Lower Bound for m₃(2,37) and Related Code

Hanan J. AL-Mayyahi

Department of Mathematics, Collage of Science University of Basrah E-mail: hanan.alhusayn.sci@gmail.com

Mohammed A. Alabbood Department of Mathematics, Collage of Science University of Basrah E-mail: mohna_l@yahoo.com

Article History: Received: 5 April 2021; Accepted: 14 May 2021; Published online: 06August 2021

Abstract: In a finite projective plane PG(2, q), an (k, n)-arc is a set of k points of a projective plane such that some n, but no n + 1 of them, are collinear. Here, the integer n is the degree of the arc and $k \ge n$. The maximum size of an (k,n)-arc in PG(2,q) is denoted by $m_n(2,q)$. In this paper the classification of the (k,3)-arcs in PG(2,37) is presented. It has been obtained using a computer-based exhaustive search that exploits Secant distributions inequivalent (k,3)-arcs and produces exactly one representative of each equivalence class. We established that $50 \le m_3(2,37)$. The constructed (50,3)-arcs give the respective lower bounds on $m_3(2,37)$. As a consequence there exist new three-dimensional linear codes over GF(37).

Keywords: Finite projective plane, Arcs, Linear codes, computer search.

1. Introduction

Let GF(q) denote the Galois field of q elements and V(3,q) be the vector space of row vectors of length three with entries in GF(q). Let PG(2,q) be the corresponding projective plane. The points (x_0, x_1, x_2) of PG(2,q) are the 1-dimensional subspaces of V(3,q). Subspaces of dimension two are called lines. The number of points and the number of lines in PG(2,q) is $q^2 + q + 1$. There are q + 1 points on every line and q + 1 lines through every point.

Definition 1.1. In a finite projective plane PG(2,q), a (k,n)-arc A is a set of k points in PG(2,q) where no n + 1, but some n of the points in A, are collinear.

Definition 1.2. The (k,n)-arc A in PG(2,q) is complete if it admits no extension to a larger arc \hat{A} of the same degree. More precisely, the (k,n)-arc A is complete if it cannot be embedded in any (\hat{k},n) -arc \hat{A} with $\hat{k} > k$.

With respect to a (k,n)-arc A, the lines of the plane may be classified according to their incidence with A. A line l is an *i*-secant to A if $|A \cap l| = i$ where $0 \le i \le n$, denote by τ_i their total number in PG(2,q). In particular, a line which does not meet A in any point of the plane is an external line, a line meeting A in a singleton is a unisecant or tangent line, while lines meeting A in two and three points are bisecants and trisecants respectively. A point $Q \notin A$ is called of index zero if it does not lie on any n-secant of A.

Theorem 1.3. ([10]). For a (*k*,*n*)-arc *K*, the following equations hold:

$$\sum_{i=0}^{n} \tau_i = q^2 + q + 1$$
$$\sum_{i=1}^{n} i\tau_i = k(q+1),$$
$$\sum_{i=2}^{n} \binom{2}{i} \tau_i = \binom{2}{k}.$$

Two (k,n)-arcs K_1 and K_2 are said to be secant distributions inequivalent if they have different *i*-secant distributions.

Let $m_n(2,q)$ denote the maximal number of points for which an (k,n) arc in PG(2,q) exists. The lower bounds on $m_3(2,q)$ for $13 \le q \le 37$, as shown in Table 1, are given in [3], [12], [13], [4], [5], [6], [1], [2], [7].

Table 1. Lower bounds on $m_3(2,q)$ for $7 \le q \le 37$

n/ q	7	8	9	1 1	1 3	1 6	1 7	9 ¹	2 3	5 ²	2 7	9 ²	3 1	37
3	1 5	1 7	1 7	2 1	2 3	8 ²	8 ²	3 1	3 7	8 8	4 2	4 4	4 6	-

2. The main results

2.1 The structure of PG(2,37)

Let K = GF(q). It is well known that PG(2,q) has a cyclic Singer group of order $q^2 + q + 1$, the group generated by the companion matrix C_f , namely

$$\mathcal{C}_f = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{array} \right),$$

where a_0, a_1, a_2 are the coefficients of primitive polynomial $f(x) = x^3 - a_2 x^2 - a_1 x - a_0$ over K. The order associated to the Singer group is the following

$$P_1 = (1,0,0), P_{i+1} = C_f(P_i) = P_i C_f, i = 1,2,...,q^2 + q.$$

Let K = GF(37). Consider the polynomial $f(x) = x^3 - 2x^2 - 2x - 2$ in the ring K[x]. It is clear that f(x) is primitive polynomial over K. In order to present the results in a more concise form, the points in PG(2,37) are in Singer order and each point is associated with its number. For example some of the points in PG(2,37) and their numbers are given as

$$1 := (1,0,0), 2 := (0,1,0), 3 := (0,0,1), 4 := (1,1,1), \dots, 1407 := (1,1,18).$$

In Table 2 some of the lines in PG(2,37) and their numbers are presented in Singer order.

Number	a_0, a_1, a_2	List of points of the line $a_0x_0 + a_1x_1 + a_2x_2 = 0$
1	1,0,0	2 3 10 82 110 147 172 195 216 222 242 256 406 460 493 548 557 614 772 790 821 866 895 925 937
		1124 1126 1215 1254 1292 1307 1374 1393 1406
2	0,1,0	1 3 92 131 169 184 251 270 283 286 287 294 366 394 431 456 479 500 506 526 540 690 744 777 832
1406	0,1,12	1 74 132 134 223 262 300 315 382 401 414 417 418 425 497 525 562 587 610 631 637 657 671 821 875 908 963 972 1029 1187 1205 1236 1281 1310 1340 1352 1362 1403
1407	1,1,18	144 162 193 238 267 297 309 319 360 365 438 496 498 587 626 664 679 746 765 778 781 782 789 861 889 926 951 974 995 1001 5 1185 1239 1272 1327 1336 1393

Table 2. Some lines in PG(2,37)

2.2 The construction of (k,3)-arcs, $4 \le k \le 10$

In this subsection, the classification of (k,3)-arcs is established by classifying inequivalent (*k*,3)-arcs up to *i*-secant distributions. Let $\mathcal{A}_4^1 = \{1, 2, 3, 4\}$ be the (4,3)-arc consisting of the points $P_1 = (1,0,0), P_2 = (0,1,0), P_3 = (0,0,1)$ and $P_4 = (1,1,1)$. Let $\mathcal{A}_k^i(i) = \mathcal{A}_k^i \cup \{i\}$. There is only one projectively inequivalent (3,3)-arc and (4,3)-arc in PG(2,37), While there are two types of (5,3)-arcs during implementation the program (See Table 3), they are corresponding to $\tau_3 = 1$ and $\tau_3 = 2$. According to Theorem 1.3, we can calculated the value of 0-secant, 1-secant, and 2-secant for the (5,3)-arcs:

 $\tau_0 + \tau_1 + \tau_2 + \tau_3 = 1407$ $\tau_1 + 2\tau_2 + 3\tau_3 = 190$ $\tau_2 + 3\tau_3 = 10$

