4.1. Algorithm for Unscented Kalman Filter 

 UKF is an extension of unscented transform to the recursive estimation, where random variable is redefined as 

the concentration of the original states and noise variables. Figure 6 shows flow chart for UKF.  First the 

unscented transform is performed. 
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Figure 6. Flow Chart for UKF 

 

In Prediction Step, first the sigma points are generated and then the state and error covariance are predicted. 

First the states, 𝑋𝑘−1,𝑃𝑘−1, are predicted as 𝛾 =   𝑓(𝑥, ∆𝑡) (2) 

Where, γ is the set of sigma points, 𝑓(𝑥, ∆𝑡) is the function through which sigma points passes. 𝑥 =  ∑𝑊𝑚   𝛾 (3) 

Where, 𝑤𝑚 is the weight and 𝑥 is the state space. 𝑃 =  ∑𝑊𝑐   (𝛾 − 𝑥)  (𝛾 − 𝑥)𝑇 + 𝑄 (4) 

Where, 𝑤𝑐is the weight function, 𝑃 is the error covariance and 𝑄 is the process noise. This is followed by 

update step. In update step conversion of previously calculated sigma points are done using measurement function ℎ(𝛾) that is defined as Ζ = ℎ(𝛾) (5) 

The mean and covariance of sigma points are calculated using unscented transform as, 𝜇𝑧 = ∑𝑊𝑚 𝛧 (6) 𝑃 =  ∑𝑊𝐶(𝛧 − 𝜇𝑧)(𝛧 −  𝜇𝑧)𝑇 + 𝑅 (7) 

Where, 𝜇𝑧 is the mean of sigma points using unscented transform, Ζ is the measurement function of sigma 

points and 𝑅 is the sensor noise. Using 𝜇𝑧the residual of measurement function can be calculated,   Υ = z − 𝜇𝑧 (8) 

Where, Υ is the measurement state and 𝑧 is the noise in measurement. To computer Kalman gain, the cross 

covariance of state and the measurement needs to be calculated, 𝑃𝑧 = ∑𝑊𝑐  (Υ −  𝑥) (𝛧 −  𝜇𝑧)𝑇 (9) 

And the Kalman gain K is simply the ratio of belief in state and belief in measurement and it is calculated as, K = 𝑃𝑧 𝑃−1 (10) 

Finally, the new state estimates and covariance matrix are calculated using Kalman gain, x =  �̅� + 𝐾 Υ (11) P = P − K 𝑃𝑧𝐾𝑇 (12) 
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5. Simulation Study 

The UKF based SOC estimation of LFP cell was carried out on MATLAB/SIMULINK. LFP18650 LFP cell 

with the respective capacity and nominal voltage of 3100mAh and 3.7V is considered in this work. Four different 

Thevenin models of LFP18650 LFP cell using (i) zero RC branch, (ii) one RC branch, (iii) two RC branches, and 

(iv) three RC branch are developed. The SOC estimation with UKF is developed on the simulation platform for 

these four models. 

Figure 7a to 7d shows different models used for the comparison. Here constant voltage source is used to 

replicate the open circuit voltage of the battery. Internal resistor represents the instantaneous voltage drop when a 

load is applied to the battery. The different numbers of RC, branches depending on the type of the models 

represent the time dependent voltage drop response of the battery. The parameters of the equivalent circuit model 

used for simulation studies were derived as a function of SOC, current and temperature. Lookup tables were used 

for battery modelling.  

In this study, the discharge current is controlled by selecting the load. Based on the SOC of cell, the load 

resistances were selected.  

Figure 7. Equivalent Circuit Models (a) battery model with zero RC branch, (b) battery model with 

one RC branch, (c) battery model with two RC branch, (d) battery model with three RC branch 

  

(a) (b) 

  

(c) (d) 

 

In this paper, different discharging currents corresponding to the C-rate are considered. The Table 1 shows the 

discharge current at different SOC. The range of SOC for the cell is considered with cut-off SOC at 30% and 

upper limit is 90% SOC. The starting point of the simulation is considered as 50% SOC. In practical application of 

battery in EV, it is observed that when battery is fully charges the power output from the battery is higher as 

compared to battery being partially charged. This concept was kept in mind while designing the SOCbased 

discharging current. Initially the discharge current was kept higher than gradually with decreased SOC of battery 

the discharge current was also reduced. First discharge current is applied to the system to reach cut-off SOC. And 

then constant current is applied for charging. Measurement noise is considered in the simulation studies by adding 

white noise to the current being measured. 