By adding one point of index zero to each (5,3)-arc, we get (6,3)-arcs. In fact, there are four types of (6,3)-arcs up to secant distributions, as shown in Table 4:

Table 3. Secant distributions inequivalent (5,3)-arcs

\mathcal{A}_5^j	$\mathcal{A}_4^j(i)$	($(\tau_3, \tau_2, \tau_1, \tau_0)$
\mathcal{A}_5^1	$\mathcal{A}_{4}^{1}(287)$	(2	(2,4,176,1225)
\mathcal{A}_5^2	$\mathcal{A}_{4}^{1}(895)$	(1	(1,7,173,1226)

Table 4. Secant distributions inequivalent (6,3)-arcs

\mathcal{A}_6^j	$\mathcal{A}_5^j(i)$	($(\tau_3, \tau_2, \tau_1, \tau_0)$
\mathcal{A}_6^1	$\mathcal{A}_{5}^{1}(1126)$	(4	(4,3,210,1190)
\mathcal{A}_6^2	$\mathcal{A}_{5}^{2}(1253)$	(3	(3,6,207,1191)
$\mathcal{A}_6^{ar{3}}$	$A_5^2(7)$ (1	(1,12,201,1193)
\mathcal{A}_6^{ec4}	$\mathcal{A}_{5}^{2}(1407)$	(2	(2,9,204,1192)

Let us define $\mathcal{A}_k^j(i:\tau_3)$ to be the new (k+1,3)-arc $\mathcal{A}_k^j(i)$ together with the correspond number of 3-secant.

There are 1261 points from PG(2,37) which are not on any 3-secant of

 \mathcal{A}_{6}^{1} So, by added each one of them to \mathcal{A}_{6}^{1} , we get (7,3)-arc. Also, the number of points which are not on any 3-secant of \mathcal{A}_{6}^{2} is 1296. So, by added each one of them to \mathcal{A}_{6}^{2} , we get (7,3)-arc. The number of points of index zero that correspond to \mathcal{A}_{6}^{3} is 1366, and adding each one of them to \mathcal{A}_{6}^{3} gives (7,3)arc. Finally, there are 1331 points of index zero that correspond to \mathcal{A}_{6}^{4} , and adding each one of them to \mathcal{A}_{6}^{3} gives (7,3)-arc. However, there are 6 secant distributions inequivalent (7,3)-arcs as illustrated in Table 5.

	Tuble 5. becant distributions inequivalent (7,5) ares									
\mathcal{A}_7^j	$\mathcal{A}_6^j(i: au_3)$		\mathcal{A}_7^j	$\mathcal{A}_6^j(i: au_3)$		\mathcal{A}_7^j	$\mathcal{A}_6^j(i: au_3)$			
A17	$A_{6}^{1}(1125:6)$		A37	$A_{6}^{3}(23:1)$		A57	$A_{6}^{4}(1404:3)$			
A27	A ² ₆ (1235 : 5)		A47	$A_{6}^{4}(1403:2)$		A67	A ⁴ ₆ (1405 : 4)			

Table 5. Secant distributions inequivalent (7,3)-arcs

From Table 5, we have six inequivalent *i*-secant distribution. By adding one point of the points of index zero to each one of them, we get seven inequivalent (8,3)-arc (See Table 6).

			-	
\mathcal{A}_8^j	$\mathcal{A}_7^j(i: au_3)$	\mathcal{A}_8^j	$\mathcal{A}_7^j(i: au_3)$	
A18	$A^{2}_{7}(1395:7)$	A58	$A_{7}^{6}(1271:6)$	
$A2_8$	$A_{7}^{3}(1403:1) A_{7}^{3}(45)$	A68	$A_{7}^{6}(1403:4)$	
A3 ₈	• 2)	A7 ₈	$A_{-}^{6}(1404 \cdot 5)$	
$A4_8$	$A_{7}^{5}(1402 \cdot 3)$		11 (1404.5)	

Table 6. Secant distributions inequivalent (8,3)-arcs

The data of the secant distributions inequivalent (9,3)-arcs, and (10,3)arcs are given in Table 7, and Table 8 respectively.

			1	 (,,,,)
\mathcal{A}_9^j	$\mathcal{A}_8^j(i: au_3)$	\mathcal{A}_9^j	$\mathcal{A}_8^j(i: au_3)$	\mathcal{A}_9^j	$\mathcal{A}_8^j(i: au_3)$
A1 ₉ A2 ₉ A3 ₉ A4 ₉	$A^{1}_{8}(506:10)$ $A^{1}_{8}(1169:9)$ $A^{2}_{8}(1401:1)$ $A^{3}_{8}(67:2)$	A5 ₉ A6 ₉ A7 ₉ A8 ₉	$A_{8}^{4}(1397:3)$ $A_{8}^{5}(1391:8)$ $A_{8}^{6}(1401:4)$ $A_{8}^{7}(1383:7)$	A9 ₉ A10 ₉	$A_{8}^{7}(1402:5)$ $A_{8}^{7}(1403:6)$

Table 7. Secant distributions inequivalent (9,3)-arcs

Table 8. Secant distributions inequivalent (10,3)-arcs

\mathcal{A}_{10}^j	$\mathcal{A}_9^j(i: au_3)$	\mathcal{A}_{10}^j	$\mathcal{A}_9^j(i: au_3)$	\mathcal{A}_{10}^j	$\mathcal{A}_9^j(i: au_3)$
$\begin{array}{c} A1_{10} \\ A2_{10} \\ A3_{10} \\ A4_{10} \end{array}$	$A^{2}_{9}(549:12)$ $A^{2}_{9}(1339:11)$ $A^{3}_{9}(1396:1)$ $A^{4}_{9}(1403:2)$	$A5_{10} A6_{10} A7_{10} A8_{10}$	$A^{4}_{9}(123:3)$ $A^{7}_{9}(1396:4)$ $A^{8}_{9}(831:10)$ $A^{9}_{9}(1397:5)$	$\begin{array}{c} A9_{10} \\ A10_{10} \\ A11_{10} \\ A12_{10} \end{array}$	$A^{10}{}_{9}(1187:9)$ $A^{10}{}_{9}(1383:8)$ $A^{10}{}_{9}(1398:6)$ $A^{10}{}_{9}(1402:7)$

2.3 Secant distributions inequivalent (*k*,**3**)-arcs; $11 \le k \le 23$

In this subsection, we classify the inequivalent (k,3)-arcs up to *i*-secant distributions for all value of k, where $11 \le k \le 23$. From Table 8, we have 12 inequivalent (10,3)-arcs. We extend these arcs to (11,3)-arcs by adding one point of the points of the index zero to each (10,3)-arcs. The list of the inequivalent (11,3)-arcs, are shown in Table 9.

Table 9. Secant distributions inequivalent (11,3)-arcs

$\mathcal{A}_{11}^{j} \mid \mathcal{A}_{10}^{j}(i: au_{3})$	\mathcal{A}_{11}^j	$\mathcal{A}_{10}^j(i:\tau_3)$	$\mathcal{A}_{11}^{\jmath}$	$\mathcal{A}_{10}^{j}(i: au_{3})$
$\begin{array}{c c} A1_{11} & A^{1}_{10}(1277:14) \\ A2_{11} & A^{3}_{10}(1391:1) \end{array}$	A6 ₁₁ A7 ₁₁	$A'_{10}(811:13)$ $A^{8}_{10}(1390:5)$	A11 ₁₁ A12 ₁₁	$A^{12}_{10}(1271:10)$ $A^{12}_{10}(1397:7)$
$\begin{array}{c} A3_{11} \\ A4_{11} \end{array} \begin{array}{c} A^{4}_{10}(1396 : 2) \end{array}$	A811	$A_{10}^{9}(1188:12)$	A13 ₁₁ A14 ₁₁	$A^{12}_{10}(1398:8)$
A5 ₁₁ $A_{10}^{5}(134):3$	A9 ₁₁ A10 ₁₁	$A^{10}_{10}(1271:11)$		A ¹² 10(1401:9)

By the same method using in this subsection and Subsection 2.2, we get Table 10 to 21 that illustrate the inequivalent (12,3)-arcs to (23,3)-arcs respectively.

2.4 Secant distributions inequivalent (k,3)-arcs; $24 \le k \le 50$

In this subsection, we give the main result of our paper. More precisely, we established that $50 \le m_3(2,37) \le 75$ by constructed the (50,3)-arcs. Consequently, we show that there exist new three-dimensional linear codes over *GF*(37).

Let δ_k denotes the number of A^j_k arcs obtained from A^j_{k-1} arcs. Because of the big data, we just give the correspond number of arcs. The notation a.p.i.z in Figure 2.4 means adding points of index zero. All the results in this subsection are illustrated in Figure 2.4.

\mathcal{A}_{12}^j	$\mathcal{A}_{11}^j(i:\tau_3)$	А	4_{12}^{j}	$\mathcal{A}_{11}^j(i: au_3)$	\mathcal{A}_{12}^j	$\mathcal{A}_{11}^j(i:\tau_3)$	
$\begin{array}{c} A1_{12} \\ A2_{12} \\ A3_{12} \\ A4_{12} \\ A5_{12} \\ A6_{12} \end{array}$	$\begin{array}{l} A^{1}_{11}(833:17)\\ A^{2}_{11}(1388:1)\\ A^{3}_{11}(1391:2)\\ A^{4}_{11}(1402::3)\\ A^{4}_{11}(265:4)\\ A^{6}_{11}(462:16) \end{array}$	A' A' A A A A		$\begin{array}{l} A^{7}_{11}(1382:5) \\ A^{8}_{11}(1189:15) \\ A^{9}_{11}(918:14) \\ A^{10}_{11}(1389:6) \\ A^{12}_{11}(1379:7) \\ A^{13}_{11}(1396:8) \end{array}$	$\begin{array}{c} A13_{12} \\ A14_{12} \\ A15_{12} \\ A15_{12} \\ A16_{12} \\ A17_{12} \end{array}$	$\begin{array}{l} A^{14}{}_{11}(1188:13)\\ A^{14}{}_{11}(1283:12)\\ A^{14}{}_{11}(1389:2)\\ A^{14}{}_{11}(1396:9)\\ A^{14}{}_{11}(1397:10) \end{array}$	11)

Table 10. Secant distributions inequivalent (12

Fable 11. Secan	t distributions	inequivalent	(13,3)-arcs
-----------------	-----------------	--------------	-------------

\mathcal{A}_{13}^j	$\mathcal{A}_{12}^j(i: au_3)$	\mathcal{A}_{13}^j	$\mathcal{A}_{12}^j(i: au_3)$	\mathcal{A}_{13}^j	$\mathcal{A}_{12}^j(i: au_3)$
A1 ₁₃ A2 ₁₃	$A_{12}^{1}(605:20)$ $A_{12}^{2}(1381:1)$	A8 ₁₃ A9 ₁₃	$A_{12}^{8}(1180:18)$ $A_{12}^{9}(1173:17)$	A15 ₁₃ A16 ₁₃	$A^{16}_{12}(1378:9)$ $A^{17}_{12}(1188:14)$
A3 ₁₃ A4 ₁₃	$A_{12}^3(1388:2)$	A10 ₁₃	$A^{10}_{12}(1378:6)$	A17 ₁₃ A18 ₁₃	$A^{17}_{12}(1361:13)$
A5 ₁₃ A6 ₁₃	$A^{4}_{12}(1390:3)$ $A^{5}_{12}(1402:4)$	$A12_{13}$ A13 ₁₂	$A^{11}_{12}(1357:7)$ $A^{12}_{12}(1378:8)$	A19 ₁₃ A20 ₁₃	$A^{17}_{12}(1379:10)$ $A^{17}_{12}(1389:12)$
A7 ₁₃	A ⁵ ₁₂ (307 : 5)	A14 ₁₃	A ¹⁴ ₁₂ (1188 : 16)		$A^{17}_{12}(1396:11)$
	$A_{12}^{8}(1121:19)$		$A^{15}_{12}(1204:15)$		

Table 12. Secant distributions inequivalent (14,3)-arcs

\mathcal{A}_{14}^j	$\mathcal{A}_{13}^j(i: au_3)$	\mathcal{A}_{14}^j	$\mathcal{A}_{13}^j(i: au_3)$	\mathcal{A}_{14}^j	$\mathcal{A}_{13}^j(i: au_3)$
A1 ₁₄	$A_{13}^{I}(1167:23)$	A9 ₁₄	$A_{13}^{9}(1364:20)$	A17 ₁₄	$A_{13}^{18}(1348 : 10)$
A2 ₁₄	A ² ₁₃ (1357:1)	$A10_{14}$	A ⁶ ₁₃ (344 : 6)	A18 ₁₄	$A^{20}_{13}(394:16)$
$A3_{14}$ A4 ₁₄	A ³ ₁₃ (1357:2)	A11 ₁₄	A ¹¹ 13(1348:7)	$A19_{14}$ A20 ₁₄	$A^{20}_{13}(1190:15)$
A5 ₁₄	A ⁴ ₁₃ (1388:3)	A1 2_{14} A1 3_{14}	A ¹² 13(1365:8)	A21 ₁₄	$A^{20}_{13}(1348:11)$
A6 ₁₄	A ⁵ 13(1390:4)	A14 ₁₄	A ¹⁴ 13(1190:19)	A22 ₁₄	$A^{20}_{13}(1383:14)$
A/ ₁₄ A8	A ⁶ ₁₃ (1402:5)	A15 ₁₄	A ¹⁵ 13(1356:9)	A23 ₁₄	$A^{20}_{13}(1390:12)$
1 10 14	A ⁸ 13(1121:22)	AI 6 ₁₄	A ¹⁷ 13(394:18)		$A^{20}_{13}(1395:13)$
	A ⁸ ₁₃ (1318:21)		A ¹⁷ 13(1203:17)		

Our work in this paper is to give the correspond values of $m_3(2,37)$ in Table 1. The next theorem gives the results.