Table 1. Discharge Current 
SOC Discharge Rate Discharge Current 
100% to 80% 1C 31A 
80% to 65% 0.8C 24.8A 
65% to 50% 0.6C 18.6A 
50% to 30% 0.4C 12.4A 

5.1. Computational Time 

Execution of any instruction on CPU requires finite time. The computational time of an algorithm is time 

required to perform the set of instructions for the completion of the task for which it has been designed. This time 

is computed as the time duration from the instant when the input signals are received to the instant when the final 

outcome is provided by the algorithm for further processing. Computational time for an algorithm depends on 

many factors, such as size of the data to be processed, mathematical functions employed and limitations of the 

processor. In the case of UKF based SOC estimation of LFP18650 LFP cell using different RC models, the 
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computational complexity increases with the increase in the number of RC branches and consequently the 

computational time increases. The computational time can be calculated as 𝐶𝑃𝑈𝑇𝑖𝑚𝑒 = 𝐼 ∗ 𝐶𝑃𝐼 ∗ 𝑇 (13) 

where, 𝐶𝑃𝑈𝑇𝑖𝑚𝑒  is the time taken by 𝐶𝑃𝑈 to perform a certain operation, 𝐼 is the number of instructions in the 

algorithm, 𝐶𝑃𝐼 is average 𝐶𝑃𝑈 cycle per instruction and 𝑇 is clock cycle time. To calculate the computational 

time for an algorithm, the time for executing each of the mathematical and logical operations involved is required 

to be calculated(Assimakis, Adam, & Douladiris, 2012).  

For UKF, scalar operations are involved in matrix manipulations. All the operations are performed on 

Raspberry Pi and the time taken to run these operations is calculated. A Python code was used for implementation. 

The configuration of Raspberry Pi used was 1.2 GHz, 64-bit quad-core ARMv8 CPU, 1 GB RAM. Raspberry Pi is 

a very good platform for implementing and testing models due to its ability to perform multi-tasking, online 

connection capabilities with systems that requires performing multiple activities simultaneously. As performed in 

this work, the computation time is determined by setting a software-controlled timer, executing the algorithm and 

noting the total time duration till the execution of last code statement (excluding timer functioning time). Table 2 

summarizes the operation executed in the one iteration of UKF based estimation of SOC for the four different 

battery models. The computational time for the execution of one iteration of UKF based estimation of SOC for the 

four different battery models is shown in Table 3. In practice the number of iterations is in the multiple of 

thousands of operations for one charge-discharge cycle. The overall response time will be much higher when it 

comes to practical implementation of battery model with increased number of RC branches. From this analysis it 

is clear that the total number of computations is highest with the 3 RC model. In line with this finding, the 

computation time is also the highest with the 3 RC model. The consideration of computational time for developing 

any algorithm is essential as it is always desirable to obtain the results faster.   

5.2. Results and Discussions 

Four different types of battery models were developed in the SIMULINK and the accuracy of UKF based SOC 

estimation was analyzed for each model. The simulations are carried out on the set of measurements for 

LFP18650 LFP cell recorded at 20˚C. Figure 8 shows the comparison of UKF based SOC estimation for the four 

different RC models with the actual SOC. With increase in number of RC branches the estimated value of SOC is 

closer to the actual value and as a consequence the accuracy of estimation is also increases. As shown in Figure 

8a, with no RC branch there is no way for the estimation algorithm to incorporate the time dependent voltage 

response of the battery. Figure 8b and 8c shows some improvement in SOC estimation of SOC but there exists a 

scope for improving the accuracy. In Figure 8d, with 3 RC model it can be seen that the estimated SOC virtually 

follows the actual value. 