Theorem 2.1 (Main Theorem). *There exist a* (50,3)*-arc in PG*(2,37). *It follows that* $50 \le m_3(2,37) \le 75$.

Proof. First, we know from [10] that $m_3(2,q) \le 2q + 1$. So, $m_3(2,37) \le 75$. Secondly, by our method of classification, the set of points (1,0,0), (0,1,0),

(0,0,1), (1,1,1), (0,1,32), (1,26,22), (1,10,8), (1,6,7), (1,15,25), (1,22,4), (1,12,36),(1,33,15), (1,17,6), (1,14,29), (1,5,14), (1,16,17), (1,20,16), (1,29,34), (1,31,32),(1,35,4), (1,34,3), (1,30,27), (1,25,19), (1,2,26), (1,8,10), (1,19,13), (1,18,35), (1,13,23), (1,11,8), (1,9,24), (1,27,31), (1,7,14), (1,26,17), (1,23,5), (1,9,32),(1,1,6), (1,4,10), (1,28,30), (1,10,22), (1,7,11), (1,21,12), (1,18,25), (1,3,20),(1,4,9), (1,22,18), (1,24,33), (1,16,28), (1,30,5), (1,32,21), (1,21,16) forms a(50,3)-arc in PG(2,37) with secant distribution $\tau_3 = 228,\tau_2 = 541,\tau_1 = 134$, and $\tau_0 = 504$.

Table 13. Secant distributions inequivalent (15

\mathcal{A}_{15}^{j}	$\mathcal{A}_{14}^j(i:\tau_3)$	\mathcal{A}_{15}^{j}	$\mathcal{A}_{14}^j(i: au_3)$	\mathcal{A}_{15}^{j}	$\mathcal{A}_{14}^j(i: au_3)$
A115	$A_{14}^{1}(211:27)$	A10 ₁₅	$A^{10}_{14}(1402 : 6)$	A19 ₁₅	$A^{20}_{14}(1329 : 11)$
A215	$A^{1}_{14}(1401:26)$	$A11_{15}$	$A^{10}_{14}(346:7)$	A2015	$A^{21}_{14}(394:19)$
A315	Λ^2 (13(2 · 1))	A12 ₁₅	$A^{12}_{14}(1332:8)$	A21 ₁₅	$A^{22}_{14}(1348 \div 12)$
$A4_{15}$	$A_{14}(1342.1)$	A13 ₁₅	11 14(1002.00)	A22 ₁₅	11 14(1010 1 12)
A515	$A_{14}^{3}(1331:2)$	A14 ₁₅	$A^{13}_{14}(1188 : 23)$	A23 ₁₅	$A^{23}_{14}(394:18)$
A6 ₁₅	$A^{4}_{14}(1380:3)$	A15 ₁₅	$A^{14}_{14}(1348:9)$	A24 ₁₅	$A^{23}_{14}(1329:13)$
A7 ₁₅	Δ^{5} (1388 · 4)	A16 ₁₅	$A^{15}_{14}(1187:22)$	A25 ₁₅	$A^{23}_{14}(1353:16)$
A815	A 14(1500.4)	A17 ₁₅	A^{16} (1180 · 21)	A2615	A^{23} (1282 · 14)
A9 ₁₅	$A^{o}_{14}(1356:5)$	A18 ₁₅	A 14(1109.21)	A27 ₁₅	A 14(1362.14)
	$A^{8}_{14}(251:25)$		$A_{14}^{17}(1337:10)$		$A^{23}_{14}(1383:17)$
	$A_{14}^{9}(1069:24)$		$A^{18}_{14}(1376:20)$		$A^{23}_{14}(1390:15)$

Table 14. Secant distributions inequivalent (16,3)-arcs

\mathcal{A}_{16}^j	$\mathcal{A}_{15}^j(i: au_3)$	\mathcal{A}_{16}^j	$\mathcal{A}_{15}^j(i: au_3)$	\mathcal{A}_{16}^j	$\mathcal{A}_{15}^j(i: au_3)$
A1 ₁₆	$A_{15}^{2}(211:30)$	A11 ₁₆	$A^{11}_{15}(363:8)$	A21 ₁₆	$A^{23}_{15}(1323:13)$
A216	A ³ ₁₅ (1323:1)	A12 ₁₆	$A^{14}_{15}(1338:9)$	A22 ₁₆	$A^{25}{}_{15}\!(1329\ :\ 14)$
A3 ₁₆	A ⁴ ₁₅ (1237:2)	A1 3_{16} A1 4_{16}	$A^{15}_{15}(185:27)$	$A23_{16}$ A24 ₁₆	$A^{26}_{15}(394:22)$
A4 ₁₆	$A_{15}^{5}(1370:3)$	A15 ₁₆	$A^{15}_{15}(825:26)$	A25 ₁₆	$A^{26}_{15}(1359:21)$
A516	A ⁶ ₁₅ (1357:4)	A16 ₁₆	$A^{16}_{15}(1340:25)$	A26 ₁₆	$A^{27}_{15}(1230:20)$
A6 ₁₆	A ⁷ 15(1321:5)	A17 ₁₆ A18 ₁₆	$A^{17}_{15}(1319:10)$	A27 ₁₆ A28 ₁₆	$A^{27}_{\ 15}(1329:15)$
A/ ₁₆	A ⁸ 15(930:29)	A19 ₁₆	A ¹⁸ 15(1281:24)	A29 ₁₆	$A^{27}_{15}(1381:17)$
A8 ₁₆	A ⁹ 15(1273:28)	A2016	A ¹⁹ 15(1223:11)	A3016	$A^{27}_{15}(1382:16)$
A9 ₁₆ A10 ₁₆	A ¹⁰ 15(1303:6)		A ²¹ 15(1329:12)		$A^{27}_{15}(1383:19)$
111010	$A^{11}_{15}(1402:7)$		$A^{22}_{15}(1069:23)$		$A^{27}_{15}(1389:18)$