Figure 8. SOC estimation (a) SOC estimation for battery model with zero RCbranch, (b) SOC estimation for 

battery model with one RC branch, (c) SOC estimation for battery model with two RC branch, (d) SOC estimation 

for battery model with three RC branch 
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Table 2. Calculation Burden of UKF Algorithm 

Operations 
Number of Computation 

No RC Branch 
Model 

One RC Branch 
Model 

Two RC Branch 
Model 

Three RC Branch 
Model 

Addition 10 11 12 13 
Subtraction 14 14 14 14 

Multiplication 11 12 13 14 
Division 3 6 9 12 

Transpose 3 3 3 3 
Total 41 46 51 56 

Table 3 Calculation Time for different models 
Models Computational Time 

Zero RC Model 149 µs 
One RC Model 160 µs 
Two RC Model 196 µs 

Three RC Model 216 µs 

The root mean square error (RMSE) is calculated between estimated and real SOC values for the four battery 

models considered. RMSE is used for error calculation as it is standard deviation of the predicted values or 

residual values. Residual values are defined as how far from the actual line the predicted or estimated points are. 

From Figure 9 it can be observed that at the beginning of the simulation due to lack of training of the data for all 

the models the error is high as compared to later steps. Figure 9a shows RMSE for battery model with no RC 

branch in the equivalent circuit model.  Here, error is the maximum. The peak error for this model is 5.7%. As 

shown in Figure 9b, the RMSE for battery model with one RC branch in the equivalent circuit model has the peak 

error of 5%. Whereas, the RMSE for battery model with two RC branches has the peak error of 3.5% as shown in 

Figure 9c. Figure 9d shown RSME for battery model with three RC branches with the peak error for this model as 

1.6%. 

Figure 9. Root Mean Square Error (a) RMSE for battery model with zero RC branch, (b) RMSE for battery model 

with one RC branch, (c) RMSE for battery model with two RC branch, (d) RMSE for battery model with three RC 

branch 
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In applications like EVs, where instantaneous state of charge estimation is a key to the reducing range anxiety, 

the increase in computational time will reduce the confidence of consumer in the segment. It is crucial to obtain a 

good tradeoff between model accuracy and computation time for execution of the UKF based SOC estimation. 

The peak error of 1.6% obtained with three RC branches provides the best choice in terms of accuracy. Table 4 

shows the RMSE of UKF SOC estimation with the four different RC models. Though the execution time with 

three RC model is higher as compared to the other three models, it is to be noted that is higher by 45% as 

compared to the zero RC model. At the same time the RMSE with four RC model is lower as compared to the zero 
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RC model by 72%. Hence, three RC model is ideally suited for UKF based SOC estimation in terms of RMSE and 

computational time. 

Table 4.Calculation Time for different models 
Models RMSE 

Zero RC Model 5.7% 
One RC Model 5% 
Two RC Model 3.5% 
Three RC Model 1.6% 

6. Conclusion  

Developing a reliable battery model is very crucial to estimate the SOC of any battery. In EVs, the remaining 

SOC is used to predict remaining driving range. For large scale adaptation of EVs accurate SOC prediction is a 

prime necessity. In the framework of this paper, four different types of battery models are studied and compared. 

These four battery models are developed in MATLAB/SIMULINK for 3100mAh, 3.7V LFP18650 LFP cell and 

UKF is employed to estimate the SOC in each case. As the delayed voltage response is directly associated with the 

number of RC branches used for battery model, with the increase in RC branches, SOC can be more accurately 

estimated with reduced RMSE. The peak error for the battery model with no RC circuit was 5.7% and for battery 

model with three RC circuit was least at 1.6%. Theoretically, we can further increase the number of RC circuit but 

practically this would be unnecessarily computationally intensive and would delay the results. The execution time 

for UKF based SOC estimation with each RC model is obtained through Raspberry Pi based implementation. The 

computational burden for one iteration of UKF used to estimate SOC for a battery model with three RC branches 

is 216 µs and peak value of RMSE is 1.6%. This seems to be a good compromise between computational burden 

and accuracy for an application like EVs. 
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