Table 15. Secant distributions inequivalent (17,3)-arcs

\mathcal{A}_{17}^{j}	$\mathcal{A}_{16}^j(i:\tau_3)$	\mathcal{A}_{17}^{j}	$\mathcal{A}_{16}^j(i:\tau_3)$	\mathcal{A}_{17}^{j}	$\mathcal{A}_{16}^j(i:\tau_3)$
A1 ₁₇	$A^{1}_{16}(1363:34)$	A13 ₁₇	$A^{14}_{16}(495:31)$	A25 ₁₇	$A^{26}_{16}(1193:15)$
A2 ₁₇	$A_{16}^{2}(1280:1)$	A14 ₁₇	A ¹⁴ 16(1238:30)	A26 ₁₇	$A^{28}_{16}(1329:16)$
A3 ₁₇	A ³ ₁₆ (1166:2)	AI5 ₁₇ A16 ₁₇	$A^{{}^{15}}{}_{16}(1338:29)$	A27 ₁₇ A28 ₁₇	$A^{28}_{16}(1348:17)$
A4 ₁₇	A ⁴ ₁₆ (1357:3)	A17 ₁₇	A ¹⁶ ₁₆ (1316:10)	A29 ₁₇	A ³⁰ ₁₆ (1230:24)
A517	A ⁵ 16(1356:4)	A18 ₁₇	$A^{18}_{16}(1193:11)$	A30 ₁₇	$A^{30}_{16}(1329:18)$
A6 ₁₇	$A^{6}_{16}(1262:5)$	A19 ₁₇ A20 ₁₇	$A^{19}_{16}(1193 : 12)$	A31 ₁₇ A32 ₁₇	A ³⁰ 16(1353:22)
A/ ₁₇	$A^{7}_{16}(1091:33)$	A21 ₁₇	$A^{20}_{16}(457:28)$	A33 ₁₇	$A^{30}_{16}(1377:21)$
A017	A ⁸ ₁₆ (1158:32)	A22 ₁₇	$A^{21}_{16}(1193:13)$	A34 ₁₇	A ³⁰ 16(1381:20)
A9 ₁₇ A10 ₁₇	$A^{9}_{16}(1265 : 6)$	A23 ₁₇ A24 ₁₇	$A^{22}_{16}(1193:14)$		A ³⁰ 16(1382:19)
A11 ₁₇	A ¹⁰ ₁₆ (1303:7)	17	$A^{23}_{16}(1069:27)$		A ³⁰ ₁₆ (1383:23)
A12 ₁₇	$A^{11}_{16}(1402 : 8)$		$A^{24}_{16}(554:26)$		
	$A^{11}_{16}(368:9)$		$A^{25}_{16}(963:25)$		

Table 16. Secant distributions inequivalent (18

\mathcal{A}_{18}^{j}	$\mathcal{A}_{17}^j(i:\tau_3)$	\mathcal{A}_{18}^{j}	$\mathcal{A}_{17}^j(i: au_3)$	\mathcal{A}_{18}^j	$\mathcal{A}_{17}^j(i:\tau_3)$
A1 ₁₈	$A^{1}_{17}(50:38)$	A14 ₁₈	$A^{14}_{17}(495:35)$	A27 ₁₈	$A^{28}_{17}(963:30)$
A218	A ¹ ₁₇ (439:39)	A15 ₁₈	$A^{15}_{17}(1158 : 34)$	A28 ₁₈	A ²⁹ 17(1107:18)
A318	$A^{2}_{17}(1148 : 1)$	A16 ₁₈ A17 ₁₈	$A^{12}_{17}(470:10)$	$A29_{18}$ A30 ₁₈	$A^{33}_{17}(1329:19)$
A4 ₁₈	A ³ ₁₇ (829 : 2)	$A18_{18}$	$A^{17}_{17}(1014:11)$	$A31_{18}$	A ³³ 17(1348:20)
A518	A ⁴ ₁₇ (1052:3)	A19 ₁₈	$A^{18}_{17}(1014 : 12)$	A3218	$A^{33}_{17}(1350:21)$
A618	A ⁵ 17(1186:4)	A20 ₁₈	A ¹⁹ 17(519:33)	A33 ₁₈	$A^{33}_{17}(1381 : 22)$
A7 ₁₈	A ⁶ ₁₇ (1140:5)	$A21_{18}$ $A22_{18}$	$A^{20}_{17}(1138:13)$	A35 ₁₈	A ³⁴ 17(963 : 29)
A8 ₁₈	$A_{17}^{7}(1142:37)$	A2318	A ²¹ 17(1138:14)	A3618	$A^{34}_{17}(1271:28)$
A9 ₁₈ A10 ₁₀	$A^{9}_{17}(1245 : 6)$	A24 ₁₈ A25 ₁₀	$A^{22}_{17}(1271 : 32)$	A37 ₁₈ A38 ₁₀	A ³⁴ ₁₇ (1329:23)
A11 ₁₈	A ¹⁰ ₁₇ (1245:7)	A26 ₁₈	$A^{24}_{17}(394:31)$	A39 ₁₈	A ³⁴ 17(1348:24)
A12 ₁₈	A ¹¹ 17(1303:8)		A ²⁵ 17(1138:15)		A ³⁴ 17(1358:26)
A13 ₁₈	A ¹² 17(1303:9)		A ²⁶ ₁₇ (1193:16)		A ³⁴ 17(1377:27)
	A ¹³ ₁₇ (185 : 36)		$A^{27}_{17}(1329:17)$		$A^{34}_{17}(1382:25)$

\mathcal{A}_{19}^{j}	$\mathcal{A}_{18}^j(i:\tau_3)$	\mathcal{A}_{19}^{j}	$\mathcal{A}_{18}^j(i:\tau_3)$	\mathcal{A}_{19}^{j}	$\mathcal{A}_{18}^j(i: au_3)$
A1 ₁₉	$A^{2}_{18}(50:44)$	A16 ₁₉	$A^{16}_{18}(1142:10)$	A31 ₁₉	$A^{32}_{18}(1329:22)$
A219	$A^{2}_{18}(1198:43)$	A17 ₁₉	A ¹⁷ 18(828:11)	A32 ₁₉	$A^{33}_{18}(898:35)$
A319	$A^{2}_{18}(1381 : 42)$	A18 ₁₉ A19 ₁₀	$A^{18}_{18}(800:12)$	A33 ₁₉ A34 ₁₀	$A^{34}_{18}(963:34)$
A419	A ³ ₁₈ (656:1)	A20 ₁₉	A ¹⁹ 18(1244:38)	A35 ₁₉	A ³⁵ 18(1107:23)
A519	$A^{4}_{18}(689:2)$	A21 ₁₉	A ¹⁶ ₁₈ (563 : 13)	A3619	$A^{36}_{18}(1329 : 24)$
A619	$A_{18}^{5}(428:3)$	A22 ₁₉	$A^{21}_{18}(967:14)$	A37 ₁₉	$A^{38}_{18}(564:33)$
A7 ₁₉	A ⁶ ₁₈ (392:4)	A2319 A2419	$A^{23}_{18}(179:37)$	A39 ₁₉	A ³⁸ ₁₈ (1229 : 32)
A8 ₁₉	$A_{18}^{7}(605:5)$	A25 ₁₉	$A^{21}_{18}(1014:15)$	A40 ₁₉	A ³⁹ 18(963:31)
A9 ₁₉	$A_{18}^{9}(1011 : 6)$	A26 ₁₉	A^{25} (1138 : 16)	A41 ₁₉	A ³⁹ 18(1329:25)
A10 ₁₉	$A^{10}_{18}(688:7)$	A27 ₁₉	$A^{26}_{10}(1193:17)$	A42 ₁₉	A ³⁹ 18(1348:26)
A12 ₁₉	$A^{11}_{18}(1005 : 8)$	A29 ₁₉	A^{27} (394:36)	A44 ₁₉	$A^{39}_{18}(1350:27)$
A1319	A ¹² ₁₈ (554 : 9)	A3019	A^{28} (960 : 18)		$A^{39}_{18}(1363:30)$
A14 ₁₉	$A^{13}_{18}(604:41)$		A^{29} (707 · 10)		$A^{39}_{18}(1377:29)$
AI 3 ₁₉	A ¹³ ₁₈ (1237:40)		$A_{18}(797:19)$ $A^{30}(1220:20)$		$A^{39}_{18}(1381:28)$
	$A^{15}_{18}(744:39)$		$A^{-18}(1529:20)$		10(1001.20)
	,		$A_{18}^{(1011:21)}$		

Table 17. Secant distributions inequivalent (19,3)-arcs

2.5 The related linear codes

A linear [n,k,d]-code C overGF(q) is a k-dimensional subspace of the *n*dimensional vector space $GF(q)^n$ with minimum distance d. The Hamming distance between to codewords $\mathbf{x}, \mathbf{y} \in GF(q)^n$, denoted $d(\mathbf{x}, \mathbf{y})$ is the number

\mathcal{A}_{20}^{j}	$\mathcal{A}_{19}^j(i: au_3)$	\mathcal{A}_{20}^{j}	$\mathcal{A}_{19}^j(i: au_3)$	\mathcal{A}_{20}^{j}	$\mathcal{A}_{19}^j(i: au_3)$
A120	$A^{2}_{19}(50:48)$	A17 ₂₀	$A^{19}_{19}(1187:43)$	A33 ₂₀	$A^{36}_{19}(899:39)$
A220	A ³ ₁₉ (1198:47)	A18 ₂₀	$A^{20}_{19}(1140:13)$	A34 ₂₀	$A^{38}_{19}(360:38)$
$A3_{20}$	$A^{4}_{19}(1094 : 2)$	$A19_{20}$ A20 ₂₀	$A^{21}_{19}(350:14)$	A35 ₂₀ A36 ₂₀	A ³⁹ 19(797:25)
A4 ₂₀	A ⁶ 19(94:3)	A21 ₂₀	A ²³ 19(830:15)	A37 ₂₀	A ⁴⁰ 19(1329:26)
$A5_{20}$	A ⁶ ₁₉ (1237:4)	A22 ₂₀	A ²⁰ 19(575:16)	$A38_{20}$	A ⁴¹ 19(1011:27)
A6 ₂₀	A ⁷ 19(1404:5)	$A23_{20}$ $A24_{20}$	$A^{25}_{19}(800:17)$	A39 ₂₀ A40 ₂₀	A ⁴² 19(874:36)
A7 ₂₀	A ⁸ ₁₉ (1170:6)	$A24_{20}$ A25 ₂₀	$A^{26}_{19}(1079:42)$	A40 ₂₀ A41 ₂₀	$A^{42}_{19}(963:37)$
A8 ₂₀	A ⁹ 19(1390 : 7)	A26220	A ²⁷ 19(623:18)	A42 ₂₀	A ⁴³ 19(1229:35)
A9 ₂₀	$A^{10}_{19}(1404:8)$	A27 ₂₀	$A^{28}_{19}(352:19)$	A43 ₂₀	A ⁴⁴ 19(1204:34)
$A10_{20}$ $A11_{20}$	A ¹¹ 19(1321:9)	$A29_{20}$	A ²⁹ 19(797:20)	$A45_{20}$	A ⁴⁴ 19(1329:28)
A1220	A ¹⁴ 19(604:46)	A3020	A ³⁰ 19(1010:21)	A4620	A ⁴⁴ 19(1343:31)
A1320	A ¹⁴ ₁₉ (954:45)	A31 ₂₀	A ³¹ 19(797:22)	A47 ₂₀	A ⁴⁴ 19(1348:29)
A1420 A1520	A ¹⁶ ₁₉ (1042:10)	AJ 220	A ³² 19(563:41)		A ⁴⁴ 19(1350:30)
A16 ₂₀	A ¹⁷ 19(732:11)		A ³³ 19(898:40)		A ⁴⁴ 19(1363:33)
	A ¹⁸ 19(529:12)		A ³⁴ 19(663:23)		A ⁴⁴ 19(1377:32)
	$A^{18}_{19}(360:44)$		$A^{35}_{19}(1107:24)$		

Table 18. Secant distributions inequivalent (20

\mathcal{A}_{21}^j	$\mathcal{A}_{20}^j(i: au_3)$	\mathcal{A}_{21}^j	$\mathcal{A}_{20}^{j}(i:\tau_{3})$	\mathcal{A}_{21}^{j}	$\mathcal{A}_{20}^{j}(i: au_{3})$
A1 ₂₁	$A_{20}^{1}(973:53)$	A1821	$A^{20}_{20}(800:15)$	A35 ₂₁	$A^{39}_{20}(360:44)$
A2 ₂₁	A ³ ₂₀ (390:3)	A19 ₂₁	$A^{21}_{20}(1140:16)$	A3621	$A^{39}_{20}(850:43)$
A3 ₂₁	A ⁴ ₂₀ (418 : 4)	$A20_{21}$ $A21_{21}$	$A^{22}_{20}(529:17)$	A37 ₂₁ A38 ₂₁	A ³⁹ 20(1326:42)
A4 ₂₁	A ⁵ ₂₀ (751 : 5)	A22 ₂₁	$A^{21}_{20}(604:18)$	A39 ₂₁	$A^{40}_{20}(1326 : 41)$
A5 ₂₁	$A_{20}^{6}(1385 : 6)$	A23 ₂₁	$A^{23}_{20}(527:48)$	A40 ₂₁	A ⁴² 20(797:28)
A6 ₂₁	$A_{20}^{7}(709:7)$	A24 ₂₁	$A^{23}_{20}(1191:47)$	A41 ₂₁	A ⁴⁴ 20(1329:29)
A7 ₂₁	A ⁸ 20(1028:8)	$A25_{21}$ $A26_{21}$	$A^{24}_{20}(1132:19)$	$A42_{21}$ $A43_{21}$	A4520(1010:30)
A8 ₂₁	$A_{20}^{9}(1186:9)$	A27 ₂₁	$A^{26}_{20}(352:20)$	$A44_{21}$	$A^{45}_{20}(1348 : 31)$
A9 ₂₁	A ¹⁰ 20(1156:10)	A28 ₂₁	$A^{27}{}_{20}(722:21)$	A45 ₂₁	A ⁴⁶ 20(963:40)
A10 ₂₁ A11 ₂₁	A ¹¹ ₂₀ (489:51)	A29 ₂₁ A30 ₂₁	$A^{27}_{20}(1266:22)$	A46 ₂₁ A47 ₂₁	A ⁴⁶ 20(1326:39)
A12 ₂₁	$A^{12}_{20}(604:52)$	A31 ₂₁	$A^{30}_{20}(834 : 46)$	A48 ₂₁	$A^{47}_{20}(1101:32)$
A13 ₂₁	$A^{12}_{20}(805:50)$	A32 ₂₁	$A^{31}_{20}(33:23)$	A49 ₂₁	$A^{47}_{20}(1329:33)$
A14 ₂₁ A15 ₂₁	$A^{14}_{20}(517:11)$	$A33_{21}$ A34 ₂₁	$A^{32}_{20}(634:24)$	$A50_{21}$ $A51_{21}$	$A^{47}_{20}(1336:38)$
A16 ₂₁	A ¹⁴ ₂₀ (1135:12)	21	$A^{33}_{20}(281 : 45)$		A ⁴⁷ 20(1343:35)
A17 ₂₁	A ¹⁷ 20(416:49)		A ³⁵ ₂₀ (33:25)		$A^{47}_{20}(1348:34)$
	A ¹⁸ ₂₀ (733:13)		A ³⁶ ₂₀ (797:26)		$A^{47}_{20}(1357:36)$
	A ¹⁸ ₂₀ (1252:14)		$A^{37}_{20}(1010:27)$		$A^{47}_{20}(1363:37)$

Table 19. Secant distributions inequivalent (21,3)-arcs

of postions in which $x_i 6= y_i$, for $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$.

Table 20. Secant distributions inequivalent (22

\mathcal{A}_{22}^{j}	$\mathcal{A}_{21}^j(i:\tau_3)$	\mathcal{A}_{22}^{j}	$\mathcal{A}_{21}^j(i: au_3)$	\mathcal{A}_{22}^{j}	$\mathcal{A}_{21}^j(i: au_3)$
A1 ₂₂	$A_{21}^{3}(247:5)$	A1922	$A^{21}_{21}(1367:19)$	A37 ₂₂	$A^{41}_{21}(730:30)$
A2 ₂₂	$A^4_{21}(555:6)$	A20 ₂₂	$A^{22}_{21}(713:54)$	A38 ₂₂	$A^{42}_{21}(804:31)$
A3 ₂₂	$A_{21}^{5}(598:7)$	A21 ₂₂ A22 ₂₂	$A^{23}_{21}(656:53)$	A39 ₂₂ A40 ₂₂	$A^{43}_{21}(360:47)$
A4 ₂₂	A ⁵ ₂₁ (1347:8)	A2322	$A^{21}_{21}(688:20)$	A4122	$A^{44}_{21}(963:46)$
A5 ₂₂	$A_{21}^{7}(354:9)$	A2422	A ²⁶ ₂₁ (42:21)	A42 ₂₂	A ⁴⁵ ₂₁ (516:32)
A6 ₂₂	$A_{21}^{8}(1042 : 10)$	A25 ₂₂ A26 ₂₂	$A^{26}_{21}(1131:22)$	A43 ₂₂ A44 ₂₂	$A^{46}_{21}(797:33)$
A7 ₂₂	$A_{21}^{9}(301:11)$	A27 ₂₂	$A^{27}_{21}(731:23)$	A45 ₂₂	$A^{47}{}_{21}(1070\ :\ 45)$
A022	$A_{21}^{9}(1407 : 12)$	A2822	$A^{28}_{21}(965:52)$	A46 ₂₂	$A^{49}_{21}(804:34)$
A9 ₂₂	$A^{11}_{21}(564:58)$	A29 ₂₂	$A^{30}_{21}(88:24)$	A47 ₂₂	$A^{49}_{21}(1329:35)$
$A10_{22}$ $A11_{22}$	$A^{11}_{21}(1390:56)$	A31 ₂₂	$A^{30}_{21}(1332 : 25)$	A4022 A4922	$A^{50}_{21}(1101:36)$
A1222	$A^{12}_{21}(604:57)$	A32 ₂₂	A ³³ 21(33:26)	A5022	$A_{21}^{51}(1010:37)$
A13 ₂₂	$A^{14}_{21}(517:13)$	A33 ₂₂	$A^{34}_{21}(42:27)$	A51 ₂₂	$A^{51}_{21}(1159:43)$
A15 ₂₂	A ¹⁵ ₂₁ (997 : 55)	A35 ₂₂	$A^{34}_{21}(1266:28)$	A53 ₂₂	$A^{51}_{21}(1326:44)$
A1622	$A^{17}{}_{21}(733:14)$	A3622	$A^{35}_{21}(721:51)$	A5422	$A^{51}_{21}(1329:38)$
A17 ₂₂	$A^{17}{}_{21}(1069 : 15)$		$A^{36}_{\ 21}(281:49)$		$A^{51}_{21}(1344:40)$
111022	$A^{19}{}_{21}(733:16)$		$A^{36}_{21}(360:50)$		$A^{51}_{21}(1348:39)$
	$A_{21}^{19}(1252:17)$		$A^{37}_{21}(850:48)$		$A^{51}_{21}(1352:42)$
	$A^{21}_{21}(1140:18)$		A ⁴⁰ ₂₁ (797 : 29)		$A_{21}^{51}(1355:41)$

A central problem in coding theory is that of optimizing one of the parameters n, kand d for given values of the other two and q-fixed. There are two versions introduced in [9], namely

1. Find $d_q(n,k)$, the largest value of *d* for which there exists an $[n,k,d]_q$ code.

2. Find $n_q(k,d)$, the smallest value of *n* for which there exists an $[n,k,d]_q$ code.

A code which achieves one of these two values is called *d*-optimal or *n*optimal respectively. The well-known lower bound for $n_q(k,d)$ is the Griesmer bound [8], [16]

$$n_q(k,d) \geq g_q(k,d) = \sum_{j=0}^{k-1} \lceil \frac{d}{q^j} \rceil$$

(dxe denotes the smallest integer $\geq x$). Codes with parameters $[g_q(k,d),k,d]_q$, are called Griesmer codes.

Theorem 2.2 (Griesmer Bound [9]). Let C be a linear [n,k,d]-code over

GF(q). Then we must have that $n_q(k,d) \geq \sum_{j=0}^{k-1} \left\lceil \frac{d}{q^j} \right\rceil$

In [9], we see that $n_q(k,d) = g_q(k,d)$ for all d when k = 1 or 2. The problem of finding $n_q(k,d)$ for all d has been solved only in the next cases

(See [14], [15]):

• $k \le 8$ for codes over GF(2),

\mathcal{A}_{23}^{j}	$\mathcal{A}_{22}^j(i:\tau_3)$	\mathcal{A}_{23}^{j}	$\mathcal{A}_{22}^j(i:\tau_3)$	\mathcal{A}_{23}^{j}	$\mathcal{A}_{22}^j(i:\tau_3)$
A1 ₂₃	$A^{1}_{22}(752:7)$	A21 ₂₃	$A^{22}_{22}(729:22)$	A41 ₂₃	$A^{43}_{22}(1345:51)$
A2 ₂₃	A ² ₂₂ (1172:8)	A22 ₂₃	$A^{24}_{22}(835:23)$	A42 ₂₃	$A^{44}_{22}(730:34)$
A3 ₂₃	A ³ ₂₂ (1003:9)	$A25_{23}$ $A24_{23}$	$A^{25}_{22}(730:24)$	$A43_{23}$ $A44_{23}$	$A^{45}_{22}(797:35)$
$A4_{23}$	A ⁴ ₂₂ (1321:10)	A2523	$A^{26}_{22}(314:59)$	A45 ₂₃	A ⁴⁶ ₂₂ (516:36)
A523	A ⁵ ₂₂ (1182:11)	A26 ₂₃	$A^{26}_{22}(1096 : 58)$	A46 ₂₃	$A^{47}_{22}(730:37)$
A6 ₂₃	$A_{22}^{6}(1166 : 12)$	A27 ₂₃ A28 ₂₃	$A^{28}_{22}(88:25)$	A4 / 23 A4823	$A^{47}_{22}(1137:38)$
A/ ₂₃	A ⁸ ₂₂ (301:13)	A29 ₂₃	$A^{28}_{22}(1094:26)$	A49 ₂₃	$A^{49}_{22}(1337 : 50)$
A8 ₂₃	A ⁸ ₂₂ (1265:14)	A30223	A ²⁹ 22(1004:27)	A50 ₂₃	A ⁵² 22(804:39)
A9 ₂₃	A ⁹ ₂₂ (732:64)	A31 ₂₃	$A^{30}_{22}(1047 : 28)$	A51 ₂₃	A ⁵² 22(1329:40)
A10 ₂₃ A11 ₂₃	$A^{11}_{22}(564:63)$	A33 ₂₃	$A^{31}_{22}(731:29)$	A52 ₂₃ A53 ₂₃	$A^{53}_{22}(1326:49)$
A1223	$A^{11}_{22}(1390:62)$	A3423	$A^{32}_{22}(1098:57)$	A5423	$A^{54}_{22}(1010:41)$
A13 ₂₃	$A^{13}_{22}(1027 : 61)$	A35 ₂₃	$A^{34}_{22}(1013:56)$	A55 ₂₃	$A^{54}_{22}(1070:48)$
A14 ₂₃ A15 ₂₃	A ¹⁵ ₂₂ (733:5)	A30 ₂₃ A37 ₂₃	$A^{35}_{22}(281:55)$	A50 ₂₃ A57 ₂₃	A ⁵⁴ 22(1329:42)
A16 ₂₃	$A^{15}_{22}(1042:16)$	A3823	$A^{36}_{22}(848:30)$	A5823	$A^{54}_{22}(1338:45)$
A17 ₂₃	$A^{17}_{22}(733:17)$	A39 ₂₃	$A^{38}_{22}(730:31)$		A ⁵⁴ 22(1344:44)
$A10_{23}$ A19 ₂₃	$A^{18}_{22}(733:18)$	A+023	$A^{38}_{22}(828:32)$		$A^{54}_{22}(1348:43)$
A20 ₂₃	$A^{18}_{22}(1069 : 19)$		A ³⁹ 22(1043:54)		A ⁵⁴ 22(1351:46)
	$A^{20}_{22}(704:60)$		$A^{39}_{22}(1070:53)$		A ⁵⁴ ₂₂ (1352:47)
	$A^{22}_{22}(1042:20)$		$A^{41}_{22}(1093:33)$		
	$A^{22}_{22}(1140:21)$		A^{43} $(1229:52)$		

Table 21. Secant distributions inequivalent (23

• $k \le 5$ for codes over GF(3),

• $k \le 4$ for codes over GF(4),

• k = 3 for codes over $GF(q), 5 \le q \le 9$.

Thus, in the case of three-dimensional codes the problem remains open when $q \ge 11$. It is well known that there exists a projective $[n,3,d]_q$ code if and only if there exists an (n,n-d)-arc in PG(2,q) (See [9]).

Theorem 2.3 ([9]). There exist a projective $[n,3,d]_q$ -code if and only if there exist an (n,n-d)-arc in PG(2,q). Consequently, we get our next corollary.

Corollary 2.4. There exist Griesmer codes with parameters [50,3,47]₃₇.

Proof. From Theorem 2.1 and Theorem 2.3 we get the results.

Acknowledgment

We are grateful to the staff of the Department of Mathematics, College of Science, University of Basrah.

References

[1] Braun, M., 2018. New lower bounds on the size of arcs and new optimal projective linear codes. arXiv preprint arXiv:1808.02702.

Figure 1. The number of Secant distributions inequivalent \mathcal{A}_k^J arcs, $24 \le k \le 50$

- [2] Braun, M., 2019. New lower bounds on the size of (n, r)arcs in PG (2, q). Journal of Combinatorial Designs, 27(11), pp.682-687.
- [3] Daskalov, R.N. and Contreras, M.E.J., 2004. New (k; r)-arcs in the projective plane of order thirteen. Journal of Geometry, 80(1-2), pp.10-22.
- [4] Daskalov, R. and Metodieva, E., 2011. New (n, r)-arcs in PG (2, 17), PG (2, 19), and PG (2, 23). Problems of Information Transmission, 47(3), pp.217-223.

- [5] Daskalov, R. and Manev, M., 2017. A new (37, 3)-arc in PG (2, 23). Electronic Notes in Discrete Mathematics, 57, pp.97-102.
- [6] Daskalov, R. and Metodieva, E., 2018, September. Four new large (n, r)arcs in PG (2, 31). In Sixteenth International Workshop on Algebraic and Combinatorial Coding Theory (pp. 137-139).
- [7] Daskalov, R. and Metodieva, E., 2020, October. Three new large (n, r) arcs in PG (2, 31). In 2020 Algebraic and Combinatorial Coding Theory (ACCT) (pp. 1-4). IEEE.
- [8] Griesmer, J.H., 1960. A bound for error-correcting codes. IBM Journal of Research and Development, 4(5), pp.532-542.
- [9] Hill, R. and Newton, D.E., 1992. Optimal ternary linear codes. Designs, Codes and Cryptography, 2(2), pp.137-157.
- [10] Hirschfeld, J.W.P., 1998. Projective geometries over finite fields. Oxford mathematical monographs. New York: Oxford University Press.
- [11] Hirschfeld, J.W. and Storme, L., 2001. The packing problem in statistics, coding theory and finite projective spaces: update 2001. In Finite geometries (pp. 201-246). Springer, Boston, MA.
- [12] Marcugini, S., Milani, A. and Pambianco, F., 2004. Classification of the (n, 3)-arcs in PG (2, 7). Journal of Geometry, 80(1-2), pp.179-184.
- [13] Marcugini, S., Milani, A. and Pambianco, F., 2005. Maximal (n, 3)-arcs in PG (2, 13). Discrete mathematics, 294(1-2), pp.139-145.
- [14] Maruta, T., 2011. Extension theorems for linear codes over finite fields. Journal of Geometry, 101(1-2), pp.173-183.
- [15] Maruta, T., Griesmer bound for linear codes over finite fields, Online table.
- [16] Solomon, G. and Stiffler, J.J., 1965. Algebraically punctured cyclic codes. Information and Control, 8(2), pp.170-179.